Loading [Contrib]/a11y/accessibility-menu.js

Analyzing human-swarm interactions using control Lyapunov functions and optimal control

  • Received: 01 November 2014 Revised: 01 February 2015
  • Primary: 93C85; Secondary: 37B25, 49N05.

  • A number of different interaction modalities have been proposed for human engagement with networked systems. In this paper, we establish formal guarantees for whether or not a given human-swarm interaction (HSI) strategy is appropriate for achieving particular multi-robot tasks, such as guiding a swarm of robots into a particular geometric configuration. In doing so, we define what it means to impose an HSI control structure on a multi-robot system. Control Lyapunov functions are used to establish feasibility for a user to achieve a particular geometric configuration with a multi-robot system under some selected HSI control structure. Several examples of multi-robot systems with unique HSI control structures are provided to illustrated the use of CLFs to establish feasibility. Additionally, we also uses these examples to illustrate how to use optimal control tools to compute three metrics for evaluating an HSI control structure: attention, effort, and scalability.

    Citation: Jean-Pierre de la Croix, Magnus Egerstedt. Analyzing human-swarm interactions using control Lyapunov functions and optimal control[J]. Networks and Heterogeneous Media, 2015, 10(3): 609-630. doi: 10.3934/nhm.2015.10.609

    Related Papers:

    [1] Jean-Pierre de la Croix, Magnus Egerstedt . Analyzing human-swarm interactions using control Lyapunov functions and optimal control. Networks and Heterogeneous Media, 2015, 10(3): 609-630. doi: 10.3934/nhm.2015.10.609
    [2] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
    [3] Nicola Bellomo, Sarah De Nigris, Damián Knopoff, Matteo Morini, Pietro Terna . Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences. Networks and Heterogeneous Media, 2020, 15(3): 353-368. doi: 10.3934/nhm.2020022
    [4] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [5] Jun Guo, Yanchao Shi, Yanzhao Cheng, Weihua Luo . Projective synchronization for quaternion-valued memristor-based neural networks under time-varying delays. Networks and Heterogeneous Media, 2024, 19(3): 1156-1181. doi: 10.3934/nhm.2024051
    [6] Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter . Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4(2): 359-380. doi: 10.3934/nhm.2009.4.359
    [7] GuanLin Li, Sebastien Motsch, Dylan Weber . Bounded confidence dynamics and graph control: Enforcing consensus. Networks and Heterogeneous Media, 2020, 15(3): 489-517. doi: 10.3934/nhm.2020028
    [8] Xia Li, Andrea L. Bertozzi, P. Jeffrey Brantingham, Yevgeniy Vorobeychik . Optimal policy for control of epidemics with constrained time intervals and region-based interactions. Networks and Heterogeneous Media, 2024, 19(2): 867-886. doi: 10.3934/nhm.2024039
    [9] Yassine El Gantouh, Said Hadd . Well-posedness and approximate controllability of neutral network systems. Networks and Heterogeneous Media, 2021, 16(4): 569-589. doi: 10.3934/nhm.2021018
    [10] Chenchen Li, Chunyan Zhang, Lichao Feng, Zhihui Wu . Note on prescribed-time stability of impulsive piecewise-smooth differential systems and application in networks. Networks and Heterogeneous Media, 2024, 19(3): 970-991. doi: 10.3934/nhm.2024043
  • A number of different interaction modalities have been proposed for human engagement with networked systems. In this paper, we establish formal guarantees for whether or not a given human-swarm interaction (HSI) strategy is appropriate for achieving particular multi-robot tasks, such as guiding a swarm of robots into a particular geometric configuration. In doing so, we define what it means to impose an HSI control structure on a multi-robot system. Control Lyapunov functions are used to establish feasibility for a user to achieve a particular geometric configuration with a multi-robot system under some selected HSI control structure. Several examples of multi-robot systems with unique HSI control structures are provided to illustrated the use of CLFs to establish feasibility. Additionally, we also uses these examples to illustrate how to use optimal control tools to compute three metrics for evaluating an HSI control structure: attention, effort, and scalability.


    [1] S. Bashyal and G. K. Venayagamoorthy, Human swarm interaction for radiation source search and localization, in Swarm Intelligence Symposium (SIS), IEEE, 2008, 1-8. doi: 10.1109/SIS.2008.4668287
    [2] A. Becker, C. Ertel and J. McLurkin, Crowdsourcing swarm manipulation experiments: A massive online user study with large swarms of simple robots, in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014, 2825-2830. doi: 10.1109/ICRA.2014.6907264
    [3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441
    [4] R. W. Brockett, Minimum attention control, in Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 3, IEEE, 1997, 2628-2632. doi: 10.1109/CDC.1997.657776
    [5] A. E. Bryson, Applied Optimal Control: Optimization, Estimation and Control, CRC Press, 1975.
    [6] J. Casper and R. R. Murphy, Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 33 (2003), 367-385. doi: 10.1109/TSMCB.2003.811794
    [7] S. Chopra and M. Egerstedt, Heterogeneous multi-robot routing, in American Control Conference (ACC), IEEE, 2014, 5390-5395. doi: 10.1109/ACC.2014.6859368
    [8] J.-P. de la Croix and M. Egerstedt, A separation signal for heterogeneous networks, in 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2013, 254-261.
    [9] American Control Conference, to appear.
    [10] M. Diana, J.-P. de la Croix and M. Egerstedt, Deformable-medium affordances for interacting with multi-robot systems, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2013, 5252-5257. doi: 10.1109/IROS.2013.6697116
    [11] F. Dorfler and B. Francis, Geometric analysis of the formation problem for autonomous robots, IEEE Transactions on Automatic Control, 55 (2010), 2379-2384. doi: 10.1109/TAC.2010.2053735
    [12] F. Gao and M. L. Cummings, Barriers to Robust and Effective Human-Agent Teamwork, AAAI Spring Symposium Series, 2014.
    [13] M. A. Goodrich, B. Pendleton, P. Sujit and J. Pinto, Toward human interaction with bio-inspired robot teams, in IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2011, 2859-2864. doi: 10.1109/ICSMC.2011.6084115
    [14] M. Hägele, W. Schaaf and E. Helms, Robot assistants at manual workplaces: Effective co-operation and safety aspects, in Proceedings of the 33rd ISR (International Symposium on Robotics), 2002, 7-11.
    [15] D. Kahneman, Attention and Effort, Englewood Cliffs, N7T, Prentice-Hall, 1973.
    [16] H. K. Khalil and J. Grizzle, Nonlinear Systems, Vol. 3, Prentice Hall Upper Saddle River, 2002.
    [17] Z. Kira and M. A. Potter, Exerting human control over decentralized robot swarms, in 4th International Conference on Autonomous Robots and Agents (ICRA), IEEE, 2009, 566-571. doi: 10.1109/ICARA.2000.4803934
    [18] A. Kolling, K. Sycara, S. Nunnally and M. Lewis, Human swarm interaction: An experimental study of two types of interaction with foraging swarms, Journal of Human-Robot Interaction, 2 (2013), 103-128. doi: 10.5898/JHRI.2.2.Kolling
    [19] S. Lee, G. Sukhatme, J. Kim and C.-M. Park, Haptic control of a mobile robot: A user study, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, IEEE, 2002, 2867-2874.
    [20] J. McLurkin, J. Smith, J. Frankel, D. Sotkowitz, D. Blau and B. Schmidt, Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots., in AAAI Spring Symposium: To Boldly Go Where No Human-Robot Team Has Gone Before, 2006, 72-75.
    [21] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multi-Agent Networks, Princeton University Press, 2010.
    [22] J. Nagi, H. Ngo, A. Giusti, L. M. Gambardella, J. Schmidhuber and G. A. Di Caro, Incremental learning using partial feedback for gesture-based human-swarm interaction, in RO-MAN, IEEE, 2012, 898-905. doi: 10.1109/ROMAN.2012.6343865
    [23] R. Olfati-Saber, J. A. Fax and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95 (2007), 215-233. doi: 10.1109/JPROC.2006.887293
    [24] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49 (2004), 1520-1533. doi: 10.1109/TAC.2004.834113
    [25] G. Podevijn, R. O'Grady and M. Dorigo, Self-organised feedback in human swarm interaction, in Proceedings of the Workshop on Robot Feedback in Human-robot Interaction: How to make a Robot Readable for a Human Interaction Partner (RO-MAN), 2012.
    [26] E. Schoof, A. Chapman and M. Mesbahi, Bearing-compass formation control: A human-swarm interaction perspective, in American Control Conference (ACC), IEEE, 2014, 3881-3886. doi: 10.1109/ACC.2014.6859380
    [27] E. D. Sontag, Control-lyapunov functions, in Open problems in mathematical systems and control theory, Springer, 1999, 211-216.
  • This article has been cited by:

    1. Tatsuya Ibuki, Satoshi Nakano, Mahato Endou, Mitsuji Sampei, Pose Synchronization for Quadrotor Networks under Fixed General Interconnection Topology: A Passivity Approach, 2018, 11, 1882-4889, 160, 10.9746/jcmsi.11.160
    2. Fatna Bent Ennebi Benabbou, Belkacem Khaldi, Sidi Mohammed Benslimane, 2022, Human-Swarm Interactions: A Bibliometric Analysis Based on CiteSpace, 979-8-3503-3449-4, 53, 10.1109/BIWA57631.2022.10037872
    3. Valery Dmitrievich Senotov, Anton Pavlovich Aliseychik, Evgeny Vladimirovich Pavlovsky, Aleksei Valerievich Podoprosvetov, Igor Aleksandrovich Orlov, Algorithms for swarm decentralized motion control of group of robots with a differential drive, 2020, 20712898, 1, 10.20948/prepr-2020-123
    4. Tatsuya Ibuki, Mahato Endou, Mitsuji Sampei, 2017, Passivity-based pose synchronization for quadrotors under general digraphs, 978-4-907764-57-9, 764, 10.23919/SICE.2017.8105759
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4681) PDF downloads(88) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog