Citation: Yacine Chitour, Guilherme Mazanti, Mario Sigalotti. Stability of non-autonomous difference equations with applications to transport and wave propagation on networks[J]. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
[1] | Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010 |
[2] | Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008 |
[3] | Zhong-Jie Han, Enrique Zuazua . Decay rates for heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013 |
[4] | Tong Li . Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8(3): 773-781. doi: 10.3934/nhm.2013.8.773 |
[5] | Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299 |
[6] | Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425 |
[7] | Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011 |
[8] | Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004 |
[9] | Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843 |
[10] | Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047 |
[1] |
F. Alabau-Boussouira, V. Perrollaz and L. Rosier, Finite-time stabilization of a network of strings, Math. Control Relat. Fields, 5 (2015), 721-742. doi: 10.3934/mcrf.2015.5.721
![]() |
[2] |
F. A. Mehmeti, J. von Below and S. Nicaise (eds.), Partial Differential Equations on Multistructures, vol. 219 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker Inc., New York, 2001. doi: 10.1201/9780203902196
![]() |
[3] |
S. Amin, F. M. Hante and A. M. Bayen, Exponential stability of switched linear hyperbolic initial-boundary value problems, IEEE Trans. Automat. Control, 57 (2012), 291-301. doi: 10.1109/TAC.2011.2158171
![]() |
[4] |
C. E. Avellar and J. K. Hale, On the zeros of exponential polynomials, J. Math. Anal. Appl., 73 (1980), 434-452. doi: 10.1016/0022-247X(80)90289-9
![]() |
[5] |
G. Bastin, B. Haut, J.-M. Coron and B. D'Andréa-Novel, Lyapunov stability analysis of networks of scalar conservation laws, Netw. Heterog. Media, 2 (2007), 751-759. doi: 10.3934/nhm.2007.2.751
![]() |
[6] | R. K. Brayton, Bifurcation of periodic solutions in a nonlinear difference-differential equations of neutral type, Quart. Appl. Math., 24 (1966), 215-224. |
[7] |
A. Bressan, S. Čanić, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surv. Math. Sci., 1 (2014), 47-111. doi: 10.4171/EMSS/2
![]() |
[8] | Trans. Amer. Math. Soc., to appear, arXiv:1406.0731. |
[9] |
K. L. Cooke and D. W. Krumme, Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations, J. Math. Anal. Appl., 24 (1968), 372-387. doi: 10.1016/0022-247X(68)90038-3
![]() |
[10] |
J.-M. Coron, G. Bastin and B. d'Andréa Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., 47 (2008), 1460-1498. doi: 10.1137/070706847
![]() |
[11] |
R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in Flexible Multi-structures, vol. 50 of Mathématiques & Applications, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-37726-3
![]() |
[12] |
E. Fridman, S. Mondié and B. Saldivar, Bounds on the response of a drilling pipe model, IMA J. Math. Control Inform., 27 (2010), 513-526. doi: 10.1093/imamci/dnq024
![]() |
[13] | J. J. Green, Uniform Convergence to the Spectral Radius and Some Related Properties in Banach Algebras, PhD thesis, University of Sheffield, 1996. |
[14] |
M. Gugat, M. Herty, A. Klar, G. Leugering and V. Schleper, Well-posedness of networked hyperbolic systems of balance laws, in Constrained optimization and optimal control for partial differential equations, vol. 160 of Internat. Ser. Numer. Math., Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7
![]() |
[15] |
M. Gugat and M. Sigalotti, Stars of vibrating strings: Switching boundary feedback stabilization, Netw. Heterog. Media, 5 (2010), 299-314. doi: 10.3934/nhm.2010.5.299
![]() |
[16] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, vol. 99 of Applied Mathematical Sciences, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7
![]() |
[17] |
F. M. Hante, G. Leugering and T. I. Seidman, Modeling and analysis of modal switching in networked transport systems, Appl. Math. Optim., 59 (2009), 275-292. doi: 10.1007/s00245-008-9057-6
![]() |
[18] |
R. Jungers, The Joint Spectral Radius. Theory and Applications, vol. 385 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-95980-9
![]() |
[19] |
B. Klöss, The flow approach for waves in networks, Oper. Matrices, 6 (2012), 107-128. doi: 10.7153/oam-06-08
![]() |
[20] |
D. Liberzon, Switching in Systems and Control, 1st edition, Birkhäuser Boston, 2003. doi: 10.1007/978-1-4612-0017-8
![]() |
[21] |
W. Michiels, T. Vyhlídal, P. Zítek, H. Nijmeijer and D. Henrion, Strong stability of neutral equations with an arbitrary delay dependency structure, SIAM J. Control Optim., 48 (2009), 763-786. doi: 10.1137/080724940
![]() |
[22] |
W. L. Miranker, Periodic solutions of the wave equation with a nonlinear interface condition, IBM J. Res. Develop., 5 (1961), 2-24. doi: 10.1147/rd.51.0002
![]() |
[23] |
P. H. A. Ngoc and N. D. Huy, Exponential stability of linear delay difference equations with continuous time, Vietnam Journal of Mathematics, 43 (2015), 195-205. doi: 10.1007/s10013-014-0082-2
![]() |
[24] |
C. Prieur, A. Girard and E. Witrant, Stability of switched linear hyperbolic systems by Lyapunov techniques, IEEE Trans. Automat. Control, 59 (2014), 2196-2202. doi: 10.1109/TAC.2013.2297191
![]() |
[25] | W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Book Co., New York, 1987. |
[26] |
E. J. P. G. Schmidt, On the modelling and exact controllability of networks of vibrating strings, SIAM J. Control Optim., 30 (1992), 229-245. doi: 10.1137/0330015
![]() |
[27] |
M. Slemrod, Nonexistence of oscillations in a nonlinear distributed network, J. Math. Anal. Appl., 36 (1971), 22-40. doi: 10.1016/0022-247X(71)90016-3
![]() |
[28] |
Z. Sun and S. S. Ge, Stability Theory of Switched Dynamical Systems, Communications and Control Engineering Series, Springer, London, 2011. doi: 10.1007/978-0-85729-256-8
![]() |
[29] |
J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks, SIAM J. Control Optim., 48 (2009), 2771-2797. doi: 10.1137/080733590
![]() |
[30] |
E. Zuazua, Control and stabilization of waves on 1-d networks, in Modelling and Optimisation of Flows on Networks, Springer, 2062 (2013), 463-493. doi: 10.1007/978-3-642-32160-3_9
![]() |
1. | Ya-Xuan Zhang, Zhong-Jie Han, Gen-Qi Xu, Stability and Spectral Properties of General Tree-Shaped Wave Networks with Variable Coefficients, 2019, 164, 0167-8019, 219, 10.1007/s10440-018-00236-y | |
2. | Cristian M. Cazacu, Liviu I. Ignat, Ademir F. Pazoto, Null-Controllability of the Linear Kuramoto--Sivashinsky Equation on Star-Shaped Trees, 2018, 56, 0363-0129, 2921, 10.1137/16M1103348 | |
3. | Yacine Chitour, Guilherme Mazanti, Mario Sigalotti, Approximate and exact controllability of linear difference equations, 2019, 7, 2270-518X, 93, 10.5802/jep.112 | |
4. | Yacine Chitour, Swann Marx, Guilherme Mazanti, G. Buttazzo, E. Casas, L. de Teresa, R. Glowinski, G. Leugering, E. Trélat, X. Zhang, One-dimensional wave equation with set-valued boundary damping: well-posedness, asymptotic stability, and decay rates, 2021, 27, 1292-8119, 84, 10.1051/cocv/2021067 | |
5. | Georges Bastin, Jean-Michel Coron, Amaury Hayat, Diffusion and robustness of boundary feedback stabilization of hyperbolic systems, 2023, 35, 0932-4194, 159, 10.1007/s00498-022-00335-0 | |
6. | Laurent Baratchart, Sébastien Fueyo, Jean-Baptiste Pomet, Exponential stability of periodic difference delay systems and 1-D hyperbolic PDEs of conservation laws, 2022, 55, 24058963, 228, 10.1016/j.ifacol.2022.11.362 | |
7. | L. Baratchart, S. Fueyo, G. Lebeau, J.-B. Pomet, Sufficient Stability Conditions for Time-varying Networks of Telegrapher's Equations or Difference-Delay Equations, 2021, 53, 0036-1410, 1831, 10.1137/19M1301795 | |
8. | Guilherme Mazanti, Relative Controllability of Linear Difference Equations, 2017, 55, 0363-0129, 3132, 10.1137/16M1073157 | |
9. | Irina Kmit, Natalya Lyul'ko, Finite Time Stabilization of Nonautonomous First-Order Hyperbolic Systems, 2021, 59, 0363-0129, 3179, 10.1137/20M1343610 | |
10. | SWITCHING SYNCHRONIZED CHAOTIC SYSTEMS APPLIED TO SECURE COMMUNICATION, 2018, 8, 2156-907X, 413, 10.11948/2018.413 | |
11. | Ke Wang, Zhiqiang Wang, Wancong Yao, Boundary feedback stabilization of quasilinear hyperbolic systems with partially dissipative structure, 2020, 146, 01676911, 104815, 10.1016/j.sysconle.2020.104815 | |
12. | Nguyen Khoa Son, Le Trung Hieu, Cao Thanh Tinh, Do Duc Thuan, New criteria for exponential stability of a class of nonlinear continuous-time difference systems with delays, 2022, 0020-7179, 1, 10.1080/00207179.2022.2063191 | |
13. | Mouataz Billah Mesmouli, Abdelouaheb Ardjouni, Hicham Saber, Asymptotic Behavior of Solutions in Nonlinear Neutral System with Two Volterra Terms, 2023, 11, 2227-7390, 2676, 10.3390/math11122676 | |
14. | Yacine Chitour, Sébastien Fueyo, Guilherme Mazanti, Mario Sigalotti, Approximate and exact controllability criteria for linear one-dimensional hyperbolic systems, 2024, 190, 01676911, 105834, 10.1016/j.sysconle.2024.105834 | |
15. | Gonzalo Arias, Swann Marx, Guilherme Mazanti, 2023, Frequency domain approach for the stability analysis of a fast hyperbolic PDE coupled with a slow ODE, 979-8-3503-0124-3, 1949, 10.1109/CDC49753.2023.10383213 | |
16. | Sébastien Fueyo, Yacine Chitour, A corona theorem for an algebra of Radon measures with an application to exact controllability for linear controlled delayed difference equations, 2024, 362, 1778-3569, 851, 10.5802/crmath.604 | |
17. | Mouataz Billah Mesmouli, Cemil Tunç, Taher S. Hassan, Hasan Nihal Zaidi, Adel A. Attiya, Asymptotic behavior of Levin-Nohel nonlinear difference system with several delays, 2023, 9, 2473-6988, 1831, 10.3934/math.2024089 | |
18. | Laurent Baratchart, Sébastien Fueyo, Jean-Baptiste Pomet, INTEGRAL REPRESENTATION FORMULA FOR LINEAR NONAUTONOMOUS DIFFERENCE-DELAY EQUATIONS, 2024, 36, 0897-3962, 10.1216/jie.2024.36.407 | |
19. | Sébastien Fueyo, Left-coprimeness condition for the reachability in finite time of pseudo-rational systems of order zero with an application to difference delay systems, 2025, 198, 01676911, 106051, 10.1016/j.sysconle.2025.106051 | |
20. | Ismaïla Balogoun, Jean Auriol, Islam Boussaada, Guilherme Mazanti, A novel necessary and sufficient condition for the stability of 2×2 first-order linear hyperbolic systems, 2025, 199, 01676911, 106066, 10.1016/j.sysconle.2025.106066 |