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Abstract: Cell surface receptors are involved in numerous important biological processes including 
embryogenesis, tissue differentiation, and cellular homeostasis. Among them, mechanosensitive ion 
channels play an essential role in cellular functions of every cell including neurons, cardiomyocytes, 
and osteocytes. Here, we discuss types, roles, structures, and biophysical factors that affect the 
functions of mechanosensitive ion channels. 
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1. Introduction 

Cellular membranes consist of lipid bilayers that separate the inside and outside of a cell. 
Surface receptors, among a multitude of membrane proteins incorporated in the bilayer, play a role in 
receiving signals from the environment outside. G-protein-coupled receptors are typical examples of 
the surface receptors, which receive chemical substances and commence signal transduction in the 
cell [1,2]. Yet another class of the surface receptors are ion channels, more than 400 of which are 
thought to be coded in the human genome [3]. The signals are typically chemical substances 
including hormones [4] and neurotransmitters [5]. For example, verapamil, a substance which 
belongs to phenylalkylamine class, inhibits the activity of L-type calcium channels in 
cardiomyocytes and thereby attenuates hypertension [6]. 

Yet another form of the signal, which affects the surface receptors, is the mechanical stimulus. 
Mechanosensitive ion channels (MS channels) change their conformation and function in response to 
mechanical stimuli, including pressure, shear stress, and osmolarity [7,8,9]. Function or malfunction 
of MS channels confer a vast range of biological processes, including tactile sensation [10], cell 
volume regulation [11], synapse formation [12], heart rate regulation [13], arrhythmia [14], 
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pulmonary arterial hypertension [15], muscular dystrophy [16], polycystic kidney disease [17], and 
tumor progression [18]. Astonishingly enough, even the process of photoreception is suggested to be 
derived from MS channels in fly vision via membrane contraction evoked by light exposure [19]. 
Here, we discuss the role of MS channels in life activity at first, then the molecular structure, and the 
biophysical principle for their action (Figure 1). 

 

Figure 1. Number of pore forming subunits in mechanosensitive ion channels. 

1.1. Expression of mechanosensitive ion channels in organs and their function 

MS channels are expressed in a vast range of cells and involved in various biological  
functions [16,20–26]. Designations of MS channels and their location of expression are summarized 
in Table 1.  

The transient receptor potential (TRP) channels were first found in Drosophila and now 28 TRP 
subtypes are identified. TRPA1 (transient receptor potential cation channel, subfamily A, member 1) 
channel is widely expressed in tissues, including sensory neurons [27], inner ear hair cells [20], 
periodontal ligament cells [28], and pancreatic beta cells [29]. This channel was originally found as a 
cold sensor [30], but now it is also known as mechanosensor, for example, in the viscera [31]. 

TRPC1 (Transient receptor potential cation channel, subfamily C, member 1) channel is 
expressed in cardiomyocytes [32], sensory nerve ending of the atrial volume receptors [33], and 
spinal neurons [34]. TRPC1 regulates migration of renal epithelial cells by creating a calcium 
gradient, which determines the axis of cellular movement [35]. Considering embryonic development, 
migration can be described as a continuous process as cellular migration is a fundamental process in 
multicellular organisms, including humans. In the spinal axon, TRPC1 senses hardness of the 
surrounding environment and guides development of the axon [34]. TRPC3, together with TRPC6, is 
expressed in dorsal root ganglion neurons and is involved in touch sensation [36]. As later mentioned, 
TRPC1, 3, and 6 are expressed in the heart and involved in the development of cardiac hypertrophy. 
Besides, TRPC6 is also expressed in podocytes and is mechanically gated by membrane stretch [37]. 
Gain of function mutation of this protein causes nephrotic syndromes [38]. 

Blood vessels are sensing blood pressure and regulating their diameter to control blood flow 
appropriately. The epithelial sodium channel (ENaC) is expressed in epithelial cells, distal nephrons, 
gastrointestinal tract, skin, and cerebral arteries [39,40]. ENaC, together with transient receptor 
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potential channels later mentioned, plays important roles in the pressure-induced myogenic response 
in cerebral arteries. 

Table 1. Ion channels regarded as mechanosensitive. 

Channels Location Ref. 

Sodium channels 
NaV1.5 muscle, heart, gut [43] 
NaV1.6 Neuron [44] 
DEG/ENaC epithelial cells, distal nephrons, gastrointestinal tract, skin, 

mechanoreceptor neurons 
[39,86] 

Potassium channels 
KV1  [87] 
TREK-1 Cardiomyocyte [88,89] 
TRAAK neuron, retina [74,78,90] 
KATP atrial myocyte [91,92] 
SAKCA ventricular myocyte [93] 

  KCNQ (KV7) cochlear hair cells, peripheral nerve mechanoreceptor [42] 

Calcium channels 

  CaV1.2 Cardiomyocyte, intestinal smooth muscle cell, knee joint 
neuron 

[47,94] 

Chloride channel 

  CFTR epithelial cell, cardiomyocyte 
atrial myocyte, SA node 

[95,96] 

Non-specific cation channels 
  TRPA1 sensory neuron, inner ear hair cell, periodontal ligament cells, 

pancreatic beta cells 
[20,27–
29,31,97] 

  TRPC1 cardiomyocyte, atrial volume receptor, spinal neuron [32–34,98] 

  TRPC3 sensory neuron, cochlear hair cell [36] 

  TRPC6 vascular smooth muscle cell, cardiomyocyte, sensory neuron, 
cochlear hair cell, podocyte 

[36,37,99,100]

  TRPM3 nociceptive neuron, kidney, brain, retina, periodontal ligament 
cell 

[101–104] 

  TRPM4 Purkinje fiber, SA node, cerebral artery, fibroblast, 
endothelial cell, astrocyte 

[105] 

  TRPM7 atrial fibroblast, odontoblast, mesenchymal stem cell [65,106] 

  TRPP1 renal epithelial cells  

  TRPP2 renal epithelial cells, endocardial cell [107] 

  TRPV1   

  TRPV2 cardiac muscle  

  TRPV4 atrial myocyte, atrial volume receptor, endocardial cell, 
cardiac fibroblast, osteoblast 

[33,64,107, 
108] 

  NMDAR Neuron [109] 



66	

AIMS Biophysics                                                                    Volume 3, Issue 1, 63-74.	

Hearing is one of the typical mechanosensitive processes. While TRPA1 is a well-known MS 
channel in the inner ear hair cells, response to auditory stimulus persists even after the knockdown of 
that protein [41]. On the other hand, KCNQ4, voltage-gated KQT-like subfamily Q member 4, is 
also expressed in the mechanosensitive hair cells of the inner ear and auditory neurons [42]. 
Mutation of this channel causes deafness (non-syndromic sensorineural deafness type 2). Intriguingly, 
KCNQ4 is also expressed in peripheral mechanoreceptors including hair follicle and Meissner 
corpuscle and is involved in tactile sensation. Other candidates for MS channels responsible for 
hearing are TRPC3/6. Co-expression of TRPC3 and TRPC6 is also observed in the cochlear hair 
cells, and double knockout of these genes shows impairment of hearing [36]. 

Several classes of voltage-gated cation channels are also regarded as mechanosensitive. For 
example, a voltage-gated sodium channel, NaV1.5, is expressed in electromechanical tissues, 
including the muscle, heart, and gut [43]. NaV1.6 channel is expressed in neurons [44]. A voltage-
gated calcium channel, CaV1.2, is expressed in cardiomyocytes [45], intestinal smooth muscle  
cells [46], and knee joint afferents [47]. It is suggested that nociceptive mechanical stimuli to the 
knee joint evoke excitation of afferent nerve via CaV1.2 [47]. 

1.2. Role of mechanosensitive channels in the heart 

Mechanical stimuli affect the frequency of heartbeat. Stretch-activated ion channels are thought 
to play this role, and several MS channels are candidates for them. For example, TRPM4 channel is 
expressed in the heart and has a role in cardiac conduction [48]. Deletion of TRPM4 causes 
abnormality in cardiac electric conduction [49], and overexpression of the gene is the cause of 
progressive familial heart block type I [50]. Another candidate is TRPM7, which influences diastolic 
membrane depolarization and cardiac automaticity in the sinoatrial node [51]. This channel is 
expressed in atrial fibroblasts and plays a role in atrial fibrillation [52]. 

Cardiac hypertrophy is a consequence of long time exposure to pressure/volume overload. 
TRPC1/3/6 are candidates for the responsible channels for this mechanosensitive pathological 
process [53]. TRPC1 knockout mice lack maladaptive hypertrophic alteration in response to pressure 
overload [32]. In the patch clamp experiment using the TRPC1 knockout cardiomyocytes, TRPC-like 
current in response to mechanical stimulus was not observed [32]. On the other hand, blockade of 
TRPC3 and TRPC6 channels at the same time inhibit cardiac hypertrophy [54]. These channels are 
thought to form heterotetramers. 

Of course the cellular mechanosensitivity does not serve only for pathological processes in the 
heart. TRPV4 (Transient receptor potential cation channel, subfamily V, member 4) and TRPP2 
(Transient Receptor Potential Polycystic 2) channels are expressed in the endocardium and control 
development of cardiac valves via expression of Klf2a. In drosophila, TRPA channel is responsible 
for cardiac mechanosensitive response [55]. Thus, MS channels play indispensable roles for cardiac 
physiology and pathology. 

1.3. Role of mechanosensitive channels in the bone 

Considering that bone is an organ, which bears loads due to gravity all the time, it is quite 
natural that this organ has specific contrivance for mechanosensitive response. Remodeling of bone 
is controlled both systemically and locally. Mechanical stress is a critical factor for bone mass 
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regulation [56]. Unloading of mechanical stress causes severe decrease of bone mass. For example, 
when a tooth is lost, load to the root of the facing tooth will be lost and thereby the mass at nearby 
jawbone decreases. Other examples are bedridden patients and astronauts under microgravity [57]. 

The bone tissue is maintaining its physiological function due to the functions of osteoclasts, 
osteoblasts, lining cells (osteoblasts in a rest condition), and osteocytes (developed osteoblasts). 
These cells are maintaining homeostasis by sensing and transmitting mechanical stimuli. MS 
channels play a role in the bone mechanotransduction [58]. TRP [59] and BKCa [60] channels are 
thought to be mechanosensors in the bone. 

Increase in DNA synthesis and decrease in ALP activity are observed in response to stretch 
stimulus in the osteoblast-like cells [61]. Among the factors, which induce bone formation, the 
calcium signaling pathway is thought to play an important role. There is a close relationship between 
MS channels and bone function. For example, mutation of TRPV4 gene causes skeletal dysplasias, 
including metatropic dysplasia and parastremmatic dysplasia [62]. Although unloading will usually 
cause bone loss, this mechanosensitive alteration is cancelled in TRPV4 deficient mice [63]. Besides, 
TRPV4 is involved in the flow-induced calcium signaling in osteoblasts [64]. Another TRP channel 
responsible for bone mechanosensitivity is TRPM7, which is expressed in human bone marrow 
mesenchymal stem cells and plays a pivotal role in osteogenesis [65]. 

1.4. Structure of mechanosensitive ion channels 

Historically, many researches regarding MS channels have been done using bacterial 
mechanosensitive channel, especially MscL (mechanosensitive channel of large conductance), whose 
high-resolution three dimensional crystal structure was solved [66–70]. Using this structure, 
biophysical principles, which govern the dynamics of mechanosensitive conformational changes 
have been revealed by many groups steadily. Recently, high resolution three dimensional structures 
of eukaryote MS channels have been revealed eventually [71–75]. These structures will help us to 
reach a higher level of understanding cellular mechanosensitivity. 

Whereas dedicated researches are still in progress, it seems that specific features responsible for 
the mechanosensitivity of ion channels are lacking at present. This is very different from the case of 
six transmembrane voltage-gated channels, which have well conserved amino acid sequence from 
bacteria to human, namely “voltage sensor”, at S4 transmembrane helix [76]. The structure of MS 
channels is very diverse. For example, the number of pore forming subunits ranges from two to 
seven (Fig. 1). NaV and CaV channels have only one pore forming subunit which consists of four 
homologous domains. TREK-1 [77], TRAAK [78], and CFTR [73] channels have two pore forming 
subunits. Voltage gated (KV) and ATP-sensitive (KATP) potassium channels, SAKCA (stretch 
activated KCa) channels, TRP channels, and NMDAR (N-methyl-D-aspartate receptor) channels have 
four pore forming subunits. Some TRP channels form heterotetramers such as TRPC3/TRPC6. 
Bacterial mechanosensitive channels of large conductance (MscL) channel have five identical 
subunits, and mechanosensitive channels of small conductance (MscS) channel have seven identical 
subunits. So far any common or conserved “mechanosensor” domains have not been identified. Ion 
selectivity is also diverse; there are sodium, potassium, calcium, and chloride channels of various ion 
selectivity. Besides, most of the TRP channels are nonspecific cation channels. These facts imply 
that each MS channel has individual manner of conformational change in response to mechanical 
stimulus. 
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Interaction with other proteins is a critical factor, which determines the mechanosensitivity of 
the channel. For example, SAKCA channel has a pore-forming α-subunit and a regulatory  
β-subunit [79]. The α-subunit consists of four subunits and is regulated by the β-subunits in 1:1 
stoichiometry (reviewed in [79]). The β-subunits significantly affect the kinetics of α-subunit. 
Recently, an intriguing fact regarding an MS channel and adhesome proteins was discovered. That is, 
TRPM4 channel is associated with cytoskeleton-related proteins such as filamin and vinculin, 
involved in disassembly of focal adhesions, thereby regulating cellular migration and  
contractility [80]. This finding will connect two areas hitherto individually treated MS channels and 
adhesomes together and deepen our understanding of cellular mechanosensitive response. 

1.5. Biophysical principles, which govern the behavior of mechanosensitive ion channels 

Every surface receptor, including MS channels, that resides in the cellular membrane that is 
composed of lipid bilayers. If an MS channel is to change its conformation in response to 
surrounding mechanical stimulus, it receives the stimulus from either or both of the following 
molecules: lipid and/or protein. The former case is called “bilayer mechanism”, in which the MS 
channel may receive energy for conformational change totally from the surrounding lipid bilayer and 
doesn’t require any associating proteins. Bacterial MscL and MscS are the typical examples of this 
mechanism. In eukaryotes, ENaC, TREK-1, TRAAK, TRPA1, TRPC1/6, TRPM3/4/7, NMDA 
receptor, and Piezo 1/2 channels are thought to work with the bilayer mechanism [81]. 

Phospholipids composed of lipid bilayers can be classified by several categories, including the 
length of acyl chain, the number of double bonds in acyl chain, the electric charge of lipid head 
groups, and the morphology of the lipid molecule in the membrane. These factors describe the lipid-
channel interaction and determine the kinetics of the MS channel. For example, MscL channels are 
easy to open in lipids with shorter acyl chains [82]. Another factor, which is important for the MS 
channel activity, is curvature of the lipid bilayer. Some phospholipids (such as 
lysophosphatidylcholine, which have only one acyl chain) and amphipathic substance (such as 
chlorpromazine), bend the lipid bilayer locally and change the pressure profile in the bilayers [83]. 
With regard to the pressure profile, spider toxin GsMTx-4 is often used to block the activity of the 
“bilayer mechanism” channels because it interacts with membrane lipids and alters the profile. 

Recently, more specific lipid-channel interactions were reported. In the case of TRAAK channel, 
an acyl chain extrudes into a small cavity of the TRAAK protein by blocking the hole in the resting 
state. Interestingly, however, this blockade is released along with the rotation of transmembrane 
helices in the conducting state [74]. 

While we discussed the “bilayer mechanism” so far, eukaryotic cells usually have solid 
cytoskeletal networks underneath the surface lipid bilayers, which prevent direct force transmission 
from the lipid bilayers to the MS channel. Some MS channels require binding to associating 
protein(s), such as cytoskeletal proteins and/or extracellular matrix proteins, for their activation in 
response to mechanical stimulus. This case is called “tethered mechanism”. ENaC [84] and TRP [85] 
channels are thought to work in this way. This mechanism is characterized in the touch receptor of 
Caenorhabditis elegans. For the touch receptor ENaC to open, MEC-7 (beta-tubulin) and MEC-12 
(alpha-tubulin) are necessary. Mechanotransduction at the cochlear hair cells is thought to be a 
typical example of this “tethered mechanism”. 
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2. Conclusion 

Mechanotransduction is fundamental to life activity. Cellular surface receptors reside at the 
border between inside and outside of the cell, and ion channels serve as the earliest messenger in the 
cellular signaling pathway. MS channels play indispensable roles in tissue development, 
cardiovascular regulation, and sensory signal transduction. Knowledge obtained from researches 
regarding MS channels will contribute to understand the physiology and pathology of life, and 
ultimately, to better our life. 
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