Processing math: 100%
Research article Special Issues

Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system


  • The purpose of the present work is to solve a third kind of multi-singular nonlinear system using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model. The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the designed ANN-PSO-IPA are used to endorse the precision, viability and reliability.

    Citation: Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Aldawoud Kamal, Juan L.G. Guirao, Dac-Nhuong Le, Tareq Saeed, Mohamad Salama. Neuro-Swarm heuristic using interior-point algorithm to solve a third kind of multi-singular nonlinear system[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5285-5308. doi: 10.3934/mbe.2021268

    Related Papers:

    [1] Zulqurnain Sabir, Hafiz Abdul Wahab, Juan L.G. Guirao . A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models. Mathematical Biosciences and Engineering, 2022, 19(1): 663-687. doi: 10.3934/mbe.2022030
    [2] Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Abeer S. Alnahdi, Mdi Begum Jeelani, M. A. Abdelkawy . Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks. Mathematical Biosciences and Engineering, 2022, 19(1): 351-370. doi: 10.3934/mbe.2022018
    [3] Xin-You Meng, Yu-Qian Wu . Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting. Mathematical Biosciences and Engineering, 2019, 16(4): 2668-2696. doi: 10.3934/mbe.2019133
    [4] Reymundo Itzá Balam, Francisco Hernandez-Lopez, Joel Trejo-Sánchez, Miguel Uh Zapata . An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains. Mathematical Biosciences and Engineering, 2021, 18(1): 22-56. doi: 10.3934/mbe.2021002
    [5] Xinran Zhang, Yongde Zhang, Jianzhi Yang, Haiyan Du . A prostate seed implantation robot system based on human-computer interactions: Augmented reality and voice control. Mathematical Biosciences and Engineering, 2024, 21(5): 5947-5971. doi: 10.3934/mbe.2024262
    [6] Wenlong Wang, Chunrui Zhang . Bifurcation of a feed forward neural network with delay and application in image contrast enhancement. Mathematical Biosciences and Engineering, 2020, 17(1): 387-403. doi: 10.3934/mbe.2020021
    [7] Kelum Gajamannage, Erik M. Bollt . Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences and Engineering, 2017, 14(2): 437-453. doi: 10.3934/mbe.2017027
    [8] Jitai Liang, Junjie Wei . Lyapunov functional for virus infection model with diffusion and state-dependent delays. Mathematical Biosciences and Engineering, 2019, 16(2): 947-966. doi: 10.3934/mbe.2019044
    [9] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [10] Yongquan Zhou, Yanbiao Niu, Qifang Luo, Ming Jiang . Teaching learning-based whale optimization algorithm for multi-layer perceptron neural network training. Mathematical Biosciences and Engineering, 2020, 17(5): 5987-6025. doi: 10.3934/mbe.2020319
  • The purpose of the present work is to solve a third kind of multi-singular nonlinear system using the neuro-swarm computing solver based on the artificial neural networks (ANNs) optimized with the effectiveness of particle swarm optimization (PSO) maintained by a local search proficiency of interior-point algorithm (IPA), i.e., ANN-PSO-IPA. An objective function is designed using the continuous mapping of ANN for nonlinear multi-singular third order system of Emden-Fowler equations and optimization of fitness function carried out with the integrated strength of PSO-IPA. The motivation to design the ANN-PSO-IPA is to present a feasible, reliable and feasible framework to handle with such complicated nonlinear multi-singular third order system of Emden-Fowler model. The designed ANN-PSO-IPA is tested for three different nonlinear variants of the multi-singular third kind of Emden-Fowler system. The obtained numerical results on single/multiple executions of the designed ANN-PSO-IPA are used to endorse the precision, viability and reliability.



    The historical Lane-Emden model was introduced first time by astrophysicist Jonathan Homer Lane and Robert Emden [1,2] working on the thermal performance of a spherical cloud of gas and classical law linked to thermodynamics [3]. The singular models have several applications in broad field of applied science and engineering such as catalytic diffusion reactions along with error estimate problems [4], density profile of gaseous star [5], stellar configuration [6], spherical annulus [7], isotropic continuous media [8], the theory of electromagnetic [9] and morphogenesis [10]. It is always not easy to solve the system of singular equations-based models due to their complex nature and singular points. To mention a few schemes that have been applied to solve such models include Legendre wavelets spectral technique [11], Bernoulli collocation scheme [12], variational iteration technique [13], Haar wavelet quasilinearization method [14], spectral collocation scheme [15], differential transformation approach [16] and Adomian decomposition technique [17].

    All these above cited approaches have their precise merits and imperfections, however stochastic solver has not been extensively implemented to solve multi-singular third kind of nonlinear system (MS-TKNS) using the artificial neural networks (ANNs) together with particle swarm optimization (PSO) and interior-point algorithm (IPA), i.e., ANN-PSO-IPA. The stochastic computing solvers have been widely applied to resolve numerous applications [18,19,20,21,22]. Recently, the stochastic solvers presented the solution of models for financial market forecasting [23], prey-predator nonlinear system [24], nonlinear singular functional differential model [25,26], SITR nonlinear system [27,28], singular delay differential system [29], nonlinear periodic boundary value problems [30], HIV nonlinear system [31], SIR nonlinear system of dengue fever [32] and alternative approach based on fuzzy-neuro methods to solve linear and nonlinear optimization problems [33,34]. These submissions enhance the worth of the stochastic solvers to authenticate the convergence and precision of the suggested ANN-PSO-IPA. The general form of the MS-TKNS is written as [35]:

    {d3Udχ3+2α1χd2Udχ2+P(P1)χ2dUdχ+H1(χ)F1(U,V)=G1(χ),d3Vdχ3+2α2χd2Vdχ2+Q(Q1)χ2dVdχ+H2(χ)F2(U,V)=G2(χ),U(0)=A,dU(0)dχ=d2U(0)dχ2=0,V(0)=B,dV(0)dχ=d2V(0)dχ2=0. (1)

    Where F1 and F2 are the nonlinear functions, P and Q are positive constants, G1 and G2 are indicated as a source functions.

    The purpose of this study is to present the solution of the model (1) via intelligent computing ANN-PSO-IPA. The contributions of the paper are as follows:

    ●  A novel neuro-swarm computing intelligent heuristics ANN-PSO-IPA is accessible for multi-singular nonlinear third order EF-SDEs.

    ●  The overlapping outcomes of the proposed ANN-PSO-IPA with the exact outcomes for three examples of MS-TKNS enhance the exactness, consistency and convergence.

    ●  Authorization of the precise performance is validated via statistical remark using the ANN-PSO-IPA based on Theil's Inequality Coefficient (TIC), Root Mean Square Error (RMSE), Variance Account For (VAF), Semi Interquartile (SI) Range.

    ●  Beside practically precise continuous outcomes on whole input training intermission, an easy implementable process, simplicity in perception, stability and robustness are other well-intentioned announcements for the designed neuro-swarm intelligent computing approach.

    The remaining structure of the current study is given as: Section 2 indicates the design methodology through PSO-IPA. The mathematical form of performance measures can be found in section 3. Section 4 shows the numerical results of the designed ANN-PSO-IPA. In the final section, final submissions and future guidance are provided.

    The design of ANN-PSO-IPA for MS-TKNS is presented in two steps, given as:

    Step 1: An error based objective function is accessible by using the mean square error sense.

    Step 2: The learning procedure of the structures is presented using the hybrid of PSO-IPA.

    The ANNs are famous to solve the various applications in different domain of applied science and engineering. The proposed outcomes are denoted by U(χ) and V(χ), while dnUdχn and dnVdχn show the nth derivative, mathematically given as:

    [ˆU(χ),ˆV(χ)]=[mi=1aU,iZ(wU,iχ+ϕU,i),mi=1aV,iZ(wV,iχ+ϕV,i)],[dnˆUdχn,dnˆVdχn]=[mi=1aU,idndχnZ(wU,iχ+ϕU,i),mi=1aV,idndχnZ(wV,iχ+ϕV,i)]. (2)

    Where m shows the neurons and n is the derivative order. The unknown weight vectors are a,w and ϕ. W=[WU,WV], for WU=[αU,wU,ϕU] and WV=[αV,wV,ϕV]. The components of the weight vector are given as:

    aU=[aU,1,aU,2,aU,3,...,aU,m],aV=[aV,1,aV,2,aV,3,...,aV,m],wU=[wU,1,wU,2,wU,3,...,wU,m],wV=[wV,1,wV,2,wV,3,...,wV,m],ϕU=[ϕU,1,ϕU,2,ϕU,3,...,ϕU,m],ϕV=[ϕV,1,ϕV,2,ϕV,3,...,ϕV,m].

    The log-sigmoid Z(χ)=1(1+eχ) is used as an activation function. The updated form of the system (2) using the approximate results of ˆU(χ) and ˆV(χ) are written as:

    [ˆU(χ),ˆV(χ)]=[mi=1aU,i1+e(wU,ix+ϕU,i),mi=1aV,i1+e(wV,ix+ϕV,i)],[dˆUdχ,dˆVdχ]=[mi=1aU,iwU,ie(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2,mi=1aV,iwV,ie(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2],[d2ˆUdχ2,d2ˆVdχ2]=[mi=1aU,iw2U,i{2e2(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))3e(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2},mi=1aV,iw2V,i{2e2(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))3e(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2}],[d3ˆUdχ3,d3ˆVdχ3]=[mi=1aU,iw3U,i{6e3(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))46e2(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))3+e(wU,ix+ϕU,i)(1+e(wU,ix+ϕU,i))2},mi=1aV,iw3V,i{6e3(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))46e2(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))3+e(wV,ix+ϕV,i)(1+e(wV,ix+ϕV,i))2}] (3)

    The error based objective formulation is written as:

    E=E1+E2+E3, (4)
    E1=1NNm=1(χ2md3ˆUdχ3+2α1χmd2ˆUdχ2+P(P1)dˆUdχ+χ2mH1F1(ˆU,ˆV)χ2mG1)2, (5)
    E2=1NNm=1(χ2md3ˆVdχ3+2α2χmd2ˆVdχ2+Q(Q1)dˆVdχ+χ2mH2F2(ˆU,ˆV)χ2mG2)2, (6)
    E3=16((ˆUA)2+(ˆU1)2+(ˆU1)2+(ˆVB)2+(ˆV)2+(ˆV)2) at χ=0. (7)

    Where N=1h,xm=mh. The Objective functions E1 and E2 are associated with the system of differential equations and E3 is the corresponding initial conditions.

    The optimization is performed to solve the MS-TKNS using the hybrid framework of PSO- IPA.

    PSO is an effective research method that has widely used as an alternative optimization of genetic algorithms that were discovered by Kennedy and Eberhart [36]. In the theory of search space, a single candidate result of decision variables in the optimization procedure is called a particle and set of these particle formulated a swarms. For the refinement of optimization variables in standard PSO utilized iterative process of optimizing based on local Pρ1LB and global Pρ1GB best position of the particle in the swarm. The mathematical relations of position Xi along with the velocity Vi in PSO are given, respectively, as follows:

    Xρi=Xρ1i+Vρ1i, (8)
    Vρi=ωVρ1i+η1(Pρ1LBXρ1i)r1+η2(Pρ1GBXρ1i)r2 (9)

    where ρrepresent the current flight index, the inertia vector is denoted by ω varying between 0 and 1, η1 and η2 indicate the cognitive and social accelerations, respectively, while, r1 and r2 are vectors form with pseudo real number between 0 and 1. Further information regrading PSO can be seen in [37], while few recent applications address by PSO include parameter estimation [38], nonlinear electric circuits [39], optimize performance of induction generator [40], optimization of permanent magnets synchronous motor [41] and systems of equations based physical models [42].

    The quickly converges performance of PSO is attained by the process of hybridization with the appropriate local search approach by taking the PSO best values as an initial weight. Consequently, in the presented study, an effective local search scheme based on interior-point (IPA) is exploited for rapid fine-tuning of the results by the PSO algorithm. The hybrid of PSO-IPA train the ANNs as well as fundamental parameter setting for both PSO and IPA are tabulated in Table 1. Recently, IPA is used to power flow optimization incorporating security constraints [43], multistage nonlinear nonconvex problems [44], image processing [45] and multi-fractional order doubly singular model [46]. The hybrid of PSO-IPA train the decision variables of ANNs as per procedure and settings tabulated in Table 1.

    Table 1.  Detailed pseudo code of PSO-IPA to solve the nonlinear third order EF-SDEs.
    Start of PSO
    Step-1: Initialization: Generate the primary swarm randomlyand amend the parameters of {PSO} and {optimoptions} routine.
    Step-2: Fitness Evaluation: Scrutinize the {fitness value} for each particle in Eq (4).
    Step-3: Ranking: Rank to each particle of the least standards of the {fitness function}
    Step-4: Stopping Standards: Stop, if any of the below form achieved
    ● Selected flights
    ● Fitness level
    When accomplished the above values, then go to Step-5
    Step-5: Renewal: The Eqs (8) and (9) are used for the position and velocity.
    Step-6: Improvement: Repeat the above steps 02–06, until the entire flights are attained.
    Step-7: Storage: The attained best fitness values is stored and elect as the global best particle.
    End of PSO
    Start the process of PSO-IPA
    Inputs: Use the global best values
    Output: WPSO-IPS are the PSO-IPA's best values
    Initialize: Take {global best values} as a {start point}
    Termination: Terminate the process, when {Fitness = E = 10−18}, {TolX = 10−20}, {TolCon = TolFun = 10−21}, {MaxFunEvals = 260000} and {Generation = 1500}.
    While: [Stop]
    Fitness Evaluation: The Eq (4) is used for the fitness value E
    Adjustments: Invoke the routine {fmincon} for the IP algorithm to adjust the values of the weight vector.
    Store to fitness values using the basic form of the weight vector
    Store: WPSO-IPS values, final adaptive weight values, function count, fitness, time and generations for the present run.
    End of the PSO-IPA

     | Show Table
    DownLoad: CSV

    The current study is associated to present the statistical measures for solving the MS-TKNS. Therefore, three performances based on Theil's inequality coefficient (TIC) mean absolute deviation (MAD) and Variance Account For (VAF) and their global variables are Global TIC (G.TIC), Global MAD (G.MAD) and Global EVAF (G.EVAF) are applied. The mathematical descriptions of these statistical operators are provided as:

    [TICU, TICV]=[1nni=1(U(χi)ˆU(χi))2(1nni=1U2(χi)+1nni=1ˆU2(χi)),1nni=1(V(χi)ˆV(χi))2(1nni=1V2(χi)+1nni=1ˆV2(χi))], (10)
    [RMSEU,RMSEV]=[1nni=1(UiˆUi)2,1nni=1(ViˆVi)2], (11)
    {[VAFU,VAFV]=[(1var(U(χi)ˆU(χi))var(U(χi)))100,(1var(V(χi)ˆV(χi))var(V(χi)))100][EVAFU,EVAFV]=[|100VAFU|,|100VAFV|]. (12)

    In this section, the detail discussion to solve three variants of the MS-TKNS is presented.

    Problem 1: Consider the MS-TKNS is:

    {d3Udχ3+2χd2Udχ2+3χdUdχU2V=17eχ3+9χeχ3+72χ3eχ3+27χ6eχ3,d3Vdχ3+2χd2Vdχ2+3χdVdχUV2=19eχ3+9χeχ3+72χ3eχ327χ6eχ3,U(0)=1,dU(0)dχ=d2U(0)dχ2=0,V(0)=1,dV(0)dχ=d2V(0)dχ2=0. (13)

    The exact/true solutions of the above Eq (13) are [eχ3,eχ3] and the fitness function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+2d2ˆUdχ2+3dˆUdχχmˆU2ˆVχmG1)2+(χmd3ˆVdχ3+2d2ˆVdχ2+3dˆVdχχmˆUˆV2χmG2)2)+16((ˆU1)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV1)2+(dˆVdχ)2+(d2ˆVdχ2)2). (14)

    Problem 2: Consider the MS-TKNS is:

    {d3Udχ3+2χd2Udχ2+3χdUdχ+UV3=4+e3χ3+4e2χ3+6eχ3+19eχ3+9χeχ3+72χ3eχ3+27χ6eχ3,d3Vdχ3+2χd2Vdχ2+3χdVdχ+U3V=417eχ3+4e2χ3+6eχ3+3e3χ39χeχ3+72χ3eχ327χ6eχ3,U(0)=2,dU(0)dχ=d2U(0)dχ2=0,V(0)=2,dV(0)dχ=d2V(0)dχ2=0. (15)

    The true solutions of the above equation are [1+eχ3,1+eχ3] and the objective function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+2d2ˆUdχ2+3dˆUdχ+χmˆUˆV3χmG1)2+(χmd3ˆVdχ3+2d2ˆVdχ2+3dˆVdχ+χmˆU3ˆVχmG2)2)+16((ˆU2)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV2)2+(dˆVdχ)2+(d2ˆVdχ2)2). (16)

    Problem 3: Consider the MS-TKNS is:

    {d3Udχ3+6χd2Udχ22χdUdχ+(1U)V=426χχ3+χ6,d3Vdχ3+6χd2Vdχ22χdVdχU(1V)=42+6χχ3χ6,U(0)=1,dU(0)dχ=d2U(0)dχ2=0,V(0)=1,dV(0)dχ=d2V(0)dχ2=0. (17)

    The true solutions of the Eq (17) are [1+χ3,1χ3] and the fitness function becomes as:

    E=1NNm=0((χmd3ˆUdχ3+6d2ˆUdχ22dˆUdχ+χm(1ˆU)ˆVχmG1)2+(χmd3ˆVdχ3+6d2ˆVdχ22dˆVdχ+χmˆU(1ˆV)χmG2)2)+16((ˆU1)2+(dˆUdχ)2+(d2ˆUdχ2)2+(ˆV1)2+(dˆVdχ)2+(d2ˆVdχ2)2). (18)

    In order to find the proposed solutions of the Problems 1, 2 and 3 based on the MS-TKNS by using the proposed solver ANN-PSO-IPA for 40 multiple trials to achieve the adaptable parameters. The plots of the weight sets are shown in Figure 1 for U(χ) and V(χ), respectively. These weights are the decision variables of ANNs as presented in equations 3 such that the fitness functions in (14), (16) and (18) for respective problems 1, 2 and 3 are optimized with PSO-IPA, i.e., initially for global search efficacy of PSO and fine tune with IPA for rapid local search. These sets of weights are applied in first equation of set (3) to find approximate solutions to the three problems and the mathematical form are given as:

    ˆUP1=6.7861+e(11.644χ+15.35)+4.5391+e(1.651χ+2.200)+0.5581+e(8.143χ+9.243)+...+4.3771+e(0.019χ+2.086)    , (19)
    ˆUP2=1.0081+e(1.230χ+0.015)+4.2091+e(12.45χ15.681)+0.3361+e(6.716χ+6.309)+...0.3291+e(1.124χ+3.324)    , (20)
    ˆUP3=0.0171+e(4.530χ3.801)+4.6821+e(2.529χ+2.999)+5.0981+e(0.715χ+0.913)+...+3.1591+e(2.099χ+8.587)    , (21)
    ˆVP1=5.0491+e(2.457χ+2.070)+0.0681+e(0.380χ+1.115)+0.0411+e(0.464χ+0.215)+...+1.7901+e(2.540χ1.143)    , (22)
    ˆVP2=1.5501+e(0.418χ1.586)0.6921+e(4.495χ+2.403)+1.5501+e(3.258χ+2.387)+...0.2531+e(0.32χ0.418)    , (23)
    ˆVP3=2.2371+e(0.454χ0.035)0.8251+e(1.564χ+0.541)0.2491+e(1.204χ0.301)+...0.7711+e(1,792χ+0.440)    , (24)
    Figure 1.  Best weight sets and result comparisons for Problems 1, 2 and 3.

    The optimization of the MS-TKNS is performed for the problems 1, 2 and 3 using the proposed solver ANN-PSO-IPA for 40 independent trials. Set of weights and results comparison are plotted graphically in Figure 1. It is specified that the exact and proposed solutions overlapped for both the indexes ˆU(χ) and ˆV(χ) of the problems 1, 2 and 3. This exact matches of the outcomes shows the correctness of the proposed methodology ANN-PSO-IPA. In order to calculate the comparison of the numerical results, the plots of the absolute error (AE) are drawn in Figure 2(a), (b) for ˆU(χ) and ˆV(χ). One can observe that most of the AE values of problems 1–3 for ˆU(χ) lie in the range of 10−6 to 10−7, 10−4 to 10−6 and 10−6 to 10−8, while, for ˆV(χ), these values lie around 10−5 to 10−6, 10−3 to 10−4 and 10−6 to 10−7. The plots of the performance measures through fitness, RMSE, TIC and EVAF are drawn in the Figure 2(c), (d) for ˆU(χ) and ˆV(χ). It is seen that the fitness values lie around to 10−06 to 10,−08 for problems 1 and 3, while the fitness values for Problem 2 are close to 10−08. The RMSE values of ˆU(χ) and ˆV(χ) for problem 1 and 3 are close to 10−6 to 10−8, while for Problem 2, the RMSE lie 10−4–10−6 for ˆU(χ) and 10−2–10–4 for ˆV(χ). The TIC performance lie around 10−6–10−8 for both indexes of all the Problems. The EVAF values for problem 1 and 3 lie 10−10–10−12 for both the indexes, while it lies around 10−8–10−10 for problem 2.

    Figure 2.  Absolute error and performance indices for Problems 1, 2 and 3.

    The convergence measures for the Problems 1–3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 numbers of neurons are provided in Figure 3. It is shown that most of the fitness values lie around 10−4–10−6 for Problem 1 and 3, while for Problem 3 these values lie around 10−6–10−8. The convergence of both the indexes of all the problems for RMSE, TIC and EVAF is provided in Figures 49. Most of the values for both the indexes of all the problems lie in good ranges.

    Figure 3.  Convergence procedures for the Problems 1, 2 and 3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 4.  Convergence investigations of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 5.  Convergence investigations of ˆV(χ) for the Problems 1, 2 and 3 MS-TKNS using the Fitness, histograms and boxplots for 10 neurons.
    Figure 6.  Convergence investigations of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the TIC values.
    Figure 7.  Convergence investigations of ˆV(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the TIC values.
    Figure 8.  Convergence measures of ˆU(χ) for the Problems 1, 2 and 3 based on the MS-TKNS using the EVAF values.
    Figure 9.  Convergence measures of ˆV(χ) for the Problems 1, 2 and 3 based on the MS-TKNS for the EVAF, values.

    For more accuracy and precision, statistical indices are performed based on minimum (Min), standard deviation (SD), mean, SI range and Median. SI Range is one half of the difference of Q3 = 75% data, i.e., 3rd quartile and Q1 = 25% data, i.e., 1st quartile is calculated for 40 trials of ANN-PSO-IPA to solve three different problems of MS-TKNS. These statistical based outcomes for Problems 1–3 are tabulated in Tables 2 and 3 for the indexes ˆU(χ) and ˆV(χ). It is observed that most of the ˆU(χ) and ˆV(χ) values for Problems 1–3 lie in the best ranges. The global performance G.FIT, G.RMSE, G.TIC and G.EVAF of ˆU(χ) and ˆV(χ) for Problems 1, 2 and 3 are tabulated in Table 4. These performances of the global values for Problems 1, 2 and 3 for 40 independent trials are provided. The magnitude (Mag) and Median values for all Problems using the indexes ˆU(χ) and ˆV(χ) proved very good results based on the statistical global operators.

    Table 2.  The statistics results of ˆU(χ) for each problem of the MS-TKNS using the designed ANN-PSO-IPA.
    Mode
    The solution of ˆU(χ) for Problems 1–3
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
    P-1 Min 3×10−7 1×10−7 6×10−7 7×10−7 5×10−7 1×10−7 8×10−7 8×10−7 4×10−7 1×10−7 5×10−7
    Mean 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5
    SD 4×10−5 4×10−5 4×10−5 4×10−5 4×10−5 5×10−5 5×10−5 6×10−5 6×10−5 6×10−5 6×10−5
    Median 7×10−6 6×10−6 9×10−6 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5
    SIR 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 3×10−5 3×10−5 3×10−5 3×10−5 3×10−5 4×10−5
    P-2 Min 7×10−6 8×10−6 7×10−6 1×10−5 3×10−6 2×10−6 1×10−5 1×10−6 1×10−6 1×10−5 2×10−5
    Mean 3×10−3 3×10−3 3×10−3 3×10−3 4×10−3 6×10−3 1×10−2 1×10−2 2×10−2 4×10−2 5×10−2
    SD 1×10−2 1×10−2 1×10−2 1×10−2 1×10−2 2×10−2 5×10−2 9×10−2 1×10−1 2×10−1 3×10−1
    Median 3×10−4 3×10−4 3×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4
    SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4
    P-3 Min 1×10−7 1×10−7 7×10−7 1×10−7 2×10−7 1×10−9 3×10−7 1×10−7 8×10−7 2×10−7 1×10−7
    Mean 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 3×10−5 3×10−5
    SD 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 4×10−5 5×10−5 6×10−5
    Median 3×10−6 3×10−6 3×10−6 5×10−6 6×10−6 7×10−6 8×10−6 1×10−5 1×10−5 1×10−5 1×10−5
    SIR 4×10−6 4×10−6 5×10−6 6×10−6 5×10−6 6×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5

     | Show Table
    DownLoad: CSV
    Table 3.  The statistics results of ˆV(χ) for each problem of the MS-TKNS using the designed ANN-PSO-IPA.
    Mode
    The solution of ˆU(χ) for Problems 1–3
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
    P-1 Min 7×10−7 4×10−7 1×10−7 1×10−6 1×10−7 1×10−6 8×10−7 2×10−6 8×10−7 3×10−6 5×10−6
    Mean 3×10−5 3×10−5 3×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 7×10−5 8×10−5 8×10−5
    SD 5×10−5 4×10−5 5×10−5 5×10−5 6×10−5 7×10−5 8×10−5 9×10−5 9×10−5 1×10−4 1×10−4
    Median 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 4×10−5 4×10−5 5×10−5 5×10−5 5×10−5
    SIR 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5 2×10−5
    P-2 Min 1×10−5 4×10−6 1×10−5 3×10−6 2×10−5 3×10−6 1×10−7 3×10−5 6×10−4 4×10−3 1×10−2
    Mean 1×10−3 5×10−3 1×10−2 2×10−2 3×10−2 4×10−2 4×10−2 5×10−2 5×10−2 6×10−2 9×10−2
    SD 3×10−3 2×10−2 9×10−2 1×10−1 2×10−1 2×10−1 2×10−1 3×10−1 3×10−1 3×10−1 3×10−1
    Median 2×10−4 1×10−4 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 3×10−4 2×10−3 9×10−3 3×10−2
    SIR 2×10−4 2×10−4 2×10−4 2×10−4 2×10−4 1×10−4 1×10−4 2×10−4 2×10−4 2×10−4 3×10−4
    P-3 Min 2×10−7 3×10−7 6×10−7 6×10−7 3×10−7 2×10−7 1×10−7 1×10−7 2×10−7 1×10−7 4×10−7
    Mean 9×10−6 8×10−6 9×10−6 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 2×10−5
    SD 1×10−5 1×10−5 1×10−5 1×10−5 1×10−5 2×10−5 2×10−5 3×10−5 3×10−5 4×10−5 5×10−5
    Median 3×10−6 2×10−6 3×10−6 4×10−6 5×10−6 6×10−6 8×10−6 8×10−6 9×10−6 1×10−5 1×10−5
    SIR 5×10−6 5×10−6 3×10−6 3×10−6 4×10−6 6×10−6 6×10−6 7×10−6 8×10−6 8×10−6 1×10−5

     | Show Table
    DownLoad: CSV
    Table 4.  Global performance of ˆU(χ) and ˆV(χ) for Problems 1, 2 and 3.
    Index
    Example
    G.FIT G.RMSE G.TIC G.EVAF
    Mag Median Mag Median Mag Median Mag Median
    ˆU(χ)
    1 6×10-6 3×10-6 4×10−5 2×10−5 7×10−6 4×10−6 2×10−9 5×10−10
    2 2×10−4 4×10−5 2×10−2 2×10−4 7×10−6 4×10−6 4×10−2 2×10−7
    3 1×10−6 3×10−7 2×10−5 9×10−6 1×10−5 6×10−6 4×10−9 1×10−10
    ˆV(χ)
    1 6×10−6 3×10−6 6×10−5 4×10−5 1×10−5 8×10−6 3×10−7 5×10−9
    2 2×10−4 4×10−5 5×10−2 1×10−2 1×10−5 7×10−6 3×10−1 2×10−3
    3 1×10−6 3×10−7 1×10−5 8×10−6 1×10−5 1×10−5 3×10−9 9×10−11

     | Show Table
    DownLoad: CSV

    In this research study, a stable, reliable and accurate numerical ANN-PSO-IPA is accessible to solve the multi-singular nonlinear third kind of Emden-Fowler system by using the ANN strength with continuous mapping. A fitness function of these networks is optimized for the global and local search capabilities of particle swarm optimization and interior-point algorithm, respectively. The proposed ANN-PSO-IPA is broadly applied to solve three different variants of the multi-singular nonlinear third kind of Emden-Fowler system. The precise and accurate performance is observed for ANN-PSO-IPA based on AE with consistent precision around 5 to 8 decimal places of precision for all three problems of the multi-singular nonlinear third kind of Emden-Fowler system. Statistical interpretations in terms of Min, Mean, SD, SI ranges and Median are performed to validate the convergence, robustness and accuracy of the proposed ANN-PSO-IPA for solving the multi-singular nonlinear third kind of Emden-Fowler system based Eqs 1–3.

    In the future, new stochastic solvers based on ANN optimized with evolutionary/swarming paradigm looks proficient to solve nonlinear biological systems [47,48,49,50], fluid dynamics models [51,52,53,54,55,56] and fractional models [57,58,59,60]. Additionally, the different ANNs structure exploiting variety of activation functions should be implemented to solve the MS-TKNS for improved performance.

    This paper has been partially supported by Ministerio de Ciencia, Innovacion y Universidades grant number PGC2018-0971-B-100 and Fundacion Seneca de la Region de Murcia grant number 20783/PI/18.

    All the authors of the manuscript declared that there are no potential conflicts of interest.



    [1] H. J. Lane, On the Theoretical Temperature of the Sun, under the Hypothesis of a gaseous Mass maintaining its Volume by its internal Heat and depending on the laws of gases as known to terrestrial Experiment, Am. J. Sci., 148 (1870), 57-74.
    [2] R. Emden, Gaskugeln Teubner, Leipzig und Berlin, 1907.
    [3] I. Ahmad, M. A. Z. Raja, M. Bilal, F. Ashraf, Neural network methods to solve the Lane-Emden type equations arising in thermodynamic studies of the spherical gas cloud model, Neural Comput. Appli., 28 (2017), 929-944. doi: 10.1007/s00521-016-2400-y
    [4] T. C. Hao, F. Z. Cong, Y. F. Shang, An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate, J. Math. Chem., 56 (2018), 2691-2706. doi: 10.1007/s10910-018-0912-7
    [5] T. Luo, Z. Xin, H. Zeng, Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities, Commun. Math. Phys., 347 (2016), 657-702. doi: 10.1007/s00220-016-2753-1
    [6] F. Abbas, P. Kitanov, S. Longo, Approximate solutions to lane-emden equation for stellar configuration, Appl. Math. Inf. Sci., 13 (2019), 143-152. doi: 10.18576/amis/130201
    [7] M. A. Soliman, Approximate solution for the Lane-Emden equation of the second kind in a spherical annulus, J. King Saud Univ., Eng. Sci., 31 (2019), 1-5. doi: 10.1016/j.jksus.2017.02.001
    [8] V. Radulescu, D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal.: Theory, Methods Appl., 75 (2012), 1524-1530. doi: 10.1016/j.na.2011.01.037
    [9] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, A. M. Wazwaz, Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory, Connect. Science, 27 (2015), 377-396. doi: 10.1080/09540091.2015.1092499
    [10] M. Ghergu, V. Radulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math., 344 (2007), 163-168. doi: 10.1016/j.crma.2006.12.008
    [11] A. K. Dizicheh, S. Salahshour, A. Ahmadian, D. Baleanu, A novel algorithm based on the Legendre wavelets spectral technique for solving the Lane-Emden equations, Appl. Numer. Math., 153 (2020), 443-456. doi: 10.1016/j.apnum.2020.02.016
    [12] W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method, Eur. Phys. J. Plus, 135 (2020), 427. doi: 10.1140/epjp/s13360-020-00449-x
    [13] Z. Sabir, M. G. Sakar, M. Yeskindirova, O. Saldir, Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations, Theor. Appl. Mech. Lett., 10 (2020), 333-342. doi: 10.1016/j.taml.2020.01.049
    [14] R. Singh, V. Guleria, M. Singh, Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations, Math. Comput. Simul., 174 (2020), 123-133. doi: 10.1016/j.matcom.2020.02.004
    [15] M. A. Abdelkawy, Z. Sabir, J. L. Guirao, T. Saeed, Numerical investigations of a new singular second-order nonlinear coupled functional Lane-Emden model, Open Phys., 18 (2020), 770-778. doi: 10.1515/phys-2020-0185
    [16] Z. Sabir, H. Günerhan, J. L. Guirao, On a new model based on third-order nonlinear multisingular functional differential equations, Math. Probl. Eng., 2020 (2020), 1-9.
    [17] A. M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Appl. Math. Comput., 118 (2001), 287-310.
    [18] Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, M. A. Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation, Math. Comput. Simul., 172 (2020), 1-14. doi: 10.1016/j.matcom.2020.01.005
    [19] A. H. Bukhari, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, M. A. Z. Raja, Neuro-fuzzy modeling and prediction of summer precipitation with application to different meteorological stations, Alexandria Eng. J., 59 (2020), 101-116. doi: 10.1016/j.aej.2019.12.011
    [20] Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alexandria Eng. J., 60 (2021), 2641-2659.
    [21] M. A. Z. Raja, M. Umar, Z. Sabir, J. A. Khan, D. Baleanu, A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head, Eur. Phys. J. Plus, 133 (2018), 1-21. doi: 10.1140/epjp/i2018-11804-8
    [22] M. A. Z. Raja, Z. Sabir, N. Mehmood, E. S. Al-Aidarous, J. A. Khan, Design of stochastic solvers based on genetic algorithms for solving nonlinear equations, Neural Comput. Appl., 26 (2015), 1-23.
    [23] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting, IEEE Access, 8 (2020), 71326-71338. doi: 10.1109/ACCESS.2020.2985763
    [24] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506-524. doi: 10.1016/j.asoc.2019.04.022
    [25] Z. Sabir, H. A. Wahab, M. Umar, F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation, Appl. Math. Comput., 363 (2019), 124605.
    [26] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 1-19. doi: 10.1140/epjp/s13360-019-00059-2
    [27] M. Umar, Z. Sabir, M. A. Z. Raja, F. Amin, T. Saeed, Y. Guerrero-Sanchez, Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19, Alexandria Eng. J., 60 (2021), 2811-2824. doi: 10.1016/j.aej.2021.01.043
    [28] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics, Symmetry, 12 (2020), 1628. doi: 10.3390/sym12101628
    [29] J. L. Guirao, Z. Sabir, T. Saeed, Design and numerical solutions of a novel third-order nonlinear Emden-Fowler delay differential model, Math. Probl. Eng., 2020 (2020), 1-9.
    [30] Z. Sabir, M. A. Z. Raja, J. L. Guirao, M. Shoaib, A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems, Front. Phys., 8 (2020), 224. doi: 10.3389/fphy.2020.00224
    [31] M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. doi: 10.1140/epjp/s13360-020-00417-5
    [32] M. Umar, Z. Sabir, M. A. Z. Raja, Y. G. Sánchez, A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys., 19 (2020), 103585. doi: 10.1016/j.rinp.2020.103585
    [33] T. T. Teo, T. Logenthiran, W. L. Woo, K. Abidi, T. John, N. S. Wade, et al., Optimization of Fuzzy Energy-Management System for Grid-Connected Microgrid Using NSGA-Ⅱ, IEEE Trans. Cybern., 2020 (2020), 1-12.
    [34] C. S. Chin, X. Ji, W. L. Woo, T. J. Kwee, W. Yang, Modified multiple generalized regression neural network models using fuzzy C-means with principal component analysis for noise prediction of offshore platform, Neural Comput. Appl., 31 (2019), 1127-1142. doi: 10.1007/s00521-017-3143-0
    [35] A. M. Wazwaz, The variational iteration method for solving systems of third-order Emden-Fowler type equations, J. Math. Chem., 55 (2017), 799-817. doi: 10.1007/s10910-016-0707-7
    [36] T. V. Sibalija, Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008-2018), Appl. Soft Comput., 84 (2019), 105743. doi: 10.1016/j.asoc.2019.105743
    [37] A. P. Engelbrecht, Particle swarm optimization with crossover: a review and empirical analysis, Artif. Intell. Rev., 45 (2016), 131-165. doi: 10.1007/s10462-015-9445-7
    [38] A. Mehmood, A. Zameer, M. A. Z. Raja, R. Bibi, N. I. Chaudhary, M. S. Aslam, Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving average systems, Neural Comput. Appl., 31 (2019), 5819-5842. doi: 10.1007/s00521-018-3406-4
    [39] A. Mehmood, A. Zameer, M. S. Aslam, M. A. Z. Raja, Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits, Neural Compu. Appl., 32 (2020), 7121-7137. doi: 10.1007/s00521-019-04197-7
    [40] D. Bouhadjra, A. Kheldoun, A. Zemouche, Performance analysis of stand-alone six-phase induction generator using heuristic algorithms, Math. Comput. Simul., 167 (2020), 231-249. doi: 10.1016/j.matcom.2019.06.011
    [41] H. Mesloub, M. T. Benchouia, R. Boumaaraf, A. Goléa, N. Goléa, M. Becherif, Design and implementation of DTC based on AFLC and PSO of a PMSM, Math. Comput. Simul., 167 (2020), 340-355. doi: 10.1016/j.matcom.2018.04.010
    [42] M. A. Z. Raja, A. Zameer, A. K. Kiani, A. Shehzad, M. A. R. Khan, Nature-inspired computational intelligence integration with Nelder-Mead method to solve nonlinear benchmark model, Neural Compu. Appl., 29 (2018), 1169-1193. doi: 10.1007/s00521-016-2523-1
    [43] L. Casacio, C. Lyra, A. R. Oliveira, Interior point methods for power flow optimization with security constraints, Int. Trans. Oper. Res., 26 (2019), 364-378.
    [44] A. Zanelli, A. Domahidi, J. Jerez, M. Morari, FORCES NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs, Int. J. Control, 93 (2020), 13-29. doi: 10.1080/00207179.2017.1316017
    [45] E. Chouzenoux, M. C. Corbineau, J. C. Pesquet, A proximal interior point algorithm with applications to image processing, J.Math. Imaging Vision, 2019 (2019), 1-22.
    [46] Z. Sabir, M. A. Zahoor Raja, D. Baleanu, Fractional Mayer Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation, Fractals, 29 (2021), 2140017.
    [47] W. Gao, G. Yel, H. M. Baskonus, C. Cattani, Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, Aims Math., 5 (2020), 507-521. doi: 10.3934/math.2020034
    [48] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129-138. doi: 10.2478/AMNS.2019.1.00013
    [49] Y. G. Sanchez, Z. Sabir, J. L. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID), Fractals, 28 (2020), 2040026. doi: 10.1142/S0218348X20400265
    [50] T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with Levenberg-Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1-35. doi: 10.1140/epjp/s13360-019-00059-2
    [51] M. Umar, Z. Sabir, A. Imran, A. H. Wahab, M. Shoaib, M. A. Z. Raja, The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion, Therm. Sci., 24 (2020), 2929-2939.
    [52] I. Uddin, I. Ullah, M. A. Z. Raja, M. Shoaib, S. Islam, T. Muhammad, Design of intelligent computing networks for numerical treatment of thin film flow of Maxwell nanofluid over a stretched and rotating surface, Surf. Interfaces, 24 (2021), 101107. doi: 10.1016/j.surfin.2021.101107
    [53] J. L. Aljohani, E. S. Alaidarous, M. A. Z. Raja, M. Shoaib, M. S. Alhothuali, Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model, Sci. Rep., 11 (2021), 1-32. doi: 10.1038/s41598-020-79139-8
    [54] M. Dewasurendra, K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1-14.
    [55] P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018), 41-54.
    [56] Z. Sabir, M. G. Sakar, M. Yeskindirova, O. Saldir, Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations, Theor. Appl. Mech. Lett., 10 (2020), 333-342. doi: 10.1016/j.taml.2020.01.049
    [57] E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171-188. doi: 10.2478/amns.2020.1.00016
    [58] D. W. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Appl. Math. Nonlinear Sci., 3 (2018), 487-502. doi: 10.2478/AMNS.2018.2.00038
    [59] E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171-188. doi: 10.2478/amns.2020.1.00016
    [60] D. W. Brzeziński, Comparison of fractional order derivatives computational accuracy-right hand vs left hand definition, Appl. Math. Nonlinear Sci., 2 (2017), 237-248. doi: 10.21042/AMNS.2017.1.00020
  • This article has been cited by:

    1. Muhammad Umar, Muhammad Asif Zahoor Raja, Zulqurnain Sabir, Qasem Al-Mdallal, A computational framework to solve the nonlinear dengue fever SIR system, 2022, 25, 1025-5842, 1821, 10.1080/10255842.2022.2039640
    2. Wangxun Yu, Aiju Wang, Zhiguo Qu, New Solutions of Nonlinear Equations Constrained by Bounded Variables under Edge Computation, 2022, 2022, 1530-8677, 1, 10.1155/2022/9855672
    3. Zulqurnain Sabir, Muhammad Umar, Muhammad Asif Zahoor Raja, Haci Mehmet Baskonus, Wei Gao, Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system, 2022, 15, 1793-5245, 10.1142/S1793524522500127
    4. Zulqurnain Sabir, Mohamed R. Ali, Irwan Fathurrochman, Muhammad Asif Zahoor Raja, R. Sadat, Dumitru Baleanu, Dynamics of multi-point singular fifth-order Lane–Emden system with neuro-evolution heuristics, 2022, 13, 1868-6478, 795, 10.1007/s12530-021-09413-1
    5. Sakda Noinang, Zulqurnain Sabir, Gilder Cieza Altamirano, Muhammad Asif Zahoor Raja, Manuel Jes鷖 S鄋chez-Chero, Mar韆-Ver髇ica Seminario-Morales, Wajaree Weera, Thongchai Botmart, Swarming Computational Techniques for the Influenza Disease System, 2022, 73, 1546-2226, 4851, 10.32604/cmc.2022.029437
    6. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Juan L. G. Guirao, Tareq Saeed, Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System, 2021, 5, 2504-3110, 277, 10.3390/fractalfract5040277
    7. Tianqi Yu, Lei Liu, Yan-Jun Liu, Observer-based adaptive fuzzy output feedback control for functional constraint systems with dead-zone input, 2022, 20, 1551-0018, 2628, 10.3934/mbe.2023123
    8. Zhanrong Guan, Weak signal detection method based on nonlinear differential equations, 2024, 24, 14727978, 1207, 10.3233/JCM-247329
    9. Zulqurnain Sabir, Tareq Saeed, Juan L. G. Guirao, Juan M. Sánchez, Adrián Valverde, A Swarming Meyer Wavelet Computing Approach to Solve the Transport System of Goods, 2023, 12, 2075-1680, 456, 10.3390/axioms12050456
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2859) PDF downloads(75) Cited by(9)

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog