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Abstract: In this paper we survey a number of recent empirical findings regarding the usefulness
of including diffusion indexes in dynamic Nelson-Siegel (DNS) type models used to predict the term
structure of interest rates (see e.g., Diebold and Li (2007) and Diebold and Rudebusch (2013)). We
also survey various empirical methods used in the construction of DNS models, and used to specify
and estimate diffusion index augmented DNS models. In particular, we review (sparse) principal
component analysis, factor augmented autoregression, and various dimension reduction, variable
selection, machine learning, and shrinkage methods, such as the least absolute shrinkage operator
(lasso), the elastic net, and independent component analysis, among others. Finally, we discuss the
importance of using real-time data in contexts where datasets are subject to revision; and we compare
and contrast the use of targeted versus un-targeted specification methods when including diffusion
indexes in DNS type prediction models. Interestingly, as noted in Swanson and Xiong (2018a, 2018b),
the usefulness of diffusion indexes is crucially dependent upon whether real-time data are used or
not. Specifically, when real-time data are used to estimate the weights in diffusion indexes, it is found
that relatively few “data rich” models that use big data are preferred to simpler DNS models, post
2010. Instead, pure DNS models that rely only on historical interest rate data deliver mean square
error “best” forecasts. However, when data are not real-time, diffusion indexes always have marginal
predictive content for interest rates. Moreover, it is clear that in more volatile interest rate regimes,
such as prior to 2010, machine learning and related methods have much to offer, regardless of the type
of dataset used in their construction.
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1. Introduction

The term structure of interest rates plays a important role in asset management. One reason for
this is that interest rates contain important information for pricing interest rate contingent assets. As
a consequence, industries ranging from banking and finance to insurance are interested in forecasting
and simulating yields on government, municipal, and corporate bonds. In this paper, we survey two
key recent models used for prediction and simulation of interest rates. These include: (1) dynamic
Nelson-Siegel (DNS) type models (see e.g., Nelson and Siegel (1985), Svensson (1994), Diebold and
Li (2006), Diebold et al. (2006), Diebold and Rudebusch (2013), and Swanson and Xiong (2018a,
2018b), and the references cited therein); and (2) factor augmented regression models (see e.g., Stock
and Watson (2002a, 2002b), Bai and Ng (2006), and Kim and Swanson (2014, 2018)). We also discuss
hybrid models which combine (1) and (2), and summarize recent empirical findings in which such
models are estimated using both “real-time” and “fully revised” datasets. The hybrid models that are
referred to above are models in which diffusion indexes are included in DNS type models. This variety
of model is particularly interesting because DNS models are often estimated using very small datasets
that only include interest rate data, while diffusion indexes are typically constructed using so-called
“big-data” (i.e., datasets with potentially hundreds of variables). In this sense, the hybrid models that
we survey combine data-rich models with non-data-rich models.

When the objective is prediction (or simulation), as in this paper, an important data related issue
related to the availability of the data used to estimate forecasting models arises. This issue involves
whether or not to use real-time data in model specification and estimation. In order to understand what
is meant by real-time data in this context, consider monthly inflation and interest rates. In the empirical
findings surveyed in this paper, monthly interest rates are predicted. Now, historical interest rate data
are never revised. Thus, it is clear which interest rate data to use when estimating DNS models that
only include historical yields. However, historical inflation rates are regularly revised, and so if one
specifies a hybrid DNS type model that includes diffusion indexes that are constructed using inflation
(and other revised macroeconomic variables) one must account for the fact that inflation data are subject
to revision. Why is this important? The reason is that a diffusion index prediction constructed for the
calendar dated time period January 2019, say, using data “pulled” in December 2018, and hence using
data available through December 2018, will potentially be different from a diffusion index prediction
constructed for the same calendar dated time period (i.e., January 2019), using data that were “pulled”
at any point in time after December 2018. Why? In 2019, inflation data for calendar periods prior to
and including December 2018 may have been revised by the government, so the timing associated with
the “pulling” of data becomes relevant. Namely, data for specific calendar dated time periods is revised
periodically, and over time, as the government receives new survey and related information. This in
turn results in a revision of the model used to construct diffusion index predictions for calendar dates
January 2019 and earlier. To accurately account for new releases of economic variables, the entire
history of the diffusion index in question must potentially be revised each month, as new “estimates”
of historical data become available. Now, since the diffusion index is one of the inputs into our hybrid
DNS type prediction model of interest rates, real-time data matters. In practice, what this means
is that analysts and researchers interested in constructing prediction models that reflect the type of
prediction models used in industry must use real-time data, and cannot simply download a single set
of explanatory variables for use in ex ante prediction experiments. Stated differently, assume that the
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objective of a researcher is to simulate the environment faced by an practitioner when constructing
interest rate forecasts. Given that the practitioner constructs new forecasts on a regular basis, say
monthly, they are faced with an entirely new historical dataset each month. For variables like inflation,
money, GDP, and unemployment that are regularly revised, many calendar dated observations that
were previously available have been revised. In principle, one can collect an entire time series for
each calendar dated observation of a variable, where the elements of the time series denote different
“revisions” of the same calendar dated observation, which are successively available, over time. Such
datasets, in which case a matrix of data is available for each variable, rather than the usual (time series)
vector, are referred to as real-time datasets. It should be stressed, however, that not all variables have
this feature, some variables, like interest rates and various asset prices are never revised, and hence are
considered “fully revised”.

In the context of estimating (hybrid) DNS type prediction models, it is important to decide whether
to carry out targeted or un-targeted prediction. Here, “targeting” refers to a specific approach used to
construct diffusion indexes. Consider one of the approaches used to construct diffusion indexes in this
paper. Namely consider principal components analysis (PCA). Now, diffusion indexes (or latent
factors) constructed using PCA can be interpreted as weighted combinations of all of the variables in
the large-scale dataset used in their construction. In un-targeted prediction, diffusion indexes included
in regression models and DNS type models are usually chosen to be those that explain the maximal
correlation across the entire dataset. When using PCA, this amounts to selecting the eigenvectors of a
certain correlation matrix that are associated with the largest eigenvalues of a particular
eigenvalue-eigenvector decomposition of said matrix. However, there is no guarantee that these
eigenvectors have particularly useful information for forecasting interest rates, which are our “target”
variable. Namely, achieving maximal correlation with the entire set of variables does not ensure
maximal correlation (or predictive content) for a particular variable. In targeted prediction, the
variables used in the construction of the diffusion indexes are carefully pre-selected, so as to
maximize their predictive content for interest rates. Many methods for doing this are available in the
machine learning, dimension reduction, shrinkage, and variable selection literatures. Some such
methods that are discussed in this survey include the partial least squares, the lasso, the elastic net,
ridge regression, and bootstrap aggregation. Additionally, as alternatives to PCA, we discuss sparse
principal components analysis and independent components analysis. These methods directly induce
sparseness in the coefficient vectors used to construct diffusion indexes.

In the empirical part of this survey, we review various empirical findings from Swanson and Xiong
(2018a, 2018b). These findings are based on analyses that utilize real-time datasets, as well as analyses
that assume all data are fully revised. In the latter case, this amounts to taking a “snapshot” of the data
that are available at a particular point in time, and assuming that the historical elements of that data are
never revised, even when carrying out real-time forecasting experiments in which DNS hybrid DNS,
and factor augmented regression models are re-estimated at each point in time, prior to the construction
of each new forecast. As alluded to above, the use of real-time data (or not) has broad implications
when specifying and utilizing DNS type models with and without diffusion indexes for forecasting
interest rates; and we shall see that empirical findings are indeed dependent upon which type of data
are used in model specification and estimation. We also review findings indicating that the use of more
sophisticated targeted prediction methods results in hybrid DNS-diffusion index prediction models
that outperform pure DNS models prior to around 2010. However, the same is not true after 2010.
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In particular, after 2010, if real-time data are used in hybrid model construction, then hybrid models
are (predictively) outperformed by pure DNS models. On the other hand, when non real-time data are
used in a similar “post-2010” empirical exercise, hybrid DNS models still (predictively) outperform
pure DNS models. This underscores the importance of carefully selecting the data to be used in DNS
models, when simulating and predicting the term structure of interest rates.

The rest of the paper is organized as follows. Section 2 reviews dynamic Nelson Siegel models,
and Section 3 discusses modeling with diffusion indexes. In Section 4, factor augmented
autoregression is reviewed, and in Section 5, dimension reduction, variable selection, machine
learning, and shrinkage methods are surveyed. Section 6 summarizes selected recent empirical
evidence concerning the usefulness of diffusion indexes in DNS modelling. Concluding remarks are
gathered in Section 7.

2. Dynamic Nelson Siegel models

In this section, we discuss two representative DNS type models, drawing on the discussion of
Swanson and Xiong (2018b). For a complete survey, see Diebold and Rudebusch (2013).
Additionally, refer to Diebold and Li (2006) and Diebold et al. (2006).

First, we discuss the three factor dynamic Nelson-Siegel model. Motivated by rational expectation
theory, Nelson and Siegel (1985) express spot interest rates in terms of instantaneous forward rates.
Namely, the instantaneous forward interest rate of a bond with maturity m is denoted as f (m), and the
spot interest rate of a bond with maturity τ as y(τ). Then, the yield to maturity of a bond can be written
as the average of forward rates

y(τ) =
1
τ

∫ τ

0
f (m)dm. (1)

Nelson and Siegel (1985) motivate the use of the following model of the forward rate that can generate
monotonically increasing, humped, and occasionally S-shaped yield curves, a range of shapes for yield
curves:

f (m) = β1 + β2 · exp(
m
θt

) + β3 · [(
m
θt

)exp(
m
θt

)], (2)

where λt = 1
θt

is the so-called decay parameter, which must be estimated, is assumed fixed in this
model, and is time varying in the dynamic version of the model discussed below. It is then easy to
derive the following model for bond yields:

y(τ) = β1 + β2 · [
1 − exp(− τ

θt
)

τ
θt

] + β3 · [
1 − exp(− τ

θt
)

τ
θt

− exp(−
τ

θt
)]. (3)

In the above model, the latent factors (i.e., the “betas”) are fixed. Diebold and Li (2006) generalize
this model to allow for time-varying betas: β1,t, β2,t and β3,t. Their so-called Dynamic Nelson-Siegel
(DNS) model is estimated using a two-step procedure. First, the rate of decay λt is set to a constant.
Next, at each point in time, t, the yield cross section is linearly projected onto the set of factor loadings
(1, 1−exp(−λtτ)

λtτ
, 1−exp(−λtτ)

λtτ
− exp(−λtτ)). In our experiments, various different dimensions are considered

when specifying the yield cross section. Namely, we consider yield cross sections using 10, 12, and 30
different yield maturities. For example, with our 12-dimensional cross section, we estimate the latent

Quantitative Finance and Economics Volume 3, Issue 1, 22–45.



26

factors by fitting the following regression:

yt(τ1)
yt(τ2)
yt(τ3)
...

yt(τ12)


12×1

=



1 1−exp(−λtτ1)
λtτ1

1−exp(−λtτ1)
λtτ1

− exp(−λtτ1)
1 1−exp(−λtτ2)

λtτ2

1−exp(−λtτ2)
λtτ2

− exp(−λtτ2)
1 1−exp(−λtτ3)

λtτ3

1−exp(−λtτ3)
λtτ3

− exp(−λtτ3)
...

...
...

1 1−exp(−λtτ12)
λtτ12

1−exp(−λtτ12)
λtτ12

− exp(−λtτ12)


12×3


β1,t

β2,t

β3,t


3×1

(4)

The betas (i.e., β̂1,t, β̂2,t, and β̂3,t) are called the “level”, “slope”, and “curvature” factors. In particular,
note that the loading on β̂1,t is one, which is naturally interpreted as the “level” factor. The loading on
β̂2,t decreases as bond maturity increases, resulting in an increase of the “slope” of bond yield curve.
Finally, the loading on the third latent factor, β̂3,t, starts from zero on the short end of yield curve,
reaches its peak at some maturity in the middle, and gradually decays to zero as maturity goes to
infinity.∗ In summary, the DNS model can be written as follows:

ŷt(τ) = β̂1,t + β̂2,t · [
1 − exp(−λtτ)

λtτ
] + β̂3,t · [

1 − exp(−λtτ)
λtτ

− exp(−λtτ)]. (5)

In order to construct predictions using the DNS model, we fit estimated factors to AR and VAR models,
as follows.

β̂i,t+1 = ci + γiβ̂i,t + εt i = 1, 2, 3 or, (6)

β̂t+1 = c + Γβt + ε t, (7)

where εt is a scalar stochastic disturbance term, ε t is a 3×1 vector of stochastic disturbance terms,
and ci, c, γi, and Γ, i = 1, ..., 3, are conformably defined constants, constant vectors and constant
matrices. With these last two models, one con construct predictions of the β̂i,t, for i = 1, ..., 3, which
can in turn be inserted into the above model of ŷt(τ) in order to generate predictions thereof. In all
experiments in the sequel, rolling estimation is carried out when estimating the above models (and all
other models), using windows of length 120 months, so that “real-time” predictions are constructed in
all cases. Additionally, we consider two types of prediction models. In one, the decay parameter is
fixed. In the other, the decay parameter is re-estimated prior to the construction of each new prediction.

Svensson (1994) extends the Nelson-Siegel Svensson (NSS) model by adding a fourth term. This
additional term allows for a second “hump” shape in term structures. In particular, he discusses using
the following four-factor model for fitting the instantaneous forward interest rate:

f (m) = β1 + β2 · exp(
m
θ1,t

) + β3 · [(
m
θ1,t

) · exp(
m
θ1,t

)] + β4 · [(
m
θ2,t

) · exp(
m
θ2,t

)]. (8)

Notice that in the above equation there are now two different decay parameters controlling the double-
hump shape of the forward curve, called θ1 and θ2. Similar to the DNS model, we consider a dynamic

∗An increase in the “level” component, β1t, affects all yields equally, thus it determines the level of the yield curve. Also, as maturity τ
goes to infinity, β1t = yt(∞) by definition. An increase in “slope” component β2t affects short rates more than long rates, thereby changing
the slope, or the so-called “term spread” of the yield curve. Finally, an increase in β3t, the “curvature” component, will increase medium-
term yields and have little effect on the short and long end of the curve. Therefore, the yield curve will becomes more hump shaped.
As demonstrated in Diebold and Li (2006), the “level” factor can be approximated with the 10-year bond yield, the “slope” factor can
be approximated with 10-year - 3-month bond yield spreads, and the “curvature” factor moves closely with two times the 2-year yield
minus the sum of the 3-month and 10-year yields.
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version of the NSS model. Thus, we utilize the following variant of the DNS model (factor estimation
and prediction construction is carried out using the DNS modeling approach discussed above).

ŷt(τ) = β̂1,t + β̂2,t · [
1 − exp(−λ1,tτ)

λ1,tτ
] + β̂3,t · [

1 − exp(−λ1,tτ)
λ1,tτ

− exp(−λ1,tτ)]

+ β̂4,t · [
1 − exp(−λ1,tτ)

λ2,tτ
− exp(−λ2,tτ)],

(9)

where we now have two decay parameters, as discussed above. These are called λ1,t and λ2,t. As
discussed in De Pooter (2007), the second hump in the NSS model is difficult to identify without
imposing additional restrictions. We adopt his approach to solving this issue, which includes
assumptions that the two humps are at least one year apart, and that the second hump reaches its
maximum for a maturity which is at least twelve months shorter than the first hump. Additionally, it is
assumed that λ1 , λ2, in order to avoid multicollinearity.

For further discussion of DNS models, see Diebold and Rudebusch (2013) and De Pooter (2007).
For further discussion comparing arbitrage free dynamic latent factor and DNS models, see Ang and
Piazzesi (2003), Diebold et al. (2006), Christensen et al. (2011), Duffie (2011), and the references
cited therein.

3. Modelling with diffusion indexes

Continuing to draw on discussion contained in Swansion and Xiong (2018b), we now turn our
attention to so-called diffusion indexes, which have been utilized in numerous recent empirical
investigations of economic data (see e.g., Andreou et al. (2018), Boivin and Ng (2005), Cheng and
Hansen (2015), Exerkate et al. (2013), Ludvigson and Ng (2009), Schumacher (2007, 2009), and the
references cited therein). A key open question in this literature remains whether or not
macroeconomic, financial and other non-yield information is useful in fitting and forecasting the yield
curves. As Duffee (2013) points out that assuming yields follow a Markov implies that all information
in fundamental economic variables, should already be embedded in yield cross sections. However,
many of the aforementioned paper find that so-called “unspanned risks”, as proxied for by additional
economic variables and/or diffusion indexes contain useful predictive content for yields. For example,
Ang and Piazzesi (2003) find that macroeconomic variables are significant for explaining Treasury
security yield dynamics; Mönch (2008) shows that including diffusion indexes in an affine Gaussian
term structure model results in improved predictive performance; and Diebold et al. (2006) discover
strong evidence in favor of causal linkages between macroeconomic variables and future yield curve
dynamics.

In the above paragraph, we refer to diffusion indexes, which summarize information contained in
(potentially) largescale economic datasets (big data). As discussed in the introduction, one important
aspect of big data in our context is the use of so-called real-time data. Recently, McCracken and Ng
(2016) and St. Louis Federal Reserve Bank’s data desk created the FRED-MD, which is a large
monthly real-time database that contains over 130 macro-variables and all revisions of all of these
variables. The dataset contains variables summarizing economic output and income, labor markets,
consumption, money and credit, housing, and stock market, for example. Moreover, they show that
diffusion indexes extracted from their FRED-MD dataset contain the same predictive content as
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diffusion indexes constructed using the classic Stock and Watson dataset (Stock and Watson (2002a,
2002b)). However, the FRED-MD is a real-time database, while the Stock and Watson dataset
contains only fully revised data. Several studies have revealed the importance of collecting and
updating such real-time datasets including Diebold and Rudebusch (1991), Hamilton and
Perez-Quiros (1996), Bernanke and Boivin (2003), and the papers cited therein.

One of our main objectives in this paper is examining whether diffusion indexes are useful for
predicting yields when the data used to construct the indexes are purely “real-time”, rather than fully
revised. A natural approach for answering this question involves adopting a dynamic factor model
framework resembling that used by Coroneo et al. (2016) and many others. Namely, assume that
yields curve factors, (which are the betas in the above discussion are are here called Fy,t), are driven
by both past yield curve factors and macro factors (i.e., diffusion indexes), called Fx,t. Additionally,
it is assumed that macroeconomic variables are driven only by Fx,t only. In particular, consider the
following model, as discussed in Swanson and Xiong (2018b):(

Fy,t+h

xt

)
=

(
cy

cx

)
+

[
Γy Γx

0 Γxx

] (
Fy,t

Fx,t

)
+

(
ey,t+h

ex,t

)
, (10)

where cy, cx are vectors containing constant terms, h is the forecast horizon, Γy contains factor
loadings on yield factors, Γxx contains factor loadings on the macro factors, and Γx summarizes the
marginal effect of macro factors on yield factors. Additionally, ey,t+h and ex,t are idiosyncratic
stochastic disturbance terms. In their paper, Coroneo et al. (2016) use a so-called expectation
conditional restricted maximization algorithm for model estimation, and measure the effect of
“unspanned” macroeconomic variables (risks) on the yield curve. We use principal component
analysis (PCA) for estimating our macro diffusion indexes (i.e., macro factors), following Stock and
Watson (2002a, 2002b), and consider various alternative models that utilize macro diffusion indexes.
For instance, we examine whether adding macro diffusion indexes to our DNS and NSS models
improves the predictive accuracy of these models. Of course, we also consider baseline DNS (or
NSS) models that contain only yield factors. More concretely, h−step ahead predictions for yield
factors are constructed using the following model:

F̂ f
y,t+h = ĉy + Γ̂′yF̂y,t, (11)

where F̂y,t is our estimated DNS (or NSS) latent factor (i.e. F̂y,t are our betas in the above discussion),
F̂ f

y,t+h is our prediction constructed by specifying simple AR(1) or VAR(1) models, ĉy is an estimate
of cy, and Γ̂y is an estimate of Γy. We additionally add the first rx principle components from a PCA
analysis of our real-time dataset, denoted as F̂x,t, to the above prediction model, yielding:

F̂ f
y,t+h = ĉy + Γ̂′yF̂y,t + Γ̂′xF̂x,t (12)

where Γ̂x is an estimate of Γx. When predicting yields, in addition to utilizing DNS and NSS models,
we also examine whether adding macro diffusion indexes to benchmark AR and VAR models improves
predictive accuracy. In particular, we consider the following model:(

yt+h

xt

)
=

(
c
cx

)
+

[
∆y ∆x

0 Γxx

] (
yt

Fx,t

)
+

(
et+h

ex,t

)
, (13)
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where c is the vector containing constant terms, all coefficient matrices (i.e., ∆y, ∆x, and Γxx) are a
conformably defined coefficient matrices, ∆x summarizes the marginal effect of macro diffusion
indexes on yields, and et+h is an idiosyncratic stochastic disturbance term. Summarizing, our focus of
interest is on h-step ahead yield predictions constructed using the following model:

ŷt+h(τ) = ĉ(τ) + δ̂′yyt, (14)

where ĉ(τ) is an estimate of c(τ), which is an element of c. Also, δ̂y is an estimate of δy, which is a
row vector of ∆y. yt contains lags of yt+1(τ) in autoregressive specifications, and contains lags of yt+1 in
vector autoregressive specifications. We additionally add the macro diffusion indexes discussed above,
F x

t , to this model, yielding:
ŷt+h(τ) = ĉ(τ) + δ̂′yyt + δ̂′xF̂x,t, (15)

where δ̂x is an estimate of δx, which is a row vector of ∆x. For further discussion of diffusion indexes in
macroeconomic forecasting, see Banerjee et al. (2008), Boivin and Ng (2005), and Kim and Swanson
(2014).

In the following section, we review methods used to estimate diffusion indexes, which are denoted
F̂y,t and F̂x,t in the above discussion. This is done in the context of constructing forecasts using factor
augmented autoregressions. This class of models nests the model outlined above. Our discussion
centers around both the specification of the models and their estimation. When discussing estimation,
we focus on the use of “un-targeted” prediction, in which case diffusion indexes are extracted from a
large dataset, and the diffusion indexes that are utilized in forecasting models are simply those that are
the most information rich, in the sense that they explain the largest share of the overall covariance
matrix of all of the variables in the dataset. In the context of PCA, this corresponds to using diffusion
indexes which are the eigenvectors associated with the largest eigenvalues of an
eigenvector-eigenvalue decomposition of the correlation matrix of the variables in the dataset.
Needless to say, such an approach does not guarantee that a particular set of variables (i.e., interest
rates) can be predicted with optimal precision using diffusion indexes selected this way.

The above arguments suggest that it may, in some cases, be preferable to use “targeted prediction”,
where “targeting” means that the variables used in forming diffusion indexes are selected in order to
maximize their association with the actual variables that are being predicted. In this approach, one
might use machine learning, say, in order to “pre-select” a set of relevant variables for inclusion in the
analysis used to construct the diffusion indexes. Examples of variable selection type machine learning
methods that can be used for targeted prediction include the elastic net, the lasso, and the non-negative
garrote. Before turning to a discussion of such methods, however, we first discuss factor augmented
forecasting models and the construction of diffusion indexes.

3.1. Forecasting using factor augmented autoregressive models

In addition to utilizing the models discussed in the previous 2 sections, the empirical analysis
discussed in this paper draws on some of the most highly touted recent developments in forecasting
concerning estimation and asymptotic properties of diffusion indexes based on PCA; and the use of
diffusion indexes in the construction of forecasting models. Drawing from the discussion in Swanson
and Xiong (2018a), we summarize key features of recent developments by considering static and
dynamic factor models in order to motivate the use of diffusion indexes in forecasting. For further
discussion, refer to Stock and Watson (2002a, 2002b) and Armah and Swanson (2010a, 2010b)
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Let yt+h be the scalar target forecast variable and Xt be an N-dimensional vector of predictor
variables, for t = 1, . . . ,T . Assume that (yt+1, Xt) has a dynamic factor model representation with r
common dynamic factors, ft, which can be written as:

yt+h = β′Wt + α(L) ft + εt+h (16)

and
xit = λi(L) ft + eit, (17)

for i = 1, 2, . . . ,N, where Wt is an l×1 vector of observable variables with l << N, including lags of yt;
α(L) =

∑q
j=0 α jL j and λi(L) =

∑q
j=0 λi jL j are finite order lag polynomials in nonnegative powers of L;

and h > 0 is the forecast horizon. It is important to note that this framework ensures that all variables
in Xt can be expressed as a linear function of the dynamic factors (and an idiosyncratic shock, eit). For
a discussion of approximate factor models, in which this condition does not hold, refer to Carrasco and
Rossi (2016). Next, wrte write (16) and (17) in static form as:

yt+h = β′Wt + α′Ft + εt+h (18)

and
xit = Λ′i Ft + eit, (19)

where Ft = ( f ′t , . . . , f ′t−q)′ is an r × 1 vector of static factors, with r = (q + 1)r, α is an r × 1 vector,
and Λi = (λ′i0, . . . , λ

′
iq)′ is a vector of factor loadings on the static factors, where λi j is an r × 1 vector

for j = 0, . . . , q and β = (β1, . . . , βl)′. The model in (18) is called a factor augmented forecasting
model (i.e. see Stock and Watson (2002a, 2002b) and Bai and Ng (2007)). The static factor in (19)
is thus named because the contemporaneous relationship between xit and Ft. One major advantage of
the static representation of the dynamic factor model is it enables one to utilize PCA to estimate the
diffusion indexes (factors).

An important theoretical feature of the model in (18) is that consistent estimation of the factors in Ft,
which can be achieved via simple application of PCA, allows for subsequent

√
T consistent estimation

of α and β in (18) using quasi-maximum likelihood, as long as
√

T/N → 0, as N,T → ∞. Thus, as
shown in Bai and Ng (2006), Ft, when estimated using the PCA method outlined in Stock and Watson
(2002a, 2002b), can be treated as a vector of observed regressors, eschewing the need to address the
generated regressors problem that often arises in applied econometrics. Note also that Boivin and Ng
(2005) compare alternative factor based forecast methodologies, and conclude that when the dynamic
structure is unknown, the static factor modeling approach of Stock and Watson performs favorably
when compared with dynamic factor modeling.

In the literature on factor modeling, many additional question that arise in the context of diffusion
index estimation have been addressed. For example, Bai and Ng (2006b) examine whether observable
economic variables can serve as proxies for the underlying unobserved factors. In particular, they use
a variety of statistics to determine whether a group of observed variables yields the same information
as that contained in the latent factors. Armah and Swanson (2010) and Stock and Watson (2002a)
also discuss methods for reducing the complexity of estimated diffusion indexes. Stock and Watson
(1998, 2009) demonstrate that when PCA is used in estimation, factors remain consistent even when
there is some time variation in factor loadings and small amounts of data contamination, so long as
the number of variables in the panel dataset or the number of predictors is very large (i.e., N >>
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T ). The usefulness of factor augmented models that include cointegration restrictions is discussed in
Banerjee et al. (2014). The importance of assessing and testing for structural breaks in these models is
discussed in Banerjee et al. (2008), Stock and Watson (2009), and Chen et al. (2014). Factor loading
and parameter stability testing is addressed in Corradi and Swanson (2014), Breitung and Eickmeier
(2011), Goncalves and Perron (2014), and Han and Inoue (2014). Finally, the empirical and theoretical
properties of factor augmented VARMA models are investigated in Dufour and Stevanovic (2013).

Now, consider estimation of the factors appearing in (18). Drawing from the discussion in Armah
and Swanson (2010a, 2010b) and Swanson and Xiong (2018a), let k (k < min{N,T }) be an arbitrary
number of factors, Λk be N × k factor loadings matrix, (Λk

1, . . . ,Λ
k
N)′, and Fk be the T × k matrix

of factors (Fk
1, . . . , F

k
T )′. From (19), estimates of Λk

i and Fk
t are obtained by solving the optimization

problem:

V(k) = min
Λk ,Fk

(NT )−1
N∑

i=1

T∑
t=1

(xit − Λk′
i Fk

t )2. (20)

Let F̃k and Λ̃k be the minimizers of equation (20). Since Λk and Fk are not separately identifiable, if
N > T , a computationally expedient approach would be to concentrate out Λ̃k and minimize (20)
subject to the normalization Fk′Fk/T = Ik. Minimizing (20) is equivalent to maximizing
tr[Fk′(XX′)Fk]. This optimization is solved by setting F̃k to be the matrix of the k eigenvectors of XX′

that correspond to the k largest eigenvalues of XX′. Note that tr[·] represents the matrix trace. Let D̃
be a k × k diagonal matrix consisting of the k largest eigenvalues of XX′. The estimated factor matrix,
denoted by F̃k, is

√
T times the eigenvectors corresponding to the k largest eigenvalues of the T × T

matrix XX′. Given F̃k and the normalization Fk′Fk/T = Ik, Λ̃k′ = (F̃k′F̃k)−1F̃k′X = F̃k′X/T is the
corresponding factor loadings matrix.

The solution to the optimization problem in (20) is not unique. If N < T , it becomes
computationally advantageous to concentrate out F

k
and minimize (20) subject to Λ

k′
Λ

k
/N = Ik. This

minimization is the same as maximizing tr[Λk′X′XΛk], the solution of which is to set Λ
k

equal to the
eigenvectors of the N × N matrix X′X that correspond to its k largest eigenvalues. One can thus
estimate the factors as F

k
= X′Λ

k
/N. F̃k and F

k
span the same column spaces, hence for forecasting

purposes, they can be used interchangeably. Given F̃k and Λ̃k, let V̂(k) = (NT )−1
N∑

i=1

T∑
t=1

(xit − Λ̃k′
i F̃k

t )2 be

the sum of squared residuals from regressions of Xi on the k factors, ∀i. A penalty function for over
fitting, g(N,T ), is chosen such that the loss function

IC(k) = log(V̂(k)) + kg(N,T ) (21)

can consistently estimate r. Let kmax be a bounded integer such that r ≤ k max. Bai and Ng (2002)
propose three versions of the penalty function g(N,T ), namely, g1(N,T ) =

(
N+T
NT

)
log

(
NT

N+T

)
, g2(N,T ) =(

N+T
NT

)
log C2

NT , and g3(N,T ) =

(
log(C2

NT )
C2

NT

)
, all of which lead to consistent estimation of r. Additional

details on the estimation of r are contained in Bai and Ng (2002). Alternative methods for selecting
r are discussed in Chen et al. (2010), Onatski (2015), Carrasco and Rossi (2016), and the references
cited therein.

In the above discussion, we alluded to the fact that diffusion indexes can be quite complex. For
example, diffusion indexes constructed using PCA are linear combinations of every variable in the
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dataset being used by the applied practitioner. We also mentioned that dimension reduction of a
dataset can be accomplished prior to application of PCA, for example, by applying machine learning,
shrinkage or other variable selection methods. When such methods are used, the variable selection
undertaken can be “targeted” so that only variables useful for predicting the target variable are
selected. These variables can then in turn be used to construct diffusion indexes that are potentially
much less complex that those constructed by directly applying PCA. In the next section, we discuss a
variety of such methods.

4. Machine learning, dimension reduction, shrinkage, and variable selection methods

In this section, we briefly review select methods in machine learning, dimension reduction,
shrinkage, and variable selection methods that are important in economics in general, and in particular
for our discussion of the usefulness of “big data” and diffusion indexes in DNS model based
forecasting.† For forecasters, a key objective when predicting economic variables (such as interest
rates) using big data is to remove redundant and irrelevant information from datasets. This is
particularly important if the objective is targeted prediction. This problem has historically been be
tackled via step-wise regression and ridge regression. However, variables are typically highly
correlated in time series applications. Hence, statistical significance tests used in many regression
type algorithms suffer from severe size distortion issues. Ghysels et al. (2017) address this issue by
examining multiple parsimonious regressions, each with one key regressor, while jointly accounting
for sequential testing problems.

A second solution to the dimension reduction problem with correlated regressors is the use of
partial least squares (PLS), which was originally proposed by Herman Wold in the mid 1960s.
Broadly speaking, PLS is a latent variable approach to modeling the covariance structure between two
sets of variables. One set might be a target variable or variables to be predicted (say Y), while the
other might be a very large set of correlated predictor variables, say X. More precisely, the model
underlying PLS has

Y = F1L1 + E1 (22)
X = F2L2 + E2, (23)

where F1 and F2 are projection matrices of X and Y; and L1and L2 are so-called factor loading matrices
that operate on the latent factors F1 and F2. Additionally, the error terms, E1 and E2 are assumed
to be identically and independently distributed, and all matrices are conformably defined, given the
dimensions of X and Y . In this setup, the decompositions of X and Y maximize the covariance between
the latent factors F1 and F2.

A third solution uses principle components analysis (PCA), in which latent factors (often called
diffusion indexes) are again estimated, but this time via use of an eigenvalue-eigenvector decomposition
of the covariance or correlation matrix of the data, for example. Just as in PLS, the objective is to
“explain” the data” using a reduced set of (latent) explanatory variables, with the idea being that the
useful information in a large set of predictors is often contained in a (much smaller) set of latent factors,

†For various discussions of big data and its uses in economics, see the 2015 issue of the Journal of Econometrics entitled High
Dimensional Problems in Econometrics.
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which are themselves simply linear combinations of the original variables. A key difference between
PCA and PLS is that PLS directly attempts to account for correlation between the target variable and the
predictors, while PCA is “unsupervised”, in the sense that correlation with any given target variable
is not emphasized in the construction of the latent factors. Rather, overall explanation of the entire
dataset is the focus of PCA. Needless to say, this particular feature of PCA is of potential concern
when targeting (predicting) a specific variable or variables. For this reason, many supervised versions
of PCA have been developed. For example, Carrasco and Rossi (2016) use cross validation methods
to supervise PCA, while Bai and Ng (2008) consider targeted forecasting using subsets of X (see also
Armah and Swanson (2010a, 2010b)) and Cheng et al. (2017). Given its ease of application as well as
recent empirical evidence on its usefulness, PCA (which is the oldest of the methods discussed in this
paper; see Spearman (1904) and the discussion in Swanson (2016) for further details), has received the
most attention in economics recently, and hence will be discussed in considerably more detail below.

Penalized regression or shrinkage methods, which reduce or shrink redundant or irrelevant variables
are also important in big data analysis. Key examples include ridge regression, the lasso, and the
elastic net. When viewed through the lens of multivariate regression analysis, all of these methods
involve shrinking the magnitude of coefficients in regression models. When the “penalty functions”
are carefully designed, and when the “regularization parameters” used to regulate the strength of the
penalties in these functions are of sufficient magnitude, then substantial dimension reduction can be
achieved. For example, when shrinkage is used in conjunction with PCA, factor loading matrices can
be induced to be sparse, in the sense that certain coefficients in the linear combinations of the predictor
variables are identically zero. This nice feature imposes parsimony on the number of variables used
to form latent factors in PCA, whereas under standard PCA; all predictors receive non-zero weight in
each latent factor. Just as in the case of PLS, the number of predictors may be greater than the number
of observations in the dataset being analyzed using PCA.

To fix ideas, let’s consider the “original” shrinkage estimator. Namely, consider ridge regression
and its associated estimator. Assume that we are interested in the following regression model:

Y = Xθ + ε, (24)

where Y contains data on a single variable, there are many (possibly highly correlated) variables
represented in the data matrix, X, and ε is an error term. Later, we shall introduce the ridge estimator
slightly differently, but for now, note that the ridge estimator can be expressed as:

θ̂ridge = (X′X + λI)−1X′Y. (25)

The “ridge” down the diagonal in this estimator is equivalent to adding a penalty of λ
∑N

i=1 θ̂
2
i to the

usual residual sum of squares term that is minimized in least squares estimation of the above regression
model, where N is the number of predictors in X. Here, as λ → 0, θ̂ridge → θ̂ols, and as λ → ∞,
θ̂ridge → 0. Evidently, applying the ridge penalty shrinks parameter estimates towards zero, which
increase bias and reduces estimator variance. One very important feature of ridge regression is that
invertibility problems associated with X′X when the number of predictors is too large relative to the
number of observations are no longer an issue, and there is always a unique solution (i.e., θ̂ridge). Other
shrinkage estimators that shall be discussed in the sequel include one where the penalty function is
λ
∑N

i=1

∣∣∣∣̂θi

∣∣∣∣ (the lasso) and another that combines both of the above penalty functions (the elastic net).
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Another shrinkage estimator is based on bootstrap aggregation (bagging), and was introduced by
Breiman (1996). Stock and Watson (2012) note that predictions of Y , at a point in time, T + 1,
conditional on information available up through period T, say y f

T+1|T can be constructed as follows:

y f
T+1|T =

N∑
i=1

ψ(λt̂θ(i))̂θ(i)XT (i), (26)

where XT (i) is the datum on the ith variable in X for period T , θ̂(i) is the least squares estimator from
regressing XT−1(i) on YT , and ψ(λt̂θ(i)) is a regularized (through λ) function of the t-statistic associated
with the aforementioned regression.‡ For bagging λ = 1, while various Bayesian predictors, including
Bayesian model averaging and empirical Bayes can also be formulated in this manner, by setting λ

appropriately. Interestingly, Hirano and Wright (2017) show that forecasting models constructed using
out-of-sample or split sample schemes perform well only when combined with other methods, such
as bagging. Broadly speaking, their results offer a glimpse into the benefits of using state of the art
(asymptotic) statistical analysis in order to examine new methods that combine conventional out-of-
sample approaches to model selection and estimation with algorithmic approaches such as bagging. In
their paper, they show that out-of-sample schemes so regularly used for model selection (and estimation
are inefficient when applied in the conventional manner. This finding is reversed when bagging or other
risk reduction methods are combined with conventional out-of-sample schemes, however.

As discussed earlier, ongoing research efforts in the study of factor augmented forecasting models
include the analysis of problems associated with the “selection” of diffusion indexes that are most
useful for predicting yt+1. For example, see Bai and Ng (2008, 2009) and Schumacher (2009), who
discuss using targeted predictors based on quadratic principal components and thresholding rules for
variable subset selection to estimate diffusion indexes. Armah and Swanson (2010a, 2010b) also
discuss this issue. Further, Carrasco and Rossi (2016) propose cross validation methods for selecting
the “best” diffusion index for use in forecasting). A related area of research, which is the subject of
this subsection, is the development of alternative diffusion index estimators, important examples of
which use shrinkage methods in order to impose sparseness on the factor loadings used in the
construction of diffusion indexes. Two of the many interesting new estimators in this context include
sparse principal components analysis (SPCA) and independent component analysis (ICA).

Zou, Hastie, and Tibshirani (2006) note that diffusion indexes estimated using PCA are linear
combinations of all underlying predictor variables, and factor loadings are hence all nonzero, which
adversely affects the parsimony of forecasting models, a property known to be important in time
series forecasting. Moreover, they stress that diffusion indexes are thus difficult to interpret. In light of
this, they propose SPCA, in which the least absolute shrinkage selection operator (lasso) or the related
shrinkage estimator called the elastic net is utilized in order to construct principal components with
sparse loadings. This is done this by first reformulating PCA as a regression type optimization
problem, and then by using a lasso (elastic net) on the coefficients in a suitably constrained regression
model.

‡In their setup, Stock and Watson (2012) assume that the predictors are zero mean random orthonormal variables. Also, Yt is assumed
to be zero mean, and the underlying model is assumed to be:

Yt = θ′Xt−1 + εt,

where εt is an error term with fixed variance.
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Before further discussing SPCA, it is worth noting that the lasso and elastic net are important
techniques for big data analysis in and of themselves, and are related to the venerable ridge regression
estimator. Using the above notation, say that

yt = X′tθ + εt. (27)

Here, penalized (shrinkage type) regression is carried out as follows: For the ridge estimator, construct:

θ̂ridge = arg min
θ

{∥∥∥y − ΣN
i=1Xiθi

∥∥∥2
+ λ2Σ

N
i=1θ

2
i

}
, (28)

where y is the T x1 target variable, X = [X1, ..., XN], i = 1, ...,N is the T xN predictor matrix, with
Xi = (X1,i, ..., XT,i)′, and λ > 0 is the tuning parameter. Notice that this is an alternative formulation
of θ̂ridge to that given earlier. The more recently developed lasso and the elastic net estimators involve
imposition of L1 (lasso) and L1+L2 −norm penalties on parameter magnitudes, and are formulated as:

θ̂lasso = arg min
θ

{∥∥∥y − ΣN
i=1Xiθi

∥∥∥2
+ λ1Σ

N
i=1 |θi|

}
, (29)

and
θ̂elastic net = (1 + λ2) arg min

θ

{∥∥∥y − ΣN
i=1Xiθi

∥∥∥2
+ λ1Σ

N
j=1

∣∣∣θ j

∣∣∣ + λ2Σ
N
j=1θ

2
j

}
. (30)

Interestingly, SPCA follows directly by formulating PCA as a regression-type optimization
problem, and then by subsequently imposing lasso (elastic net) constraints on the regression
coefficients in the optimization problem. Put simply, factor loading can be recovered by regressing
principal components on the N variables in Xt, as shown in Zou et al. (2006). Here, imposition of the
L2 −norm penalty in ridge regression allows for N > T. Moreover, when the lasso or elastic net is
utilized in this context, then large enough λ1 yields sparse θ̂. In this sense, SPCA is a natural data
reduction method. Since this important paper by Zou, Hastie, and Tibshirani (2006), many authors
have proposed modifications to SPCA, as discussed in Kim and Swanson (2017).

Broadly speaking, the lasso and elastic net constitute two of the most important penalized
regression methods currently available, in which all predictor variables are retained in a model, but
are constrained (regularized) by shrinking them towards zero. For important descriptions of these
methods, see Tibshirani (1996), Zou and Hastie (2005), and Zou (2006).

All of the above penalized regression or shrinkage type methods are examples of machine learning.
Other machine learning algorithms have also recently been explored in economics. Two examples are
bagging and boosting. Bagging (also called bootstrap aggregation) involves first drawing bootstrap
samples from an in-sample training dataset, and then constructing predictions, which are later
combined. This algorithm is discussed above. Boosting is another so-called machine learning
ensemble meta-algorithm algorithm that utilizes a supervised and user-determined set of functions or
learners (e.g., least square estimators), and uses the set repeatedly on filtered data, which are typically
outputs from previous iterations of the learning algorithm. Broadly speaking, boosting isolates which
variables, from amongst a large group of variables, are useful for predicting a target variable. More
specifically, boosting estimates an unknown function (e.g., the conditional mean) using sequential
step-wise forward regression, with learners that may not only be least squares estimators, but may
also be smoothing splines and kernel regressions, for example. For further discussion of boosting, see
Freund and Schapire (1997), Bai and Ng (2009), Kim and Swanson (2014), and the references therein.
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Two further examples include the non-negative garrote (see Breiman (1995) and Yuan and Lin
(2007)) and least angle regression (see Efron et al. (2004) and Bai and Ng (2008)), both of which are
closely related to the elastic net.

Returning to the main subject of this section, we now discuss independent component analysis,
which is predicated on the idea of “opening” the black box in which principal components often reside,
and is an alternative to PCA and SPCA. ICA is used in many applications, from brain imaging to stock
price return modeling. In all cases, there is a large set of observed individual signals, and it is assumed
that each signal depends on several factors, which are unobserved. In this sense, the motivation is
exactly the same as that used to justify PCA.

The starting point for ICA is the very simple assumption that the components, say F, are statistically
independent in equation (18). This assumption is potentially much stronger than the orthogonality
imposed under PCA. The key issue in ICA is the measurement of the “level” of independence between
components. More specifically, ICA begins with statistically independent (and unobserved) source
data, S , which are mixed according to an unknown “mixing matrix”, Ω; and X, which is observed, is a
mixture of S , weighted by Ω. For simplicity, we assume that the unknown mixing matrix, Ω, is square,
although this assumption can be relaxed. Thus, it is assumed that X = S Ω. Stated differently, assume
that:

X1 = ω11S 1 + · · · + ω1NS N (31)
X2 = ω21S 1 + · · · + ω2NS N

...

XN = ω1NS 1 + · · · + ωNNS N ,

where ωi j is the (i, j) element of Ω. Since Ω and S are unobserved, one must estimate the “demixing
matrix”, Ψ, which transforms the observed X into the independent components, F. That is, F = XΨ, or
F = S ΩΨ. As detailed in Kim and Swanson (2017), if Ω is square, then so is Ψ, and Ψ = Ω−1, so that
F is exactly the same as S , and perfect separation occurs. In general, it is only possible to find Ψ such
that ΩΨ = PD, where P is a permutation matrix and D is a diagonal scaling matrix. The independent
components, F are latent variables, and are analogous to the principal components discussed in the
case of PCA. In summary, upon estimation of Ω and S , it is feasible to estimate the demixing matrix
Ψ, and the independent components, F. However (31) is not identified unless several assumptions are
made. The first assumption is that the sources, S , are statistically independent. Since various sources
of information (for example, consumer’s behavior, political decisions, etc.) may have an impact on the
values of macroeconomic variables, this assumption is not strong. The second assumption is that the
signals are stationary. For further details, see Tong et al. (1991). ICA maps the N components of X
into the rank N matrix, F. However, we can simply construct factors using up to r (< N) components,
without loss of generality, for comparability with PCA. Alternatively, one might carry out ICA using
r principal components, hence further filtering diffusion indexes constructed using PCA in order to
obtain statistically independent variants thereof (see Stone (2004) for further details). In general, the
above model would be more realistic if there were noise terms added. See Hyvärinen and Oja (2000)
for a detailed discussion of the noise-free model, and Hyvärinen (1998, 1999) for a discussion of the
model with noise added.

For a detailed comparison of ICA with PCA, see Kim and Swanson (2016), who note that the main
difference between ICA and PCA is in the properties of the factors obtained. Principal components
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are uncorrelated and have descending variance so that they are naturally ordered in terms of their
variances. While setting the diffusion index in equation (16) equal to the highest variance (correlation)
principal components may well not equate with the specification of the indexes that are most useful for
forecasting a given variable, say yt, it is certainly the case that components explaining the largest share
of the variance are often assumed to be the “relevant” ones. For simplicity, consider two observables,
X = (X1, X2) . PCA finds a matrix which transforms X into uncorrelated components F = (F1, F2) ,
such that the uncorrelated components have a joint probability density function, pF (F) with:

E (F1F2) = E (F1) E (F2) . (32)

On the other hand, ICA finds a demixing matrix which transforms the observed X = (X1, X2) into
independent components F∗ =

(
F∗1, F

∗
2

)
, such that the independent components have a joint pdf

pF∗ (F∗) with:
E

[
F∗p1 F∗q2

]
= E

[
F∗p1

]
E

[
F∗q2

]
, (33)

for every positive integer value of p and q. Evidently, ICA is more restrictive, and it should thus not be
surprising that implementation is much more difficult than PCA, in which estimation is much simpler,
since it just involves finding a linear transformation of components which are uncorrelated. Moreover,
there is no natural ordering of latent factors in ICA. This is perhaps a blessing in disguise. Namely,
as stated above, there is no a priori reason why the ordinal (correlation) ranking of diffusion indexes
corresponds to a ranking of their usefulness for predicting yt (see Kim and Swanson (2014), Bai and
Ng (2008) and Carrasco and Rossi (2016) for further discussion of this issue).

Even given all of the recent progress in the area, much remains to be done. There are a vast
number of estimators and algorithms than can be utilized for machine learning (we have touched in
our discussion on only a very few of these). In the end, what will probably differentiate the “good
methods” from the “not so good” is their ability to properly marry the latest tools in statistical
inference with the latest algorithmic techniques. For example, step-wise methods now often rely on
learning functions and thresholding variables (such as t-statistics) centered around conditional mean
type prediction, while there is a clearly a need to fully incorporate conditional or predictive density
type prediction in new methods. As another example, recall our earlier discussion on the use of
asymptotic analysis to examine the combination of conventional out-of-sample schemes with
bootstrap aggregation. Many of these sorts of analyses remain to be done in the context of combining
conventional forecasting approaches with state of the art dimension reduction, machine learning, and
penalized regression algorithms.

5. Survey of select recent empirical findings

5.1. Setup

In this section, we survey recent empirical findings reported in Swanson and Xiong (2018a, 2018b).
In these two papers, the authors compare interest rate predictions from a variety of different models,
including:

(i) Benchmark time series models:

yt+h(τ) = c(τ) + δ′yWt + εt+h, (34)
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where τ denotes the maturity of a bond (bill) for which the scalar, yt+h(τ), measures the annual yield.
Additionally, Wt may contain lags of yt(τ) as well as lags of additional explanatory variables, δy is
a conformably defined coefficient vector, and c(τ) is a constant term. In all models, up to 5 lags of
yt(τ) are included, with the number of lags selected using the Schwarz information criterion (SIC).
In addition to estimating AR(SIC) and VAR(SIC) models, straw-man AR(1) and VAR(1) models are
estimated. Finally, in experiments where VAR models are estimated, Wt includes five bond yields with
maturities 3 months, 1 year, 3 years, 5 years, and 10 years.

(ii) DNS and DNSS models:
These models include the dynamic Nelson-Siegel (DNS) and dynamic Nelson-Siegel-Svensson

(DNSS) models discussed above. As outlined in Xiong and Swanson (2018b), forecasting model
estimation in this context is carried out by estimating latent factors using the following regression:

yt(τ) = β1,t + β2,t · [
1 − exp(−λtτ)

λtτ
] + β3,t · [

1 − exp(−λtτ)
λtτ

− exp(−λtτ)] + εt, (35)

where εt is a stochastic disturbance term. Forecasts of yt+h are constructed using the model:

ŷt+h(τ) = β̂
f
1,t+h + β̂

f
2,t+h · [

1 − exp(−λtτ)
λtτ

] + β̂
f
3,t+h · [

1 − exp(−λtτ)
λtτ

− exp(−λtτ)], (36)

where yt+h(τ) is a scalar, and β̂ f
1,t+h, β̂ f

2,t+h, and β̂ f
3,t+h are predictions constructed by specifying AR and

VAR models for β̂1,t, β̂2,t, and β̂3,t.
Analogously, estimates of the DNSS factors (i.e. β1,t, β2,t, β3,t, and β4,t) are constructed at each point

in time by regressing (1, 1−exp(−λ1,tτ)
λ1,tτ

, 1−exp(−λ1,tτ)
λ1,tτ

− exp(−λ1,tτ), 1−exp(−λ2,tτ)
λ2,tτ

− exp(−λ2,tτ)) on yt(τ). In this
case, thus, the regression model is:

yt(τ) = β1,t + β2,t · [
1 − exp(−λ1,tτ)

λ1,tτ
] + β3,t · [

1 − exp(−λ1,tτ)
λ1,tτ

− exp(−λ1,tτ)]

+ β4,t · [
1 − exp(−λ2,tτ)

λ2,tτ
− exp(−λ2,tτ)] + εt.

(37)

Forecasts of yt+h(τ) are constructed using:

ŷt+h(τ) = β̂
f
1,t+h + β̂

f
2,t+h · [

1 − exp(−λ1,tτ)
λ1,tτ

] + β̂
f
3,t+h · [

1 − exp(−λ1,tτ)
λ1,tτ

− exp(−λ1,tτ)]

+ β̂
f
4,t+h · [

1 − exp(−λ2,tτ)
λ2,tτ

− exp(−λ2,tτ)]
(38)

where yt+h(τ) is a scalar, and β̂ f
1,t+h, β̂ f

2,t+h, β̂ f
3,t+h, and β̂ f

4,t+h are predictions constructed by specifying AR
and VAR models. For complete details, refer to Swanson and Xiong (2018b).

(iii) Hybrid DNS and DNSS models with diffusion indexes:
All of the above models are also estimated with latent factors (i.e., diffusion indexes) added as

additional regressors. In particular, for the above benchmark time series models, predictions are
constructed using

yt+h(τ) = c(τ) + δ′yWt + δ′xF x
t + εt+h, (39)
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where F x
t includes either 1, 2 or 3 diffusion indexes, and Wt is defined as above, yielding AR and VAR

variants of these models. Here, c(τ) is a constant term, and δy and δx are conformably defined vectors
of coefficients. In these models, diffusion indexes, (i.e., F x

t ) are estimated using recursive PCA with
both fully revised (see Swanson and Xiong (2018a)) or real-time (see Swanson and Xiong (2018b))
macroeconomic datasets.§

When constructing DNS type prediction models, diffusion indexes are included by augmenting the
models used to predict β̂ f

i,t+h, for i = 1, 2, 3, 4. Namely, for AR based forecasts, the following prediction
models were used:

β̂
f
i,t+h = ĉi + γ̂′y,iβ̂i,t + γ̂′x,iF

x
t , for i = 1, 2, 3, 4 (40)

where F x
t includes either 1, 2 or 3 latent factors. All other terms are conformably defined and analogous

to our above discussion. We also construct forecasts using the following VAR(1) variant of this model:

β̂
f
t+h = ĉy + Γ̂yβ̂t + Γ̂xF x

t , (41)

where β̂
f
t+h = (̂β f

1,t+h, β̂
f
2,t+h, β̂

f
3,t+h, β̂

f
4,t+h)′, ĉ is 4 × 1 vector, Γ̂y = (̂γ1, γ̂2, γ̂3, γ̂4), γ̂ j is a 4 × 1 vector, for

j = 1, 2, 3, 4, and Γ̂x is a conformably defined matrix of constants.¶

When comparing the predictive performance of the models detailed below, Swanson and Xiong
(2018a, 2018b) report mean square forecast errors (MSFEs), defined as:

MSFEh(τ) =

P∑
t=1

(ŷt+h(τ) − yt+h(τ))2 (42)

where ŷt+h(τ) is the h-step-ahead forecast of the Treasury bond yield, with maturity τ. Here, P is the
number of ex ante predictions. As alluded to above, all model parameters are estimated with maximum
likelihood and PCA; and parameters are updated prior to the construction of each forecast using a
rolling window of 120 months of historical data. For an analysis of the use of rolling versus recursive
and alternative windowing techniques in the context of forecasting, see Clark and McCracken(2009),
Hansen and Timmermann (2012) and Rossi and Inuoe (2012).

In addition to using un-targeted PCA, Swanson and Xiong (2018b) construct real-time diffusion
indexes by implementing machine learning and related techniques to first select a subset of the 130
macroeconomic variables (see discussion below) in their dataset. These “variable subsets” are selected
using both the elastic net and the least absolute shrinkage operator, in which ten-fold cross validation
is used, in real-time, to estimate tuning parameters in the operators. Then, the “variable subsets” are
inputted into PCA in order to construct diffusion indexes (i.e. targeted PCA is carried out).

Before turning to a discussion of empirical findings, it is worth noting that the term structure data
used are monthly U.S. zero-coupon (end of month) yield curve data reported by the Federal Reserve
Board (see https://www.quandl.com/data/FED/SVENY-US-Treasury-Zero-Coupon-Yield-Curve and
Gürkaynak, Sack and Wright (GSW: 2006)). Swanson and Xiong (2018a, 2018b) utilize GSW
monthly data for the August 1988 through October 2017, which contains data on 1 to 30 years

§Different lag specifications were examined in the aforementioned papers, empirical results using only one lag in the above
specification were reported on, as one lag yields mean square forecast error “best” models.

¶For DNS models, only the first three diffusion indexes are used in the above AR and VAR forecasting equations (i.e., i = 1, 2, 3),
while for DNSS models four diffusion indexes are used in the above AR and VAR forecasting equations (i.e., i = 1, 2, 3, 4).
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maturity bond yields. In addition to GSW zero-yields, 3- and 6-months T-bill yields are utilized in
order to “fill-out” the short end of the yield curve. Hence, the authors analyze a panel of dataset
containing N = 32 dimensional yields and T = 351 monthly observations. When constructing betas,
the authors consider subsets of either 10, 12, or 30 yields.

Real-time macroeconomic factors (i.e., diffusion indexes) are constructed using PCA, as mentioned
above. The dataset used for this is the FRED-MD dataset, which is a real-time monthly database of over
130 macroeconomic time series that covers categories ranging from output and income, to labor market,
prices, and interest rates. The FRED-MD dataset is developed and maintained by the Federal Reserve
Bank of St. Louis. For details, see McCracken and Ng (2016), and for access to the dataset, visit
https://research.stlouisfed.org/econ/mccracken/fred-databases/. A key advantage of FRED-MD is that
all time series are updated monthly by the Federal Reserve Bank of St. Louis. Thus, researchers have
truly real-time data available for conducting forecasting experiments, in which all vintages (revisions)
of all variables are available. Use of such data ensures that future information cannot inadvertently
be used to revise data from prior periods, which is a serious potential problem with non-real-time or
fully revised data. Refer to Stark (2010) for further discussion of real-time datasets. Moreover, fully
revised datasets “mix” vintages of observations, in the sense that the most recent observation in a fully
revised dataset is a so-called “first release”, while earlier calendar dated observations have possibly
been revised and re-released many times. Macroeconomic factors are also constructed using fully
revised data, resulting in an alternative set of predictions that are not truly real-time.

5.2. Empirical findings

Key empirical findings can be summarized as follows. First, many of the models that are in the top
three “MSFE-best” specifications found by Swanson and Xiong (2018b) include diffusion indexes.
Although the majority of these models include only 1 diffusion index, some also include 2 or 3
indexes. Moreover, many of these “top” models are DNS and DNSS specifications. This pattern is
quite prevalent across 1-month, 3-month, and 12-month ahead forecast horizons, and for bond
maturities including 1, 3, 5, and 10 years. The pattern is least prevalent during the period from
2011–2017, and is more prevalent during periods from 2001–2005 and 2006–2010. Summarizing,
Xiong and Swanson (2018b) uncover strong evidence that DNS and DNSS models are useful, as
previously found by many authors, and that the usefulness of these models can often be improved by
including real-time diffusion indexes.

As just stated, this result is not ubiquitous, however. For example, in the third subsample (post
Great Recession), diffusion indexes are only in one MSFE-best model, indicating a deterioration in
predictive gains associated with using diffusion indexes, post Great Recession. However, they are still
the 2nd and 3rd “best” models, for numerous yield maturities and forecast horizons. Still, it should be
stressed that the usefulness of diffusion indexes appears to be somewhat sample dependent. This is not
surprising, given the low variability interest rate regime predominating after the Great Recession. For
further discussion in the recent literature suggesting that DNS type model performance has deteriorated
in recent post credit crisis years, see Altavilla et al. (2017), De Diebold and Rudebusch (2013), and
Mönch (2008).

Second, Swanson and Xiong (2018b) present evidence that targeted PCA yields diffusion indexes
with more predictive content that those constructed using on un-targeted PCA, for various sample
periods and yield maturities; but particularly when τ = 10 years. For example, for the 2001–2005
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period, DNSS models with targeted diffusion indexes constructed using the elastic net yield the top 3
MSFE performing models for both 1-month and 3-month ahead predictions. For this sample period,
forecasting 1-year and 3-year maturities 1-month ahead also benefits from using shrinkage operators,
as in these cases DNS models with diffusion indexes constructed using the elastic net and least absolute
shrinkage operator are MSFE-best. However, it should be stressed that there are also many instances
where models with diffusion indexes constructed using un-targeted PCA are MSFE-best. Moreover,
there are various maturity/forecast horizon/sample period permutations where benchmark time series
models are MSFE-best.

Third, when considering forecast combinations consisting of equal weighted averages of various
forecasting models, it is found by Swanson and Xiong (2018b) that models with real-time diffusion
indexes often significantly outperform a random walk benchmark, across all five maturities and three
forecast horizons. The exception to this finding is during the sample period from 2011–2017, where
there is a deterioration in predictive gains associated with using diffusion indexes. Essentially, the
mechanism that ties unspanned risks to the term-structure, pre-2011, seems to break down in the
extremely low interest rate regime post 2010.

Fourth, Xiong and Swanson (2018b) find that combinations that utilize the average of all non-
diffusion index type models are MSFE-best in the majority of maturity/forecast horizon/sample period
permutations, even beating combinations that include models incorporating real-time diffusion indexes.
This result is different from that reported in Swanson and Xiong (2018a), where diffusion indexes
appear in almost all MSFE-best combinations. Why is this? The main reason appears to be that
Swanson and Xiong (2018a) carry out experiments using a fully revised macroeconomic dataset rather
than a real-time macroeconomic dataset. Thus, the use of fully revised data to construct diffusion
indexes may have an important confounding effect upon results obtained when carrying out real-time
prediction experiments.

Summarizing, DNS and DNSS type forecasting models are predictively accurate, and generally
outperform benchmark time series models as well as pure diffusion index models. Moreover, in many
cases, augmenting DNS and DNSS models to include diffusion indexes constructed either with PCA
or targeted PCA yields even more precise predictions.

6. Concluding remarks

In this paper, we survey recent methods used for predicting the term structure of interest rates using
dynamic Nelson-Siegel (DNS), dynamic Nelson-Siegel Svensson (DNSS), and various econometric
models. We also survey methods for constructing diffusion indexes using principal component analysis
(PCA), as well as various dimension reduction, variable selection, machine learning, and shrinkage
methods, all in the context of “mining” big data. We then discuss how diffusion indexes can be used to
construct “hybrid” DNS and DNSS prediction models that exhibit good forecasting properties. Finally,
we review select recent empirical findings regarding the use of hybrid DNS and DNSS type prediction
models that include diffusion indexes constructed using both un-targeted (e.g. PCA) and targeted (e.g.
elastic net) methods of variable selection. It is noted that there are many time periods during the last
twenty years during which DNS and DNSS models that include diffusion indexes constructed either
with PCA or targeted PCA yields result in predictions of the term structure of interest rates that are
more precise, in a mean square forecast error sense, than pure DNS/DNSS type models, pure diffusion
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index models, and various benchmark linear econometric models. However, in recent years, pure
DNS/DNSS models yield more precise predictions of the term structure of interest rates than any of
the alternative models that we examine.
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