Citation: Eduardo Federighi Baisi Chagas, Piero Biteli, Bruno Moreira Candeloro, Miguel Angelo Rodrigues, Pedro Henrique Rodrigues. Physical exercise and COVID-19: a summary of the recommendations[J]. AIMS Bioengineering, 2020, 7(4): 236-241. doi: 10.3934/bioeng.2020020
[1] | Carlo Bianca . Differential equations frameworks and models for the physics of biological systems. AIMS Biophysics, 2024, 11(2): 234-238. doi: 10.3934/biophy.2024013 |
[2] | Carlo Bianca . Interplay and multiscale modeling of complex biological systems. AIMS Biophysics, 2022, 9(1): 56-60. doi: 10.3934/biophy.2022005 |
[3] | Carlo Bianca . Theoretical frameworks and models for biological systems. AIMS Biophysics, 2020, 7(3): 167-168. doi: 10.3934/biophy.2020013 |
[4] | Carlo Bianca . Mathematical and computational modeling of biological systems: advances and perspectives. AIMS Biophysics, 2021, 8(4): 318-321. doi: 10.3934/biophy.2021025 |
[5] | Bradley Vis, Jonathan J. Powell, Rachel E. Hewitt . Imaging flow cytometry methods for quantitative analysis of label-free crystalline silica particle interactions with immune cells. AIMS Biophysics, 2020, 7(3): 144-166. doi: 10.3934/biophy.2020012 |
[6] | Mario P. Carante, Francesca Ballarini . Modelling cell death for cancer hadrontherapy. AIMS Biophysics, 2017, 4(3): 465-490. doi: 10.3934/biophy.2017.3.465 |
[7] | Mehmet Yavuz, Fuat Usta . Importance of modelling and simulation in biophysical applications. AIMS Biophysics, 2023, 10(3): 258-262. doi: 10.3934/biophy.2023017 |
[8] | Domenico Lombardo, Pietro Calandra, Maria Teresa Caccamo, Salvatore Magazù, Luigi Pasqua, Mikhail A. Kiselev . Interdisciplinary approaches to the study of biological membranes. AIMS Biophysics, 2020, 7(4): 267-290. doi: 10.3934/biophy.2020020 |
[9] | Nor Afiqah Mohd Aris, Siti Suhana Jamaian . Dynamical analysis of fractional-order chemostat model. AIMS Biophysics, 2021, 8(2): 182-197. doi: 10.3934/biophy.2021014 |
[10] | Raghvendra P Singh, Guillaume Brysbaert, Marc F Lensink, Fabrizio Cleri, Ralf Blossey . Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS Biophysics, 2015, 2(4): 398-411. doi: 10.3934/biophy.2015.4.398 |
In the last decades the interest towards the complex systems for the modeling and studying of biological systems has been ever growing (see among the others [1]–[11], and references therein).
More generally, the study of complex systems [12]–[15] is one of the main resaerch topics of the last years. However the description of such systems, with related quantities and parameters, depends on the particular approach that is chosen. Different mathematical frameworks have been proposed depending on the representation scale of the system. In the present paper, we turn our attention on the so-called “kinetic approach” which is a generalization of the model proposed by Boltzmann [16] to describe the statistical dynamics of gases, and is based on a suitable version of his equation. The interacting entities of the system are called active particles. The evolution of the system is described by a distribution function which depends on the time, on the mechanical variables (i.e. space and velocity) and on a scalar variable called “activity”, whose meaning depends on the current application [17]. In the kinetic theoretical description of a complex system, the evolution depends on an integral term that defines the interactions between the particles.
A new modeling framework has been recently proposed for the description of a complex system under the action of an external force field: the thermostatted kinetic theory [18], [19]. The action of an external force field moves the systems out of the equilibrium. In this framework, the complex system under investigation is divided into n functional subsystems such that particles belonging to the same functional subsystem share the same strategy (in a suitable sense, the same aim) [20]. The macroscopic state is described by specific pth-order moments (see Section 2). The introduction of a dissipative term, called thermostat, constrains the system to keep the 2nd-order moment of the system, which can be regarded as the physical global activation energy, costant in time. The evolution of the system is then described by a system of nonlinear integro-differential equations with quadratic nonlinearity. The thermostatted kinetic theory has been developed, for instance, in the study of Kac equation too [21].
A biological system is constituted by a large number of interacting entities (the active particles) whose microscopic state can be described by a real variable (activity) which represents the individual ability to express a specific strategy. The active particles of a biological systems have the ability to develop behaviour that cannot only be explained by the classical mechanics laws, and, in some cases, can generate proliferative and/or destructive processes. By using the functional subsystems, the complexity can be reduced by decomposing the biological systems into several interacting subsystems [22]. In fact, this approach can possibly be considered the first fundamental contribution to biological studies [23]. The decomposition method can be regarded as a tool to reduce complexity. In fact, the active particles in each module, which is described as a functional subsystem, are not of the same type, while they express the same strategy collectively. Thus the system can be studied regarding the evolution of each functional subsystem rather than the single active particle.
A biological system can be described at different representation scales, depending on the particular application. For instance, the microscopic scale in biology corresponds to cells, while the dynamics of cells depends on the dynamics at the lower molecular scale, namely the scale of molecules. In some cases, the complexity of the system induces the use of even a larger scale, the macroscopic scale, which corresponds to population dynamics [24]–[26]. By using the framework of kinetic theory, the microscopic scale models the interactive dynamics among active particles, and it is described by using the activity variable, while the macroscopic state of the whole system is described by the pth-order moments related to the distribution function. The description of the biological systems depends on the pairwise interactions among the active particles (microscopic scale) and the state of the overall system (macroscopic scale).
In the last years, a widely interesting biological application is the modeling of the dynamics of epidemics with virus variations (see [3]–[6], [27]–[30], and references therein). One of the most used model is SIR (Susceptible, Infectious, Recovered), with its variants (see [6], [31]–[36], and references therein). In this contest, the system may be decomposed into 3 functional subsystem of interacting individual. The first functional subsystems denotes the healthy individuals whose microscopic state models the susceptibility to contract the pathological state. The second functional subsystems represents denotes individuals healthy carriers of the virus, whose microscopic state models the infectivity of the virus. The thirs functional subsystem denotes the individuals affected by the virus at the first and subsequent stages, whose microscopic state models the progression of both the infectivity and the pathological state.
Beyond biological systems, the thermostatted framework is used to study, among other topics: socio-economic systems [37], [38], pedestrian dynamics [39], vehicular traffic [40], crowd dynamics [41], human feelings [42], [43] and opinion formation [44].
The present paper deals with the discrete thermostatted framework: the activity variable attains its value in a discrete subset of ℝ, so that in this case the evolution of the system is modeled by a system of nonlinear ordinary differential equations with quadratic nonlinearity. The existence and uniqueness of the solutions is assured for both the related Cauchy and nonequilibrium stationary problems [45], [46]. The analysis of the discrete framework is important in order to define the methods for the numerical simulations.
The use of a discrete variable is not only a technical choice. In some application, this is related to the description of the current biological systems [47], [48]. For instance in order to describe the state of a cell, three values are assigned to the activity variable: normal, infected, dead. Moreover, in socio-economic systems [37], [38], the discretization of the activity variable has conceptual reason. As a matter of fact, a continuous activity variable for the socio-economic quantities may not make any sense: e.g. the wealth-state.
The main aim of this paper is the study of stability in the Hadamard sense of the discrete themostatted kinetic framework. A model is stable in the Hadamard sense if the solution exists and is unique, and it depends continuously on the initial data. In the current paper, two Cauchy problems, related to the discrete thermostatted framework that differ for their initial data, are considered. The distance between the initial data is estimated by a δ > 0. Using typical analytical techniques, this paper shows that the distance between the corresponding solutions, in a suitable norm, is estimated continuously in function of δ (see [49] for the continuous case), i.e. if δ goes to 0, the two solutions collapse.
The importance of continuous dependence of the solutions on the initial data is related, among other things, to the numerical simulations that can be performed [7], [50]–[52]. As a matter of fact, since the initial data is in general derived from a statistical analysis, its value is affected by an error, then the stability of the model may assure a “slow and small propagation” of such an error during the evolution, at least for small time intervals. Among others, the application of the discrete thermostatted framework to the epidemic dynamics may be considered. In this case the initial data is obtained from a statistical study, then it may be affected by an error. The continuous dependence with respect to the initial data is an important issue such that the numerical simulations can be performed such that the solution represents the evolution of epidemic with sufficient accuracy.
This paper presents a first step towards the study of stability and dependence on the initial data for the discrete kinetic thermostatted framework.
The contents of this paper are divided into 5 more sections which follow this brief Introduction. In Section 2 the discrete thermostatted kinetic framework is presented, and the related state of art about existence and uniqueness of the solutions. In Section 3 the main Theorem about the dependence on the initial data is presented, after introducing suitable norms. Section 4 deals with the proof of Theorem, proving the stability and giving an explicit form to the constant in the final inequality which is obtained by performing some typical analytic arguments. Finally Section 5 deals with the future research perspective that may follow this paper, which is meant as a first step towards the dependence on the initial data for the discrete thermostatted kinetic framework.
Let us consider a complex system 𝒞 homogeneous with respect to the mechanical variables, i.e. space and velocity, which is divided into n (where n ∈ ℕ is fixed) functional subsystems such that particles belonging to the same functional subsystem share the same strategy
The related vector distribution function of the system 𝒞 reads:
The macroscopic state of the system, at a time t > 0, is described by the pth-order moment, which is defined, for p ∈ ℕ, as:
The interaction among the active particles is described by the following parameters:
Let Fi(t) : [0; +∞[→ ℝ+, for i ∈ {1,2, …, n}, be an external force acting on the ith functional subsystem, such that the external force field writes:
A discrete thermostat is included in order to keep constant the 2nd-order moment 𝔼2[f](t). Let 𝔼2 be the fixed value of the 2nd-order moment, then the evolution of the ith functional subsystem, for i ∈ {1,2, …, n}, is:
Let
Definition 2.1. Fixed 𝔼2 > 0, the space function
Henceforth, the following assumptions are taken into account:
H1
H2
H3 there exists η > 0 such that ηhk = η, for all h, k ∈ {1,2, …, n};
H4 there exists F > 0 such that Fi(t) = F, for all i ∈ {1,2, …, n} and for all t > 0.
Remark 2.2. The H1 is a technical assumption since the generalized framework has been treated in [53], where ui ≥ 1 is not required.
In this framework, under the assumptions H1-H4, there exists one only function
Complex systems usually operate far from equilibrium since their evolution is related to an internal dynamics, due to the interaction between particles, and to an external dyanmics, due to the external force field. Then nonequilibrium stationary states are reached during the evolution.
The stationary problem related to (2.2) is, for i ∈ {1,2, …, n}:
In [46] the existence of a solution of (2.4), called non-equilibrium stationary solution, is gained, and the uniqueness is proved under some restrictions on the value of the external force F. Henceforth, without leading of generality, 𝔼2[f] = 𝔼0[f] = 1 is assumed.
If these further assumptions hold true:
H5
H6
then the evolution equation of 𝔼1[f](t) reads
Remark 2.3. The assumptions H3-H4 are not restricted. Indeed the results of existence and, if possible, uniqueness can be proved if there exist F,η > 0 such that:
Under suitable assumptions the Cauchy problem (2.3) has a unique solution
Let us consider now two Cauchy problems related to the discrete thermostatted framework (2.2):
If the assumptions H1-H6 hold true, there exist
Theorem 3.1. Consider the Cauchy problems (3.1). Suppose that the assumptions H1-H6 hold true. If there exists δ > 0 such that:
Remark 3.2. As consequence of Theorem 3.1, the problem (2.3) is well-posed in the Hadamard sense.
Proof of Theorem 3.1. The thermostatted
Integrating between 0 and t, the
By assumptions:
Finally, by
Using the
Subtracting the
By
Moreover, for i ∈ {1, 2, …, n}:
Summing the
Then by
Since, by straightforward calculations:
Using the
Let introduce the constant
Applying the Gronwall Lemma
Finally, by
The mathematical analysis performed in this paper has been addressed to the dependence on the initial data of the discrete thermostatted kinetic framework. Theorem 3.1 ensures the stability in the Hadarmd sense of the framework (2.2), for all T > 0. The constant C > 0, obtained after some technical computations, is explicit and is an important issue for future numerical simulations that may be performed for several applications (see among others [55], [56] and references therein).
Numerical simulations towards the framework (2.2) are a first future research prespective. Specifically, the parameters of the system, i.e. interaction rates ηhk and transition probability densities
For Theorem 3.1 the norm
Theorem 3.1 provides stability for the discrete framework when the 2nd-order moment is preserved. The general framework [45], when the generic pth-order moment is preserved, is not investigated in this paper. An interesting future research perspective is the analysis of the general case by using, in a first approach, the same norm of Theorem 3.1.
[1] |
Di Gennaro F, Pizzol D, Marotta C, et al. (2020) Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int J Environ Res Public Health 17: 2690. doi: 10.3390/ijerph17082690
![]() |
[2] |
Chen P, Mao L, Nassis GP, et al. (2020) Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Heal Sci 9: 103-104. doi: 10.1016/j.jshs.2020.02.001
![]() |
[3] | World Health Organization (WHO) (2020) Protection and prevention advice, Stay physically active during self-quarantine. Available from: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/technical-guidance/stay-physically-active-during-self-quarantine. |
[4] |
Jiménez-Pavón D, Carbonell-Baeza A, Lavie CJ (2020) Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. doi: 10.1016/j.pcad.2020.03.009
![]() |
[5] |
Peçanha T, Goessler KF, Roschel H, et al. (2020) Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am J Physiol Circ Physiol 318: H1441-H1446. doi: 10.1152/ajpheart.00268.2020
![]() |
[6] |
Roschel H, Artioli GG, Gualano B (2020) Risk of increased physical inactivity during COVID-19 outbreak in older people: a call for actions. doi: 10.1111/jgs.16550
![]() |
[7] |
Mattioli AV, Puviani MB, Nasi M, et al. (2020) COVID-19 pandemic: the effects of quarantine on cardiovascular risk. Eur J Clin Nutr 74: 852-855. doi: 10.1038/s41430-020-0646-z
![]() |
[8] |
Ganatra S, Hammond SP, Nohria A (2020) The novel coronavirus disease (COVID-19) threat for patients with cardiovascular disease and cancer. doi: 10.1016/j.jaccao.2020.03.001
![]() |
[9] |
Ganatra S, Dani SS, Shah S, et al. (2020) Management of cardiovascular disease during coronavirus disease (COVID-19) pandemic. doi: 10.1016/j.tcm.2020.05.004
![]() |
[10] | Basu-Ray I, Almaddah Nk, Adeboye A, et al. (2020) StatPearls, Cardiac Manifestations Of Coronavirus (COVID-19). Available from: https://www.ncbi.nlm.nih.gov/books/NBK556152/. |
[11] | Maron BJ, Udelson JE, Bonow RO, et al. (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. Circulation 132: e273-e280. |
[12] |
Lavie CJ, Ozemek C, Carbone S, et al. (2019) Sedentary behavior, exercise, and cardiovascular health. Circ Res 124: 799-815. doi: 10.1161/CIRCRESAHA.118.312669
![]() |
[13] |
Fallon K (2020) Exercise in the time of COVID-19. doi: 10.31128/AJGP-COVID-13
![]() |
[14] |
Ahmed I (2020) COVID-19—does exercise prescription and maximal oxygen uptake (VO2 max) have a role in risk-stratifying patients? Clin Med 20: 282-284. doi: 10.7861/clinmed.2020-0111
![]() |
[15] |
García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. (2018) Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil 99: 2100-2113.e5. doi: 10.1016/j.apmr.2018.01.008
![]() |
[16] |
Kraus WE, Powell KE, Haskell WL, et al. (2019) Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med Sci Sports Exerc 51: 1270-1281. doi: 10.1249/MSS.0000000000001939
![]() |
[17] |
Jakicic JM, Kraus WE, Powell KE, et al. (2019) Association between bout duration of physical activity and health: Systematic review. Med Sci Sports Exerc 51: 1213-1219. doi: 10.1249/MSS.0000000000001933
![]() |
[18] |
King AC, Whitt-Glover MC, Marquez DX, et al. (2019) Physical activity promotion: highlights from the 2018 physical activity guidelines advisory committee systematic review. Med Sci Sports Exerc 51: 1340-1353. doi: 10.1249/MSS.0000000000001945
![]() |
[19] |
Kim Y, White T, Wijndaele K, et al. (2018) The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol 33: 953-964. doi: 10.1007/s10654-018-0384-x
![]() |
[20] |
Rahmati-Ahmadabad S, Hosseini F (2020) Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obes Med 19: 100245. doi: 10.1016/j.obmed.2020.100245
![]() |
[21] |
Cerqueira É, Marinho DA, Neiva HP, et al. (2020) Inflammatory effects of high and moderate intensity exercise—A systematic review. Front Physiol 10: 1550. doi: 10.3389/fphys.2019.01550
![]() |
[22] |
Nieman DC, Wentz LM (2019) The compelling link between physical activity and the body's defense system. J Sport Heal Sci 8: 201-217. doi: 10.1016/j.jshs.2018.09.009
![]() |
[23] |
Nyenhuis SM, Greiwe J, Zeiger JS, et al. (2020) Exercise and fitness in the age of social distancing during the COVID-19 pandemic. J Allergy Clin Immunol Pract 8: 2152-2155. doi: 10.1016/j.jaip.2020.04.039
![]() |
[24] |
Tremblay MS, Aubert S, Barnes JD, et al. (2017) Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act 14: 75. doi: 10.1186/s12966-017-0525-8
![]() |
[25] | Arocha Rodulfo JI (2019) Sedentary lifestyle a disease from xxi century. Clin Investig Arterioscler 31: 233-240. |
1. | Sana Abdulkream Alharbi, Azmin Sham Rambely, A New ODE-Based Model for Tumor Cells and Immune System Competition, 2020, 8, 2227-7390, 1285, 10.3390/math8081285 | |
2. | Bruno Carbonaro, Marco Menale, Towards the Dependence on Parameters for the Solution of the Thermostatted Kinetic Framework, 2021, 10, 2075-1680, 59, 10.3390/axioms10020059 | |
3. | Carlo Bianca, On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives, 2022, 15, 1996-1073, 7825, 10.3390/en15217825 | |
4. | Carlo Bianca, Thermostatted Kinetic Theory Structures in Biophysics: Generalizations and Perspectives, 2024, 4, 2673-9909, 1278, 10.3390/appliedmath4040069 | |
5. | Carlo Bianca, A decade of thermostatted kinetic theory models for complex active matter living systems, 2024, 50, 15710645, 72, 10.1016/j.plrev.2024.06.015 | |
6. | Carlo Bianca, The Role of the Table of Games in the Discrete Thermostatted Kinetic Theory, 2024, 12, 2227-7390, 2356, 10.3390/math12152356 | |
7. | Bruno Carbonaro, Marco Menale, A nonconservative kinetic framework under the action of an external force field: Theoretical results with application inspired to ecology, 2023, 34, 0956-7925, 1170, 10.1017/S0956792523000232 | |
8. | Fengling Jia, Peiyan He, Lixin Yang, A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics, 2024, 12, 2227-7390, 2244, 10.3390/math12142244 | |
9. | Bruno Carbonaro, Marco Menale, Markov Chains and Kinetic Theory: A Possible Application to Socio-Economic Problems, 2024, 12, 2227-7390, 1571, 10.3390/math12101571 | |
10. | Marco Menale, Ezio Venturino, A kinetic theory approach to modeling prey–predator ecosystems with expertise levels: analysis, simulations and stability considerations, 2024, 43, 2238-3603, 10.1007/s40314-024-02726-2 | |
11. | Muhammad Naeem Aslam, Nadeem Shaukat, Muhammad Sarmad Arshad, Muhammad Waheed Aslam, Javed Hussain, An intelligent approach for analyzing the effects of normal tumor immune unhealthy diet model through unsupervised physics informed neural-networks integrated with meta-heuristic algorithms, 2025, 18, 1864-5909, 10.1007/s12065-024-01007-5 |