Uniqueness of solutions to a mathematical model describing moisture transport in
concrete materials
-
1.
Department of Mathematical and Physical Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681
-
2.
Natural and Physical Sciences, Tomakomai National College of Technology, 443, Nishikioka, Tomakomai-shi, Hokkaido, 059-1275
-
Received:
01 June 2014
Revised:
01 August 2014
-
-
Primary: 74H25, 35K55; Secondary: 47J40.
-
Topical Section: Electric and Hybrid Vehicles
-
When dealing with concrete materials it is always a big issue how to deal with
the moisture transport. Here, we consider a mathematical model for moisture
transport, which is given as a system consisting of the diffusion equation for moisture and
of the ordinary differential equation which describes a hysteresis operator.
In [3] we already proved the existence of a time global solution of an initial boundary
value problem of this system, however, the uniqueness is obtained only for one dimensional domains.
The main purpose of this paper is to establish the uniqueness of a solution of our problem in
three dimensional domains
under the assumption of the smooth boundary and initial data.
Citation: Toyohiko Aiki, Kota Kumazaki. Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials[J]. Networks and Heterogeneous Media, 2014, 9(4): 683-707. doi: 10.3934/nhm.2014.9.683
Related Papers:
[1] |
Shigui Ruan .
Letter to the editors. Mathematical Biosciences and Engineering, 2009, 6(1): 207-208.
doi: 10.3934/mbe.2009.6.207
|
[2] |
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler .
Mathematical methods in systems biology. Mathematical Biosciences and Engineering, 2016, 13(6): i-ii.
doi: 10.3934/mbe.201606i
|
[3] |
Yang Kuang, Ying-Cheng Lai, Zhiming Zheng .
From the Editors. Mathematical Biosciences and Engineering, 2004, 1(1): i-ii.
doi: 10.3934/mbe.2004.1.1i
|
[4] |
Urszula Ledzewicz, Avner Friedman, Jacek Banasiak, Heinz Schättler, Edward M. Lungu .
From the guest editors. Mathematical Biosciences and Engineering, 2013, 10(3): i-ii.
doi: 10.3934/mbe.2013.10.3i
|
[5] |
Urszula Ledzewicz, Andrzej Swierniak .
From the Guest Editors. Mathematical Biosciences and Engineering, 2005, 2(3): i-ii.
doi: 10.3934/mbe.2005.2.3i
|
[6] |
Yang Kuang .
From the Editor-in-Chief. Mathematical Biosciences and Engineering, 2024, 21(11): 7648-7649.
doi: 10.3934/mbe.2024336
|
[7] |
Urszula Ledzewicz, Eugene Kashdan, Heinz Schättler, Nir Sochen .
From the guest editors. Mathematical Biosciences and Engineering, 2011, 8(2): i-ii.
doi: 10.3934/mbe.2011.8.2i
|
[8] |
Gerardo Chowell, Zhilan Feng, Baojun Song .
From the guest editors. Mathematical Biosciences and Engineering, 2013, 10(5&6): i-xxiv.
doi: 10.3934/mbe.2013.10.5i
|
[9] |
Carlos Castillo-Chávez, Christopher Kribs Zaleta, Yang Kuang, Baojun Song .
From the Guest Editors. Mathematical Biosciences and Engineering, 2009, 6(2): i-ii.
doi: 10.3934/mbe.2009.6.2i
|
[10] |
Abba Gumel, James Watmough .
From the guest editors. Mathematical Biosciences and Engineering, 2006, 3(3): i-ii.
doi: 10.3934/mbe.2006.3.3i
|
-
Abstract
When dealing with concrete materials it is always a big issue how to deal with
the moisture transport. Here, we consider a mathematical model for moisture
transport, which is given as a system consisting of the diffusion equation for moisture and
of the ordinary differential equation which describes a hysteresis operator.
In [3] we already proved the existence of a time global solution of an initial boundary
value problem of this system, however, the uniqueness is obtained only for one dimensional domains.
The main purpose of this paper is to establish the uniqueness of a solution of our problem in
three dimensional domains
under the assumption of the smooth boundary and initial data.
References
[1]
|
T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process, Phys. B, 407 (2012), 1424-1426. doi: 10.1016/j.physb.2011.10.016
|
[2]
|
T. Aiki and K. Kumazaki, Mathematical modelling of concrete carbonation process with hysteresis effect, RIMS, Kyoto Univ., sūrikaisekikenkyūsho, kōkyūuroku, 1792 (2012), 99-107.
|
[3]
|
T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 21 (2011), 361-381.
|
[4]
|
B. Bary and A. Sellier, Coupled moisture-Carbon dioxide-Calcium transfer model for carbonation of concrete, Cem. Concr. Res., 34 (2004), 1859-1872. doi: 10.1016/j.cemconres.2004.01.025
|
[5]
|
O. V. Besov, V. P. ll'in and S. M. Nikol'ski, Integral Representations of Functions and Embedding Theorems, Vol. II. Scripta Series in Mathematics. Edited by Mitchell H. Taibleson. V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1979.
|
[6]
|
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer-Verlag, 1996. doi: 10.1007/978-1-4612-4048-8
|
[7]
|
H. Derluyn, D. Derome, J. Carmeliet, E. Stora and R. Barbarulo, Hysteric moisture behavior of concrete: Modelling analysis, Cem. Concr. Res., 42 (2012), 1379-1388.
|
[8]
|
P. Colli, N. Kenmochi and M. Kubo, A phase field model with temperature dependent constraint, J. Math. Anal. Appl., 256 (2001), 668-685. doi: 10.1006/jmaa.2000.7338
|
[9]
|
N. Kenmochi, T. Koyama and G. H. Meyer, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal., 34 (1998), 665-686. doi: 10.1016/S0362-546X(97)00592-0
|
[10]
|
O. A. Ladyženskaja, V. A. Solonnilov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Society, Providence RI, 1967.
|
[11]
|
O. A. Ladyženskaja and N. N. Ural'ceva, Équations Aux Dérivées Partielles de Type Elliptique, Dunod, Paris, 1968.
|
[12]
|
J. Nečas, Les Methodes Directes en Theorie des Equations Elliptiques, Academia, Praha, and Masson et Cie Editeurs, Paris, 1967.
|
[13]
|
A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2
|
-
-
-
-