Processing math: 100%
Research article

Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings

  • Received: 08 September 2020 Accepted: 13 January 2021 Published: 21 January 2021
  • MSC : 26A33, 26A51, 26D10, 26D15

  • We use the definition of a fractional integral operators, recently introduced by Katugampola, to establish a parameterized identity associated with differentiable mappings. The identity is then used to derive the estimates of upper bound for mappings whose first derivatives absolute values are p-convex mappings. Four examples are also provided to illustrate the obtained results.

    Citation: Yuping Yu, Hui Lei, Gou Hu, Tingsong Du. Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings[J]. AIMS Mathematics, 2021, 6(4): 3525-3545. doi: 10.3934/math.2021210

    Related Papers:

    [1] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [2] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [3] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [4] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [5] Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098
    [6] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [7] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [8] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [9] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [10] Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226
  • We use the definition of a fractional integral operators, recently introduced by Katugampola, to establish a parameterized identity associated with differentiable mappings. The identity is then used to derive the estimates of upper bound for mappings whose first derivatives absolute values are p-convex mappings. Four examples are also provided to illustrate the obtained results.



    In 1938, Ostrowski proved an important integral inequality which provides an upper bound for difference between the value F(x) and mean value of F for mappings whose derivatives' absolute values are bounded, which can be seen in [31] as the following statement.

    Theorem 1. Let F:IRR be a differentiable mapping on I (I be the interior of I) and a,bI with a<b. If |F(x)|M, then, for all x[a,b], the following inequality holds:

    |F(x)1babaF(τ)dτ|M(ba)[14+(xa+b2)2(ba)2]. (1.1)

    Here, 14 is the best possible constant.

    We now start our discussion by evoking certain important concepts and the related results.

    Definition 1. A mapping F:IRR is named convex on I, if the following inequality

    F(tτ1+(1t)τ2)tF(τ1)+(1t)F(τ2)

    holds for all τ1,τ2I and t[0,1].

    Definition 2. [16] Let I(0,) be a real interval and pR{0}. A mapping F:IR is said to be a p-convex mapping, if the following inequality

    F([tτp1+(1t)τp2]1p)tF(τ1)+(1t)F(τ2)

    holds for all τ1,τ2I and t[0,1].

    Many inequalities and properties for p-convex mappings have been worked by a lot of researchers. For example, Zhang and Wan [44] gave certain properties involving p-convex mappings. Noor et al. [29] presented several Hermite–Hadamard's inequalities by means of p-convexity. İşcan et al. [18] provided some Hermite–Hadamard's inequalities via p-quasi-convexity. Further inequalities of the Hermite–Hadamard type associated with p-convexity in question with applications to fractional integrals can be found in [22,23,39]. For more results related to p-convex mappings, please see, for example, [24,28,30] and the references cited therein.

    Also, we recall the following fractional integral operators, which are essential to our current work.

    Definition 3. [32] Let FL1([a,b]). The Riemann–Liouville integrals Jμa+F and JμbF of order μ>0 are defined by

    Jμa+F(x)=1Γ(μ)xa(xt)μ1F(t)dt

    and

    JμbF(x)=1Γ(μ)bx(tx)μ1F(t)dt

    with a<x<b and Γ(μ)=0ettμ1dt. It is to be noted that J0a+F(x)=J0bF(x)=F(x).

    Definition 4. [33] Let α>0 with a<x<b. The left-hand side and right-hand side Hadamard fractional integral operators of order α of function F are given by

    Hαa+F(x)=1Γ(α)xa(lnxt)α1F(t)tdt

    and

    HαbF(x)=1Γ(α)bx(lntx)α1F(t)tdt.

    For recent results associated with Riemann–Liouville fractional integrals and Hadamard fractional integrals, the interested reader is referred, for example, to [1,10,42] and references therein.

    In what follows, we review the space of all complex-valued Lebesgue measurable functions, which will be used subsequently.

    Let χpc(a,b) (cR,1p) be the space of all complex-valued Lebesgue measurable functions F on [a,b] for which ||F||χpc<, where the norm ||||χpc is defined with the following expression:

    ||F||χpc=(ba|tcF(t)|pdtt)1/p,   (1p<)

    and

    ||F||χc=esssupa<t<b[tc|F(t)|],   p=,

    where ess sup stands for essential supremum.

    Definition 5. [20] Let [a,b]R be a finite interval. Then the left-hand side and right-hand side Katugampola fractional integrals of order α>0 of Fχpc(a,b) are defined by

    (ρIαa+F)(x)=ρ1αΓ(α)xa(xρtρ)α1tρ1F(t)dt

    and

    (ρIαbF)(x)=ρ1αΓ(α)bx(tρxρ)α1tρ1F(t)dt

    with a<x<b and ρ>0, if the integrals exist.

    Theorem 2. [20] Let α>0 and ρ>0. Then, for x<b, we have

    (i) limρ1(ρIαbF)(x)=JαbF(x);

    (ii) limρ0+(ρIαbF)(x)=HαbF(x).

    Similar results are also valid for left-sided operators.

    It is undeniable that the Katugampola fractional integral operators has a great influence on pure science and applied science. Recently, the study of some well-known integral inequalities for the Katugampola fractional integrals has been set up by some authors, including Chen and Katugampola [8] and Jleli et al. [19] in the study of Hermite–Hadamard type inequalities for convex mappings, Kermausuor [21] in the study of the generalized Ostrowski type inequalities for strong (s,m)-convex mappings, Mumcu et al. [27] in the Hermite–Hadamard type inequalities for harmonically convex mappings, Sousa and Capelas de Oliveira [37] in the study of a generalization of the reverse Minkowski's inequality. In addition, some applications related to Katugampola fractional integrals can be found in [25] and [43]. For more results related to the Katugampola fractional integral operators, the interested reader is directed to [14,15,26,38] and the references cited therein.

    To obtain Ostrowski-type integral inequalities, many authors proved some interesting identities of Ostrowski type. Let's collate them as follows:

    Lemma 1. [4] Let F:IRR be a differentiable mapping on I where a,bI with a<b. If FL1([a,b]), then, for each x[a,b], we have the following equality:

    F(x)1babaF(τ)dτ=(xa)2ba10tF(tx+(1t)a)dt(bx)2ba10tF(tx+(1t)b)dt. (1.2)

    Lemma 2. [36] Let F:[a,b]R be a differentiable mapping on (a,b) with a<b. If FL1([a,b]), then the following equality for fractional integrals holds:

    (xa)α+(bx)αbaF(x)Γ(α+1)ba[JαbF(a)+Jαa+F(b)]=(xa)α+1ba10tαF(tx+(1t)a)dt(bx)α+1ba10tαF(tx+(1t)b)dt. (1.3)

    Lemma 3. [17] Let F:I(0,)R be a differentiable mapping on I such that FL1([a,b]), where a,bI with a<b. Then, for all x[a,b], λ[0,1] and α>0, the following identity holds:

    ΔF(x,λ,α,a,b)=a(lnxa)α+110(tαλ)(xa)tF(xta1t)dtb(lnbx)α+110(tαλ)(xb)tF(xtb1t)dt, (1.4)

    where

    ΔF(x,λ,α,a,b)=(1λ)[lnαxa+lnαbx]F(x)+λ[F(a)lnαxa+F(b)lnαbx]Γ(α+1)[HαxF(a)+Hαx+F(b)],

    a,bI with a<b, x[a,b], λ[0,1], α>0 and Γ is the Euler gamma function.

    Lemma 4. [38] Let F:[a,b]R be a differentiable mapping on (a,b) with a<b and p>0. If FL1([a,b]), then the following equality holds:

    (xpap)αF(a)+(bpxp)αF(b)pα(ba)+Γ(α+1)ba[(pIαa+F)(x)+(pIαbF)(x)]=(xpap)α+1p1+α(ba)10tα(tap+(1t)xp)1ppF(ptap+(1t)xp)dt(bpxp)α+1p1+α(ba)10tα(tbp+(1t)xp)1ppF(ptbp+(1t)xp)dt. (1.5)

    Lemma 5. [13] Let F be defined from interval I which consists of positive real numbers to R as a differentiable mapping on I, where a,bI with a<b and FL1([a,b]). Then, for all x[a,b], p>0 and α>0, the following equality holds:

    pba[(xpap)αF(a)+(bpxp)αF(b)]pα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]=(xpap)α+1ba10(tα1)F([txp+(1t)ap]1p)(txp+(1t)ap)11pdt+(bpxp)α+1ba10(1tα)F([txp+(1t)bp]1p)(txp+(1t)bp)11pdt. (1.6)

    We will also need the following Lemma and special functions in proving our results.

    Lemma 6. [41] For A0, B0, we have

    (A+B)σ2σ1(Aσ+Bσ), σ1 (1.7)

    and

    (A+B)σAσ+Bσ, 0<σ1. (1.8)

    (Ⅰ) The beta function:

    β(x,y)=Γ(x)Γ(y)Γ(x+y)=10tx1(1t)y1dt,   x,y>0.

    (Ⅱ) The incomplete beta function:

    β(a;x,y)=a0tx1(1t)y1dt,  0<a<1, x,y>0.

    (Ⅲ) The hypergeometric function:

    2F1(a,b;c;z)=1β(b,cb)10tb1(1t)cb1(1zt)adt,  c>b>0,|z|<1.

    To see more studies pertaining to Ostrowski-type inequalities, the interested readers can read a series of works, such as [2,3,5,6,7,11,12,34,35,40] and references therein. Also, in [4] and [16], Ostrowski-type inequalities using integer order integrals, in [17], Ostrowski-type inequalities by means of Hadamard fractional integrals, and in [36], Ostrowski-type inequalities in terms of Riemann–Liouville integral operator were obtained. Here, the results in this work are derived by using Katugampola fractional integrals, which shows more general results than inequalities utilizeing integer order integral, Hadamard fractional integrals or Riemann–Liouville fractional integrals.

    Motivated by the results in the papers above, especially the results developed in [13,36,38], this work aims to investigate estimates of upper bound for differentiable mappings, which are related to the famous Ostrowski type inequality. For this purpose, we first establish a general integral identity concerning Katugampola fractional integrals. We then apply the identity to derive certain estimates of the upper bound for differentiable mappings involving Katugampola fractional integrals via p-convex mappings.

    To prove our main results, we need the following important lemma.

    Lemma 7. Suppose that F:[a,b](0,)R be a differentiable mapping on (a,b) satisfying FL1([a,b]), where 0<a<b. Then, for λ[0,1],x(a,b),α>0 and certain fixed p>0, the following equality holds:

    (1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]=(xpap)α+1ba10(tαλ)(txp+(1t)ap)1p1F(ptxp+(1t)ap)dt(bpxp)α+1ba10(tαλ)(txp+(1t)bp)1p1F(ptxp+(1t)bp)dt. (2.1)

    Proof. Integrating by parts, we have that

    10(tαλ)(txp+(1t)ap)1p1F(ptxp+(1t)ap)dt=p(tαλ)F(ptxp+(1t)ap)xpap|1010pαxpaptα1F(ptxp+(1t)ap)dt=pxpap[(1λ)F(x)+λF(a)]pαxpap10tα1F(ptxp+(1t)ap)dt=pxpap[(1λ)F(x)+λF(a)]pαxpapxa(upapxpap)α1F(u)pup1xpapdu=pxpap[(1λ)F(x)+λF(a)]p2α(xpap)α+1xa(upap)α1F(u)up1du=pxpap[(1λ)F(x)+λF(a)]p2α(xpap)α+1Γ(α)p1αp1αΓ(α)xa(upap)α1F(u)up1du=pxpap[(1λ)F(x)+λF(a)]pα+1Γ(α+1)(xpap)α+1(pIαxF)(a). (2.2)

    By a similar way, we have that

    10(tαλ)(txp+(1t)bp)1p1F(ptxp+(1t)bp)dt=p(tαλ)F(ptxp+(1t)ap)xpbp|1010pαxpbptα1F(ptxp+(1t)bp)dt=pxpbp[(1λ)F(x)+λF(b)]pαxpbp10tα1F(ptxp+(1t)bp)dt=pxpbp[(1λ)F(x)+λF(b)]pαxpbpxb(bpupbpxp)α1F(u)pup1bpxpdu=pxpbp[(1λ)F(x)+λF(b)]+p2α(bpxp)α+1bx(bpup)α1F(u)up1du=pxpbp[(1λ)F(x)+λF(b)]+p2α(bpxp)α+1Γ(α)p1αp1αΓ(α)bx(bpup)α1F(u)up1du=pbpxp[(1λ)F(x)+λF(b)]+pα+1Γ(α+1)(bpxp)α+1(pIαx+F)(b). (2.3)

    Multiplying both sides of (2.2) and (2.3) by (xpap)α+1ba and (bpxp)α+1ba, respectively, we have that

    (xpap)α+1ba10(tαλ)(txp+(1t)ap)1p1F(ptxp+(1t)ap)dt=(xpap)αpba(1λ)F(x)+(xpap)αpbaλF(a)pα+1Γ(α+1)ba(pIαxF)(a) (2.4)

    and

    (bpxp)α+1ba10(tαλ)(txp+(1t)bp)1p1F(ptxp+(1t)bp)dt=(bpxp)αpba(1λ)F(x)(bpxp)αpbaλF(b)+pα+1Γ(α+1)ba(pIαx+F)(b). (2.5)

    Combining (2.4) with (2.5) yields the desired result. The proof is completed.

    Remark 1. Consider Lemma 7.

    (i) Taking λ=1, we have Lemma 5.

    (ii) Taking λ=0 and p=1, we have Lemma 2.

    (iii) Taking λ=0 and p=1=α, we have Lemma 1.

    In the rest of this article, for the sake of simplicity, we denote

    TF(α,p,λ;a,b):=(1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)],

    unless otherwise specified.

    The following calculations of definite integrals are needed in Theorem 3.

    For α>0, (12)α<λ1, 0<p1 and θ{a,b}, we have

    A(θ):=10t|tαλ|(t1p1x1p+(1t)1p1θ1p)dt=λ1α0t(λtα)(t1p1x1p+(1t)1p1θ1p)dt+1λ1αt(tαλ)(t1p1x1p+(1t)1p1θ1p)dt=x1p1α+1p+1[12λ1+1αp+1α]λx1p11p+1[12λ1αp+1α]θ1pβ(λ1α;α+2,1p)+λθ1pβ(λ1α;2,1p)+θ1pλ1+1α(1λ1α)1pβ(1,1p)2F1(α1,1;1p+1;λ1α1λ1α)λθ1p{(1λ1α)1p+1β(2,1p)+(1λ1α)1pλ1αp} (2.6)

    and

    B(θ):=10|tαλ|(t1p1x1p+(1t)1p1θ1p)dt=λ1α0(λtα)(t1p1x1p+(1t)1p1θ1p)dt+1λ1α(tαλ)(t1p1x1p+(1t)1p1θ1p)dt=x1p1α+1p[12λ1+1αp]λx1pp[12λ1αp]+λθ1pp[12(1λ1α)1p]θ1pβ(λ1α;α+1,1p)+θ1pλ(1λ1α)1pβ(1,1p)2F1(α,1;1p+1;λ1α1λ1α). (2.7)

    Theorem 3. Let F:[a,b](0,)R be a differentiable mapping on (a,b) with a<b such that FL1([a,b]). Suppose that |F| is a p-convex mapping on [a,b] for 0<p1, α>0, (12)α<λ1 and x(a,b). Then we have the following results.

    (i) For p(0,12], the following inequality is true:

    |TF(α,p,λ;a,b)|21p2{(xpap)α+1ba[A(a)|F(x)|+(B(a)A(a))|F(a)|]+(bpxp)α+1ba[A(b)|F(x)|+(B(b)A(b))|F(b)|]}. (2.8)

    (ii) For p(12,1], the following inequality is true:

    |TF(α,p,λ;a,b)|(xpap)α+1ba[A(a)|F(x)|+(B(a)A(a))|F(a)|]+(bpxp)α+1ba[A(b)|F(x)|+(B(b)A(b))|F(b)|]. (2.9)

    Here, A(θ) and B(θ) are defined by (2.6) and (2.7), respectively.

    Proof. (ⅰ) Suppose that 0<p12. By using Lemma 7, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba10|tαλ|(txp+(1t)ap)1p1|F(ptxp+(1t)ap)|dt+(bpxp)α+1ba10|tαλ|(txp+(1t)bp)1p1|F(ptxp+(1t)bp)|dt.

    Using p-convexity of |F|, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba×{|F(x)|10t|tαλ|(txp+(1t)ap)1p1dt+|F(a)|10(1t)|tαλ|(txp+(1t)ap)1p1dt}+(bpxp)α+1ba×{|F(x)|10t|tαλ|(txp+(1t)bp)1p1dt+|F(b)|10(1t)|tαλ|(txp+(1t)bp)1p1dt}. (2.10)

    Since 0<p12, by using Lemma 6, we have that

    (txp+(1t)θp)1p121p2(t1p1x1p+(1t)1p1θ1p)

    for all t[0,1],θ{a,b}.

    Therefore, we have

    10t|tαλ|(txp+(1t)θp)1p1dt21p210t|tαλ|(t1p1x1p+(1t)1p1θ1p)dt=21p2A(θ), (2.11)

    and

    10(1t)|tαλ|(txp+(1t)θp)1p1dt21p210(1t)|tαλ|(t1p1x1p+(1t)1p1θ1p)dt=21p2[B(θ)A(θ)]. (2.12)

    Using (2.11) and (2.12) in (2.10), we get the desired inequality in (2.8). This completes the proof for case p(0,12].

    To prove (ii), suppose that p(12,1], then we obtain the required inequality in (2.9) by applying the fact that

    (txp+(1t)θp)1p1t1p1x1p+(1t)1p1θ1p,  t[0,1], θ{a,b}. (2.13)

    Corollary 1. If |F|M in Theorem 3, then we obtain the following results.

    (i) For p(0,12], we have

    |TF(α,p,λ;a,b)|21p2Mba{(xpap)α+1B(a)+(bpxp)α+1B(b)}.

    (ii) For p(12,1], we have

    |TF(α,p,λ;a,b)|Mba{(xpap)α+1B(a)+(bpxp)α+1B(b)}.

    Theorem 4. Let F:[a,b](0,)R be a differentiable mapping on (a,b) with a<b such that FL1([a,b]). Assume that |F|q is a p-convex mapping on [a,b] for certain fixed p>0. If x(a,b),λ[0,1],α>0 and r>1,q>1 such that 1r+1q=1, then we have

    |TF(α,p,λ;a,b)|(xpap)α+1baK1r(a)(C(q)|F(x)|q+D(q)|F(a)|q)1q+(bpxp)α+1baK1r(b)(C(q)|F(x)|q+D(q)|F(b)|q)1q, (2.14)

    where

    K(θ)=pxpθpx(r1)(1p)+1θ(r1)(1p)+1(r1)(1p)+1, θ{a,b},
    C(q)=1αq+212λq+αqαq+2λq+2α

    and

    D(q)=1(αq+1)(αq+2)12λq+2αqαq+1λq+1ααqαq+2λq+2α.

    Proof. With the help of Lemma 7 and properties of modulus, one can write

    |TF(α,p,λ;a,b)|(xpap)α+1ba10|tαλ|(txp+(1t)ap)1p1|F(ptxp+(1t)ap)|dt+(bpxp)α+1ba10|tαλ|(txp+(1t)bp)1p1|F(ptxp+(1t)bp)|dt.

    By using Hölder inequality, it can be written as

    |TF(α,p,λ;a,b)|(xpap)α+1ba(10((txp+(1t)ap)1p1)rdt)1r×(10|tαλ|q|F(ptxp+(1t)ap)|qdt)1q+(bpxp)α+1ba(10((txp+(1t)bp)1p1)rdt)1r×(10|tαλ|q|F(ptxp+(1t)bp)|qdt)1q.

    Using the p-convexity of |F|q, it follows that

    |TF(α,p,λ;a,b)|(xpap)α+1baK1r(a)×(10|tαλ|q[t|F(x)|q+(1t)|F(a)|q]dt)1q+(bpxp)α+1baK1r(b)×(10|tαλ|q[t|F(x)|q+(1t)|F(b)|q]dt)1q=(xpap)α+1baK1r(a)×(|F(x)|q10t|tαλ|qdt+|F(a)|q10(1t)|tαλ|qdt)1q+(bpxp)α+1baK1r(b)×(|F(x)|q10t|tαλ|qdt+|F(b)|q10(1t)|tαλ|qdt)1q.

    Using the inequality (AB)τAτBτ for any A>B0 and τ1, it yields that

    10t|tαλ|qdt=λ1α0t(λtα)qdt+1λ1αt(tαλ)qdtλ1α0t(λqtαq)dt+1λ1αt(tαqλq)dt=1αq+212λq+αqαq+2λq+2α.

    Similarly,

    10(1t)|tαλ|qdt1(αq+1)(αq+2)12λq+2αqαq+1λq+1ααqαq+2λq+2α.

    The desired inequality is given by noting that

    K(θ)=10((txp+(1t)θp)1p1)rdt=pxpθpx(r1)(1p)+1θ(r1)(1p)+1(r1)(1p)+1, θ{a,b}.

    This completes the proof.

    Corollary 2. If |F|M in Theorem 4, then it is easy to see that

    |TF(α,p,λ;a,b)|Mba(C(q)+D(q))1q{(xpap)α+1K1r(a)+(bpxp)α+1K1r(b)}.

    Theorem 5. Let F:[a,b](0,)R be a differentiable mapping on (a,b) with a<b such that FL1([a,b]). Suppose that |F|q is a p-convex mapping on [a,b] for 0<p1,q>1, α>0, (12)α<λ1 and x(a,b). Then we have the following results.

    (i) For p(0,12], the following inequality is true:

    |TF(α,p,λ;a,b)|21p2{B11q(a)(xpap)α+1ba[A(a)|F(x)|q+(B(a)A(a))|F(a)|q]1q+B11q(b)(bpxp)α+1ba[A(b)|F(x)|q+(B(b)A(b))|F(b)|q]1q}. (2.15)

    (ii) For p(12,1], the following inequality is true:

    |TF(α,p,λ;a,b)|B11q(a)(xpap)α+1ba[A(a)|F(x)|q+(B(a)A(a))|F(a)|q]1q+B11q(b)(bpxp)α+1ba[A(b)|F(x)|q+(B(b)A(b))|F(b)|q]1q. (2.16)

    Here, A(θ) and B(θ) are defined by the same expressions as described in (2.6) and (2.7).

    Proof. (ⅰ) Suppose that 0<p12. Using Lemma 7, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba10|tαλ|(txp+(1t)ap)1p1|F(ptxp+(1t)ap)|dt+(bpxp)α+1ba10|tαλ|(txp+(1t)bp)1p1|F(ptxp+(1t)bp)|dt.

    Making use of power-mean inequality, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba(10|tαλ|(txp+(1t)ap)1p1dt)11q×(10|tαλ|(txp+(1t)ap)1p1|F(ptxp+(1t)ap)|qdt)1q+(bpxp)α+1ba(10|tαλ|(txp+(1t)bp)1p1dt)11q×(10|tαλ|(txp+(1t)bp)1p1|F(ptxp+(1t)bp)|qdt)1q.

    Using p-convexity of |F|q, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba(10|tαλ|(txp+(1t)ap)1p1dt)11q×{|F(x)|q10t|tαλ|(txp+(1t)ap)1p1]dt+|F(a)|q10(1t)|tαλ|(txp+(1t)ap)1p1]dt}1q+(bpxp)α+1ba(10|tαλ|(txp+(1t)bp)1p1dt)11q×{|F(x)|q10t|tαλ|(txp+(1t)bp)1p1]dt+|F(b)|q10(1t)|tαλ|(txp+(1t)bp)1p1]dt}1q. (2.17)

    By using (2.11) and (2.12) in (2.17), we get the desired inequality in (2.15).

    To prove (ii), suppose that p(12,1], then we obtain the required inequality in (2.16) by applying inequality (2.13). This ends the proof.

    Corollary 3. If |F|M in Theorem 5, then we obtain the following results.

    (i) For p(0,12], we have

    |TF(α,p,λ;a,b)|21p2Mba{(xpap)α+1B(a)+(bpxp)α+1B(b)}.

    (ii) For p(12,1], we have

    |TF(α,p,λ;a,b)|Mba{(xpap)α+1B(a)+(bpxp)α+1B(b)}.

    Theorem 6. Let F:[a,b](0,)R be a differentiable mapping on (a,b) with a<b such that FL1([a,b]). Assume that |F|q is a p-convex mapping on [a,b] for certain fixed 0<p1, α>0,(12)α<λ1, x(a,b) and r>1,q>1 such that 1r+1q=1. Then we have the following results.

    (i) For p(0,11+1r], the following inequality is true:

    |TF(α,p,λ;a,b)|21p11r{E1r(a)(xpap)α+1ba[C(1)|F(x)|q+D(1)|F(a)|q]1q+E1r(b)(bpxp)α+1ba[C(1)|F(x)|q+D(1)|F(b)|q]1q}. (2.18)

    (ii) For p(11+1r,1], the following inequality is true:

    |TF(α,p,λ;a,b)|E1r(a)(xpap)α+1ba[C(1)|F(x)|q+D(1)|F(a)|q]1q+E1r(b)(bpxp)α+1ba[C(1)|F(x)|q+D(1)|F(b)|q]1q, (2.19)

    where

    C(1)=1α+212λ+αα+2λ1+2α,
    D(1)=1(α+1)(α+2)12λ+2αα+1λ1+1ααα+2λ1+2α,

    and

    E(θ)=xrrp1α+rpr+1[12λ1+rαprα+1α]λxrrp1rpr+1[12λrαprα+1α]+λθrrp1rpr+1[12(1λ1α)rpr+1]θrrpβ(λ1α;α+1,rpr+1)+θrrpλ(1λ1α)rpr+1β(1,rpr+1)2F1(α,1;rpr+2;λ1α1λ1α), θ{a,b}.

    Proof. (ⅰ) Suppose that 0<p11+1r, i.e., rpr1. By using Lemma 7, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba10|tαλ|(txp+(1t)ap)1p1|F(ptxp+(1t)ap)|dt+(bpxp)α+1ba10|tαλ|(txp+(1t)bp)1p1|F(ptxp+(1t)bp)|dt.

    Now, considering the weighted version of Hölder's inequality (see [9]),

    |IF(s)G(s)H(s)ds|(I|F(s)|rH(s)ds)1r(I|G(s)|qH(s)ds)1q

    for q>1, r1+q1=1, and H is non-negative on I and provided all the other integrals exist and are finite, we have that

    |TF(α,p,λ;a,b)|(xpap)α+1ba(10[(txp+(1t)ap)1p1]r|tαλ|dt)1r×(10|F(ptxp+(1t)ap)|q|tαλ|dt)1q+(bpxp)α+1ba(10[(txp+(1t)bp)1p1]r|tαλ|dt)1r×(10|F(ptxp+(1t)bp)|q|tαλ|dt)1q.

    Using the p-convexity of |F|q, it follows that

    |TF(α,p,λ;a,b)|(xpap)α+1ba(10[(txp+(1t)ap)1p1]r|tαλ|dt)1r×(10|F(ptxp+(1t)ap)|q|tαλ|dt)1q+(bpxp)α+1ba(10[(txp+(1t)bp)1p1]r|tαλ|dt)1r×(10|F(ptxp+(1t)bp)|q|tαλ|dt)1q(xpap)α+1ba(10[(txp+(1t)ap)1p1]r|tαλ|dt)1r×{|F(x)|q10t|tαλ|dt+|F(a)|q10(1t)|tαλ|dt}1q+(bpxp)α+1ba(10[(txp+(1t)bp)1p1]r|tαλ|dt)1r×{|F(x)|q10t|tαλ|dt+|F(b)|q10(1t)|tαλ|dt}1q. (2.20)

    Also

    10t|tαλ|dt=1α+212λ+αα+2λ1+2α

    and

    10(1t)|tαλ|dt=1(α+1)(α+2)12λ+2αα+1λ1+1ααα+2λ1+2α.

    Since 0<p11+1r, by using Lemma 6, we have that

    (txp+(1t)θp)rpr2rpr1(trprxrrp+(1t)rprθrrp) (2.21)

    for all t[0,1] and θ{a,b}.

    By using (2.21), we have that

    10[(txp+(1t)θp)1p1]r|tαλ|dt2rpr110|tαλ|(trprxrrp+(1t)rprθrrp)dt, (2.22)

    where

    10|tαλ|(trprxrrp+(1t)rprθrrp)dt=xrrp1α+rpr+1[12λ1+rαprα+1α]λxrrp1rpr+1[12λrαprα+1α]+λθrrp1rpr+1[12(1λ1α)rpr+1]θrrpβ(λ1α;α+1,rpr+1)+θrrpλ(1λ1α)rpr+1β(1,rpr+1)2F1(α,1;rpr+2;λ1α1λ1α)

    Using (2.22) in (2.20), we get the desired inequality in (2.18). This completes the proof for case p(0,11+1r].

    To prove (ii), suppose that p(11+1r,1], then we obtain the required inequality in (2.19) by applying the fact that

    (txp+(1t)θp)rpr(trprxrrp+(1t)rprθrrp),  t[0,1], θ{a,b}.

    Corollary 4. If |F|M in Theorem 6, then we obtain the following results.

    (i) For p(0,11+1r], we have

    |TF(α,p,λ;a,b)|21p11rMba[C(1)+D(1)]1q{(xpap)α+1E1r(a)+(bpxp)α+1E1r(b)}.

    (ii) For p(11+1r,1], we have

    |TF(α,p,λ;a,b)|Mba[C(1)+D(1)]1q{(xpap)α+1E1r(a)+(bpxp)α+1E1r(b)}.

    In this section, we present four examples to illustrate our main results.

    Example 1. For p(0,12], let F(x)=11px1p for x(0,). Then |F(x)|=xp is a p-convex mapping. If we take a=2, b=4, x=3, α=1, λ=34 and p=13, then all the assumptions in Theorem 3 are satisfied.

    The left-hand side term of (2.8) is:

    |(1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]|0.0012.

    The right-hand side term of (2.8) is:

    21p2{(xpap)α+1ba[A(a)|F(x)|+(B(a)A(a))|F(a)|]+(bpxp)α+1ba[A(b)|F(x)|+(B(b)A(b))|F(b)|]}0.0167.

    It is clear that 0.0012<0.0167, which demonstrates the first result described in Theorem 3.

    Example 2. For p>0, let F(x)=12x2 for x(0,). Then |F(x)|=x is a p-convex mapping. If we take a=2, b=4, x=3, α=1.3, λ=12, r=2,p=14 and q=2, then all the assumptions in Theorem 4 are satisfied.

    The left-hand side term of (2.14) is:

    |(1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]|0.0022.

    The right-hand side term of (2.14) is:

    (xpap)α+1baK1r(a)(C(q)|F(x)|q+D(q)|F(a)|q)1q+(bpxp)α+1baK1r(b)(C(q)|F(x)|q+D(q)|F(b)|q)1q0.0280.

    It is clear that 0.0022<0.0280, which demonstrates the result described in Theorem 4.

    Example 3. For p(0,12], let F(x)=11+1qx1+1q for x(0,). Then |F(x)|q=x is a p-convex mapping. If we take a=2, b=4, x=3, α=2, λ=34, q=2 and p=14, then all the assumptions in Theorem 5 are satisfied.

    The left-hand side term of (2.15) is:

    |(1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]|0.00018390.

    The right-hand side term of (2.15) is:

    21p2{B11q(a)(xpap)α+1ba[A(a)|F(x)|q+(B(a)A(a))|F(a)|q]1q+B11q(b)(bpxp)α+1ba[A(b)|F(x)|q+(B(b)A(b))|F(b)|q]1q}0.00466554.

    It is clear that 0.00018390<0.00466554, which demonstrates the first result described in Theorem 5.

    Example 4. For p(0,11+1r], let F(x)=x0(tp+1)1qdt for x(0,). Then |F(x)|q=xp+1 is a p-convex mapping. If we take a=2, b=4, x=3, α=1.3, λ=12, r=2,p=14 and q=2, then all the assumptions in Theorem 6 are satisfied.

    The left-hand side term of (2.18) is:

    |(1λ)p(xpap)α+(bpxp)αbaF(x)+λp(xpap)αF(a)+(bpxp)αF(b)bapα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]|0.00033174.

    The right-hand side term of (2.18) is:

    21p11r{E1r(a)(xpap)α+1ba[C(1)|F(x)|q+D(1)|F(a)|q]1q+E1r(b)(bpxp)α+1ba[C(1)|F(x)|q+D(1)|F(b)|q]1q}0.02170969.

    It is clear that 0.00033174<0.02170969, which demonstrates the first result described in Theorem 6.

    Remark 2. Theorems 3-6 provide an upper bound for the approximation involving the fractional integrals pα+1Γ(α+1)ba[(pIαxF)(a)+(pIαx+F)(b)]. Generally, the direct calculation of this kind of fractional integral is difficult because some of the integral functions are too complicated to be estimated. Moreover, some integral functions cannot even be expressed in term of elementary functions. Therefore, Theorems 3-6 provide powerful tools to deal with such integral functions. The numerical examples presented above show the validation of these theorems.

    In this paper, we establish a parameterized identity involving differentiable mappings and the Katugampola fractional integrals. By using it, we give four theorems in section 2, and each theorem provides the estimates of the upper bound for mappings whose first derivatives absolute values are p-convex mappings. More interesting estimates results can be derived by choosing different values for the parameters λ, p and α. What we want to emphasize here is that it is convenient to estimate these upper bounds from the perspective of numerical calculation. It is worth mentioning that our results contain, as special cases, the estimates of the upper bound of mappings for the classical Riemann–Liouville fractional integrals and Hadamard fractional integrals associated with p-convex mappings, respectively. With these ideas and techniques developed in this work, the interested readers can be inspired to explore this fascinating field of Katugampola fractional integral operators, which involve other related classes of mappings.

    The authors would like to thank the reviewer for his/her valuable comments and suggestions.

    The authors declare no conflict of interest.



    [1] P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Meth. Appl. Sci., 40 (2017), 3882–3891. doi: 10.1002/mma.4270
    [2] A. O. Akdemir, M. Tunç, Ostrowski type inequalities for s-logarithmically convex functions in the second sense with applications, Georgian Math. J., 22 (2015), 1–7. doi: 10.1515/gmj-2014-0061
    [3] A. Akkurt, M. Z. Sarikaya, H. Budak, H. Yildirim, Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals, RACSAM, 111 (2017), 797–807. doi: 10.1007/s13398-016-0336-9
    [4] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038
    [5] A. Barani, Hermite–Hadamard and Ostrowski type inequalities on hemispheres, Mediterr. J. Math., 13 (2016), 4253–4263. doi: 10.1007/s00009-016-0743-3
    [6] H. Budak, M. Z. Sarikaya, On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex, Turkish J. Math., 40 (2016), 1193–1210. doi: 10.3906/mat-1504-56
    [7] P. Cerone, S. S. Dragomir, E. Kikianty, Jensen-Ostrowski type inequalities and applications for f-divergence measures, Appl. Math. Comput., 266 (2015), 304–315.
    [8] H. Chen, U. N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
    [9] S. S. Dragomir, R. P. Agarwal, N. S. Barnett, Inequalities for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal. Appl., 5 (2000), 103–165.
    [10] T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity, Appl. Anal., 2019 (2019), 1–21.
    [11] S. Erden, H. Budak, M. Z. Sarikaya, S. Iftikhar, P. Kumam, Fractional Ostrowski type inequalities for bounded functions, J. Inequal. Appl., 2020 (2020), 123. doi: 10.1186/s13660-020-02381-1
    [12] S. Erden, H. Budak, M. Z. Sarikaya, An Ostrowski type inequality for twice differentiable mappings and applications, Math. Model. Anal., 21 (2016), 522–532. doi: 10.3846/13926292.2016.1185473
    [13] M. Gürbüz, Y. Taşdan, E. Set, Some inequalities obtained by fractional integrals of positive real orders, J. Inequal. Appl., 2020 (2020), 152. doi: 10.1186/s13660-020-02418-5
    [14] M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. doi: 10.3934/math.2020004
    [15] G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 1425–1445. doi: 10.3934/math.2020318
    [16] İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, 4 (2016), 140–150. doi: 10.20852/ntmsci.2016318838
    [17] İ. İşcan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl., 2013 (2013), 491. doi: 10.1186/1029-242X-2013-491
    [18] İ. İşcan, S. Turhan, S. Maden, Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions, Filomat, 31 (2017), 5945–5953. doi: 10.2298/FIL1719945I
    [19] M. Jleli, D. O'Regan, B. Samet, On Hermite–Hadamard type inequalities via generalized fractional integrals, Turkish J. Math., 40 (2016), 1221–1230. doi: 10.3906/mat-1507-79
    [20] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [21] S. Kermausuor, Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals, J. Nonlinear Sci. Appl., 12 (2019), 509–522. doi: 10.22436/jnsa.012.08.02
    [22] M. Kunt, İ. İşcan, Hermite–Hadamard–Fejér type inequalities for p-convex functions via fractional integrals, Iran. J. Sci. Technol. A, 42 (2018), 2079–2089. doi: 10.1007/s40995-017-0352-4
    [23] M. Kunt, İ. İşcan, Hermite–Hadamard type inequalities for p-convex functions via fractional integrals, MJPAA, 3 (2017), 22–35.
    [24] M. Kunt, İ. İşcan, Hermite–Hadamard–Fejér type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230.
    [25] N. I. Mahmudov, S. Emin, Fractional-order boundary value problems with Katugampola fractional integral conditions, Adv. Differ. Equ., 2018 (2018), 81. doi: 10.1186/s13662-018-1538-6
    [26] N. Mehreen, M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl., 2018 (2018), 208. doi: 10.1186/s13660-018-1807-7
    [27] İ. Mumcu, E. Set, A. O. Akdemir, Hermite–Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals, Miskolc Math. Notes, 20 (2019), 409–424. doi: 10.18514/MMN.2019.2722
    [28] M. A. Noor, M. U. Awan, K. I. Noor, M. Postolache, Some integral inequalities for p-convex functions, Filomat, 30 (2016), 2435–2444. doi: 10.2298/FIL1609435N
    [29] M. A. Noor, M. U. Awan, M. V. Mihai, K. I. Noor, Hermite–Hadamard inequalities for differentiable p-convex functions using hypergeometric functions, Publ. I. Math. Beograd, 100 (2016), 251–257. doi: 10.2298/PIM1614251N
    [30] M. A. Noor, M. U. Awan, M. V. Mihai, K. I. Noor, Bounds involving Gauss's hypergeometric functions via (p,h)-convexity, U. P. B. Sci. Bull. Series A, 79 (2017), 41–48.
    [31] A. Ostrowski, Über die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
    [32] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [33] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Amsterdam: Gordon and Breach, 1993.
    [34] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, P. Am. Math. Soc., 145 (2017), 1527–1538.
    [35] E. Set, M. E. Özdemir, M. Z. Sarikaya, A. O. Akdemir, Ostrowski-type inequalities for strongly convex functions, Georgian Math. J., 25 (2018), 109–115. doi: 10.1515/gmj-2017-0043
    [36] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi: 10.1016/j.camwa.2011.12.023
    [37] J. V. D. Sousa, E. C. de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Mathematics, 3 (2018), 131–147. doi: 10.3934/Math.2018.1.131
    [38] A. Thatsatian, S. K. Ntouyas, J. Tariboon, Some Ostrowski type inequalities for p-convex functions via generalized fractional integrals, J. Math. Inequal., 13 (2019), 467–478.
    [39] T. Toplu, E. Set, İ. İşcan, S. Maden, Hermite–Hadamard type inequalities for p-convex functions via Katugampola fractional integrals, Facta Univ. Ser. Math. Inform., 34 (2019), 149–164.
    [40] F. Usta, H. Budak, M. Z. Sarikaya, Montgomery identities and Ostrowski type inequalities for fractional integral operators, RACSAM, 113 (2019), 1059–1080. doi: 10.1007/s13398-018-0534-8
    [41] J. Wang, J. Deng, M. Fečkan, Hermite–Hadamard-type inequalities for r-convex functions based on the use of Riemann–Liouville fractional integrals, Ukrainian Math. J., 65 (2013), 193–211. doi: 10.1007/s11253-013-0773-y
    [42] J. R. Wang, J. H. Deng, M. Fečkan, Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals, Math. Slovaca, 64 (2014), 1381–1396.
    [43] S. D. Zeng, D. Baleanu, Y. R. Bai, G. Wu, Fractional differential equations of Caputo–Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549–554.
    [44] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
  • This article has been cited by:

    1. Hao Fu, Yu Peng, Tingsong Du, Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions, 2021, 6, 2473-6988, 7456, 10.3934/math.2021436
    2. Saima Rashid, Aasma Khalid, Omar Bazighifan, Georgia Irina Oros, New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications, 2021, 9, 2227-7390, 1753, 10.3390/math9151753
    3. TINGSONG DU, CHUNYAN LUO, ZHIJIE CAO, ON THE BULLEN-TYPE INEQUALITIES VIA GENERALIZED FRACTIONAL INTEGRALS AND THEIR APPLICATIONS, 2021, 29, 0218-348X, 10.1142/S0218348X21501887
    4. Seth Kermausuor, Eze R. Nwaeze, New Fractional Integral Inequalities via k-Atangana–Baleanu Fractional Integral Operators, 2023, 7, 2504-3110, 740, 10.3390/fractalfract7100740
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2261) PDF downloads(103) Cited by(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog