Citation: Hal Pedersen, Norman R. Swanson. A survey of dynamic Nelson-Siegel models, diffusion indexes, and big data methods for predicting interest rates[J]. Quantitative Finance and Economics, 2019, 3(1): 22-45. doi: 10.3934/QFE.2019.1.22
[1] | Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033 |
[2] | A. K. Misra, Jyoti Maurya, Mohammad Sajid . Modeling the effect of time delay in the increment of number of hospital beds to control an infectious disease. Mathematical Biosciences and Engineering, 2022, 19(11): 11628-11656. doi: 10.3934/mbe.2022541 |
[3] | Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643 |
[4] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[5] | Shishi Wang, Yuting Ding, Hongfan Lu, Silin Gong . Stability and bifurcation analysis of for the COVID-19 epidemic model with time delay. Mathematical Biosciences and Engineering, 2021, 18(5): 5505-5524. doi: 10.3934/mbe.2021278 |
[6] | Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089 |
[7] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[8] | Hui Cao, Yicang Zhou, Zhien Ma . Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[9] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[10] | Sarita Bugalia, Jai Prakash Tripathi, Hao Wang . Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Mathematical Biosciences and Engineering, 2021, 18(5): 5865-5920. doi: 10.3934/mbe.2021295 |
The involvement of the cerebellum in affective brain activity has been demonstrated by various approaches including clinical and behavioral studies and brain imaging, but it is still difficult to identify precisely the role that the cerebellum plays in emotional processing and behavior. In two papers [1,2] in this special issue, many examples showing the likely involvement of the cerebellum in emotion regulation are reviewed, but in most cases, the exact role of the cerebellum is difficult to explain. To proceed further toward answering the question posed in the title, I suggest the following two directions that should be explored.
The functional structure of the cerebellum devoted to motor function is hierarchically organized according to longitudinal zonal structures of the cerebellum [3]. Zones A (vermis) and B (paravermis) are devoted to the adaptive control of somatic reflexes, and zones C1-C3 (the intermediate parts of the cerebellar hemisphere) to the internal-model-assisted control of voluntary movements. Between zones D1 and D2 (the lateral parts of the cerebellar hemisphere), D1 is considered to be devoted to the control of motor actions (e.g., dancing, tool uses), whereas zone D2 (the most lateral part of the cerebellar hemisphere) is allocated to cognitive functions [4]. The thought process is a typical cognitive function, in which the prefrontal cortex manipulates ideas expressed in the cerebral parietal cortex. Zone D2 may support the thought process by providing an internal model of ideas, but how ideas are represented in the neural circuit is still unknown. With this longitudinal zonal organization map, one can comprehend that cerebellar lesions lead to not only motor control dysfunction but also cognitive syndromes; however, where is emotion represented likewise?
Functional localization related to emotion has been shown for autonomic reflexes. In the vermis and flocculonodular lobe (parts of zones C1-C3), there are areas controlling cardiovascular homeostasis via the sympathetic nervous system [5]. In the first paper of this special issue [6], it is described that a discrete area of the cerebellar flocculus controls arterial blood flow associated with defense reactions. Lesions of the cerebellum at the flocculus, nodulus, and uvula impair these autonomic reflexes and their integrated functions, which will lead to impairment of physiological expressions of affective processes. The role of the cerebellum can be defined as the adaptive control of autonomic functions that support emotion regulation by a mechanism common to the adaptive control of motor functions.
Mood impairment is a major clinical symptom associated with cerebellar diseases [7]. One may recall that some neuropeptides play a modulatory role in mood. For example, neuropeptide Y is involved in mood and anxiety disorders [8] and a decrease in its level is associated with an increased risk of suicide [9]. Corticotropin-releasing factor and galanin may also be involved in mood control as their antagonists exert antidepressant-like effects [10]. Recently, a number of neuropeptides have been shown to be substantially expressed in the cerebellum [11]. These neuropeptides are contained in beaded fibers, which project to the cerebellum diffusely and dispersedly [12]. This form of innervation is typical in neuromodulation [13], in which dispersed fibers do not convey information specific to individual fibers, but they govern the general activity of their target neurons as a whole. Thus, beaded fibers would switch the operational mode of their target neuronal circuit as a whole by neuromodulation.
As explained in the first paper of this special issue [6], the orexinergic system functions in the organization of neural circuits for anger and defense behavior; this case may provide a prototype mechanism for selecting an emotional behavioral repertoire via neuromodulation. Each neuropeptide may activate a certain unique set of neuronal circuits selected through the spinal cord, brainstem, and cerebellum, which jointly represent a specific emotion and behavior. The selected cerebellar portion is expected to control selected autonomic reflexes and their integrated functions in the spinal cord and brainstem. This mechanism could be an answer to the question posed in the title of this special issue.
The author declares to have no conflict of interest.
[1] |
Altavilla C, Giacomini R, Ragusa G (2017) Anchoring the Yield Curve Using Survey Expectations. J Appl Economet 32: 1055-1068. doi: 10.1002/jae.2588
![]() |
[2] | Andreou E, Gagliardini P, Ghysels E (2018) Is Industrial Production Still the Dominant Factor for the US Economy? Evidence from a New Class of Mixed Frequency (Group) Factor Models. Swiss Finance Institute Research Paper No. 16-11. |
[3] |
Ang A, Piazzesi M (2003) A No-Arbitrage Vector Autoregression of Term Structure Dynamics With Macroeconomic and Latent Variables. J Monetary Econ 50: 745-787. doi: 10.1016/S0304-3932(03)00032-1
![]() |
[4] |
Bai J, Ng S (2008) Forecasting Economic Time Series Using Targeted Predictors. J Econom 146: 304-317. doi: 10.1016/j.jeconom.2008.08.010
![]() |
[5] |
Bai J, Ng S (2009) Boosting Diffusion Indices. J Appl Economet 24: 607-629. doi: 10.1002/jae.1063
![]() |
[6] | Banerjee A, Marcellino M, Marsten I (2008) Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change, Forecasting in the Presence of Structural Breaks and Model Uncertainty, Emerald Group Publishing, New York, NY, 149-194. |
[7] |
Bernanke BS, Boivin J (2003) Monetary Policy in a Data-rich Environment. J Monetary Econo 50: 525-546. doi: 10.1016/S0304-3932(03)00024-2
![]() |
[8] | Bank of International Settlements (2005) Zero-Coupon Yield Curves: Technical Documentation. Working Paper. |
[9] | Boivin J, Ng S(2005) Understanding and Comparing Factor Based Macroeconomic Forecasts. Internation J Cent Bank 1: 117-152. |
[10] |
Carrasco M, Rossi B (2016) In-Sample Inference and Forecasting in Misspecified Factor Models. J Bus Econ Stat 34: 313-338. doi: 10.1080/07350015.2016.1186029
![]() |
[11] |
Cheng X, Hansen BE (2015) Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach. J Econom 186: 280-293. doi: 10.1016/j.jeconom.2015.02.010
![]() |
[12] |
Christensen JHE, Diebold FX, Rudebusch GD (2011) The Affine Arbitrage Free Class of Nelson-Siegel Term Structure Models. J Econom 164: 4-20. doi: 10.1016/j.jeconom.2011.02.011
![]() |
[13] | Clark TE, McCrackenMW(2009) Improving Forecast Accuracy by Combining Recursive and Rolling Forecast. Internation Econ Rev 50: 363-395. |
[14] | Corradi V, Swanson NR (2006) Predictive Density Evaluation, In G. Elliot, C. W. J. Granger, and A. Timmermann, Handbook of Economic Forecasting, (eds.), Elsevier, Amsterdam, 197-284. |
[15] |
Corradi V, Swanson NR (2014) Testing for Structural Stability of Factor Augmented Forecasting Models. J Economs 182: 100-111. doi: 10.1016/j.jeconom.2014.04.011
![]() |
[16] |
Coroneo L, Giannone D, Modugno M (2016) Unspanned Macroeconomic Factors in the Yield Curve. J Bus Econ Stat 34: 472-485. doi: 10.1080/07350015.2015.1052456
![]() |
[17] | De Pooter M (2007) Examining the Nelson-Siegel Class of Term Structure Models: In-Sample Fit versus Out-of-Sample Forecasting Performance. Tinbergen Institute Discussion Paper No. 07-043/4. |
[18] |
Diebold FX, Li C (2006) Forecasting the Term Structure of Government Bond Yields. J Econom 130: 337-364. doi: 10.1016/j.jeconom.2005.03.005
![]() |
[19] |
Diebold FX, Rudebusch GD (1991) Forecasting Output with the Composite Leading Index: A Real-Time Analysis. J Am Stat Assoc 86: 603-610. doi: 10.1080/01621459.1991.10475085
![]() |
[20] |
Diebold FX, Rudebusch GD, Aruoba SB (2006) The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach. J Econom 131: 309-338. doi: 10.1016/j.jeconom.2005.01.011
![]() |
[21] | Diebold FX, Rudebusch GD (2013) Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach, Princeton University Press: Princeton. |
[22] |
Duffee GR (2011) Information In (and Not In) the Term Structure. Rev Financ Stud 24: 2895-2934. doi: 10.1093/rfs/hhr033
![]() |
[23] | Duffee GR (2013) Forecasting Interest Rates, Handbook of Economic Forecasting, Elsevier, Amsterdam, 385-426. |
[24] |
Exterkate P, van Dijk D, Heij C (2013) Forecasting the Yield Curve in a DataRich Environment Using the FactorAugmented NelsonSiegel Model. J Forecasting 32: 193-214. doi: 10.1002/for.1258
![]() |
[25] |
Efron B, Hastie T, Johnstone L, et al. (2004) Least Angle Regression. A Stat 32: 407-499. doi: 10.1214/009053604000000067
![]() |
[26] | Ghysels E, Marcellino M (2018) Applied Economic Forecasting using Time Series Models, Oxford University Press, London. |
[27] | Gürkaynak RS, Sack B, Wright JH (2006) The U.S. Treasury Yield Curve: 1961 to the Present. Working Paper, Federal Reserve Bank-Finance and Economics Discussion Series 2006-28. |
[28] |
Gürkaynak RS, Wright JH (2012) Macroeconomics and the Term Structure. J Econ Lit 50: 331-67. doi: 10.1257/jel.50.2.331
![]() |
[29] |
Hamilton JD, Perez-Quiros G (1996) What Do the Leading Indicators Lead? J Bus 69: 27-49. doi: 10.1086/209678
![]() |
[30] | Hamilton JD, Wu JC (2012) The Effectiveness of Alternative Monetary Policy Tools in a Zero Lower Bound Environment. J Money Credit Bank 44: 3-46. |
[31] | Hansen PR, Timmermann A (2012) Choice of Sample Split in Out-of-Sample Forecast Evaluation. Working Paper, Rady School of Management, University of California, San Diego. |
[32] |
Hirano K, Wright JH (2017) Forecasting With Model Uncertainty: Representations and Risk Reduction. Econometrica 85: 617-643. doi: 10.3982/ECTA13372
![]() |
[33] |
Kim HH, Swanson NR (2014) Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence. J Econom 178: 352-367. doi: 10.1016/j.jeconom.2013.08.033
![]() |
[34] | Ludvigson SC, Ng S (2009) Macro Factors in Bond Risk Premia Rev Financ Stud 22: 5027-5067. |
[35] |
McCracken MW (2000) Robust Out-of-Sample Inference. J Econom 99: 195-223. doi: 10.1016/S0304-4076(00)00022-1
![]() |
[36] |
McCracken MW, Ng S (2016) Fred-MD: A Monthly Database for Macroeconomic Research. J Bus Econ Stat 34: 574-589. doi: 10.1080/07350015.2015.1086655
![]() |
[37] |
Mönch E (2008) Forecasting the Yield Curve in a Data-Rich Environment: A No-Arbitrage Factor-Augmented VAR Approach. J Econom 146: 26-43. doi: 10.1016/j.jeconom.2008.06.002
![]() |
[38] | Nelson C, Siegel A (1985) Parsimonious Nodeling of Yield Curves for US Treasury Bills. Working Paper 1594, National Bureau of Economic Statistics. |
[39] |
Nelson C, Siegel A (1987) Parsimonious Modeling of Yield Curves. J Bus 60: 473-489. doi: 10.1086/296409
![]() |
[40] |
Rossi B, Sekhposyan S (2011) Understanding Models' Forecasting Performance. J Econom 164: 158-172. doi: 10.1016/j.jeconom.2011.02.020
![]() |
[41] |
Rossi B, Inoue A (2012) Out-of-Sample Forecast Tests Robust to the Choice of Window Size. J Bus Econ Stat 30: 432-453. doi: 10.1080/07350015.2012.693850
![]() |
[42] |
Rudebusch GD, Wu T (2008) A Macro-Finance Model of the Term Structure, Monetary Policy and the Economy. Econ J 118: 906-926. doi: 10.1111/j.1468-0297.2008.02155.x
![]() |
[43] |
Schumacher C (2007) Forecasting German GDP Using Alternative Factor Models Based on Large Datasets. J Forecasting 26: 271-302. doi: 10.1002/for.1026
![]() |
[44] | Schumacher C (2009) Factor Forecasting Using International Targeted Predictors: The Case of German GDP. Econ Lett 107: 95-98. |
[45] | Stark T (2010) Realistic evaluation of real-time forecasts in the Survey of Professional Forecasters. Federal Res Bank Phila Res Division, 1-20. |
[46] | Stock JH,WatsonMW(2002a) Macroeconomic Forecasting Using Diffusion Indexes. J Bus Econ Stat 20: 147-162. |
[47] | Stock JH, Watson MW (2002b) Forecasting Using Principal Components from a Large Number of Predictors. J Am Stat Assoc 97: 1167-1179. |
[48] | Stock JH,WatsonMW(2012) Generalized Shrinkage Methods for Forecasting Using Many Predictors. J Bus Econ Stat 30: 481-493. |
[49] | Svensson LE (1994) Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994.Working Paper 4871, National Bureau of Economic Research. |
[50] | Swanson NR, Xiong W (2018a) Big Data Analytics In Economics: What Have We Learned So Far, And Where Should We Go From Here? Canadian J Econ 3: 695-746. |
[51] | Swanson NR, Xiong W (2018b) Predicting Interest Rates Using Shrinkage Methods, Real-Time Diffusion Indexes, and Model Combinations. Working Paper, Rutgers University. |
[52] |
Tong L, Liu RW, Soon V, et al. (1991) Indeterminacy and Identifiability of Blind Identification. IEEE Trans on Circ and Syst 38: 499-500. doi: 10.1109/31.76486
![]() |
1. | Ashrafi M. Niger, Abba B. Gumel, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics, 2008, 16, 0971-3514, 251, 10.1007/s12591-008-0015-1 | |
2. | Gamaliel Blé, Luis Miguel Valenzuela, Manuel Falconi, Coexistence of populations in a Leslie-Gower tritrophic model with Holling-type functional responses, 2024, 10, 24058440, e38207, 10.1016/j.heliyon.2024.e38207 |