[1]
|
A. Ainouz, Homogenization of a double porosity model in deformable media, Electronic Journal of Differential Equations, 90 (2013), 1-18.
|
[2]
|
G. Allaire, Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23 (1992), 1482-1518. doi: 10.1137/0523084
|
[3]
|
G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, World Scintific publication, Singapore, (1995), 15-25.
|
[4]
|
T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836. doi: 10.1137/0521046
|
[5]
|
M. Biot, General theory of three-dimensional consolidation, Journal of applied physics, 12 (1941), 155-164. doi: 10.1063/1.1712886
|
[6]
|
O. Coussy, Poromechanics, 2nd edition, Wiley, 2005, URL http://amazon.com/o/ASIN/0470849207/. doi: 10.1002/0470092718
|
[7]
|
H. Deresiewicz and R. Skalak, On uniqueness in dynamic poroelasticity, Bulletin of the Seismological Society of America, 53 (1963), 783-788.
|
[8]
|
M. Eden, Poroelasticity, Master's thesis, University of Bremen, 2014.
|
[9]
|
I. Graf, M. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells, Journal of Mathematical Analysis and Applications, 419 (2014), 28-47. doi: 10.1016/j.jmaa.2014.04.037
|
[10]
|
U. Hornung and W. Jäger, Diffusion, convection, adsorption, and reaction of chemicals in porous media, Journal of differential equations, 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
|
[11]
|
A. Meirmanov and R. Zimin, Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation, Electronic Journal of Differential Equations, 115 (2011), 1-11.
|
[12]
|
S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63.
|
[13]
|
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM Journal on Mathematical Analysis, 20 (1989), 608-623. doi: 10.1137/0520043
|
[14]
|
G. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization (Texts in Applied Mathematics), Springer, New York, 2008. URL http://amazon.com/o/ASIN/1441925325/.
|
[15]
|
M. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Mathematical Methods in the Applied Sciences, 31 (2008), 1257-1282. doi: 10.1002/mma.966
|
[16]
|
R. Showalter, Distributed microstructure models of porous media, in Flow in porous media, Springer, 114 (1993), 155-163.
|
[17]
|
R. Showalter, Hilbert Space Methods in Partial Differential Equations (Dover Books on Mathematics), Dover Publications, 2010, URL http://amazon.com/o/ASIN/B008SLYENC/.
|
[18]
|
R. Showalter and B. Momken, Single-phase Flow in Composite Poro-elastic Media, Technical report, Mathematical Methods in the Applied Sciences, 2002.
|
[19]
|
L. Tartar, The General Theory of Homogenization: A Personalized Introduction (Lecture Notes of the Unione Matematica Italiana), 2010th edition, Springer, 2009, URL http://amazon.com/o/ASIN/3642051944/. doi: 10.1007/978-3-642-05195-1
|
[20]
|
F.-J. Ulm, G. Constantinides and F. Heukamp, Is concrete a poromechanics materials? A multiscale investigation of poroelastic properties, Materials and Structures, 37 (2004), 43-58.
|
[21]
|
E. Zeidler, Nonlinear Functional Analysis and Its Applications: II/ B: Nonlinear Monotone Operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York, 1990. URL http://amazon.com/o/ASIN/0387968024/. doi: 10.1007/978-1-4612-0985-0
|