1.
|
Rajiv Aggarwal, Tamas Kovacs,
2020,
Chapter 21,
978-3-030-46305-2,
343,
10.1007/978-3-030-46306-9_21
|
|
2.
|
C.P. Bhunu, S. Mushayabasa,
Modelling the transmission dynamics of HIV/AIDS and hepatitis C virus co-infection,
2013,
12,
17301270,
37,
10.1016/j.hivar.2013.03.001
|
|
3.
|
Chandra Dash Purna, P. Rajendran,
2017,
9781315366487,
181,
10.1201/b19944-7
|
|
4.
|
Roslyn I. Hickson, Geoffry N. Mercer, Kamalini M. Lokuge, Madhukar Pai,
A Metapopulation Model of Tuberculosis Transmission with a Case Study from High to Low Burden Areas,
2012,
7,
1932-6203,
e34411,
10.1371/journal.pone.0034411
|
|
5.
|
D. M. Basavarajaiah, Bhamidipati Narasimha Murthy,
2020,
Chapter 13,
978-981-15-0150-0,
309,
10.1007/978-981-15-0151-7_13
|
|
6.
|
Chikodili Helen Ugwuishiwu, D. S. Sarki, G. C. E. Mbah,
Nonlinear Analysis of the Dynamics of Criminality and Victimisation: A Mathematical Model with Case Generation and Forwarding,
2019,
2019,
1110-757X,
1,
10.1155/2019/9891503
|
|
7.
|
O. I. Krivorotko, D. V. Andornaya, S. I. Kabanikhin,
Sensitivity Analysis and Practical Identifiability of Some Mathematical Models in Biology,
2020,
14,
1990-4789,
115,
10.1134/S1990478920010123
|
|
8.
|
E. Lungu, T. J. Massaro, E. Ndelwa, N. Ainea, S. Chibaya, N. J. Malunguza,
Mathematical Modeling of the HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV Prevalence,
2013,
2013,
1748-670X,
1,
10.1155/2013/753424
|
|
9.
|
Daozhou Gao, Travis C. Porco, Shigui Ruan,
Coinfection dynamics of two diseases in a single host population,
2016,
442,
0022247X,
171,
10.1016/j.jmaa.2016.04.039
|
|
10.
|
Nita H Shah, Nisha Sheoran, Yash Shah,
Dynamics of HIV-TB Co-Infection Model,
2020,
9,
2075-1680,
29,
10.3390/axioms9010029
|
|
11.
|
Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins,
Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis,
2018,
146,
0950-2688,
1478,
10.1017/S0950268818001760
|
|
12.
|
A Ducrot, P Magal, T Nguyen, G F Webb,
Identifying the number of unreported cases in SIR epidemic models,
2020,
37,
1477-8599,
243,
10.1093/imammb/dqz013
|
|
13.
|
Yan Wu, Meng Huang, Ximei Wang, Yong Li, Lei Jiang, Yuan Yuan,
The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Americans,
2020,
20,
1471-2458,
10.1186/s12889-020-09260-w
|
|
14.
|
Sachin Kumar, Shikha Jain,
Assessing the effects of treatment in HIV-TB co-infection model,
2018,
133,
2190-5444,
10.1140/epjp/i2018-12117-8
|
|
15.
|
Sergey Kabanikhin, Olga Krivorotko, Victoriya Kashtanova, Varvara Latyshenko,
2017,
Identification the mathematical model of the transmission TB/HIV co-infection in endemic areas,
978-1-5386-1596-6,
77,
10.1109/SIBIRCON.2017.8109841
|
|
16.
|
Juan Wang, Sha-Sha Gao, Xue-Zhi Li,
A TB Model with Infectivity in Latent Period and Imperfect Treatment,
2012,
2012,
1026-0226,
1,
10.1155/2012/184918
|
|
17.
|
A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama,
Analysis of a co-infection model for HPV-TB,
2020,
77,
0307904X,
881,
10.1016/j.apm.2019.08.012
|
|
18.
|
Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva,
Coinfection dynamics of heroin transmission and HIV infection in a single population,
2020,
14,
1751-3758,
116,
10.1080/17513758.2020.1726516
|
|
19.
|
Yali Yang, Jianhong Wu, Jianquan Li, Xiaxia Xu,
Tuberculosis with relapse: A model,
2017,
24,
0889-8480,
3,
10.1080/08898480.2014.998550
|
|
20.
|
Dao Nguyen Vinh, Dang Thi Minh Ha, Nguyen Thi Hanh, Guy Thwaites, Maciej F. Boni, Hannah E. Clapham, Nguyen Thuy Thuong Thuong,
Modeling tuberculosis dynamics with the presence of hyper-susceptible individuals for Ho Chi Minh City from 1996 to 2015,
2018,
18,
1471-2334,
10.1186/s12879-018-3383-3
|
|
21.
|
Georgi Kapitanov,
A double age-structured model of the co-infection of tuberculosis and HIV,
2015,
12,
1551-0018,
23,
10.3934/mbe.2015.12.23
|
|
22.
|
Temesgen Awoke, Semu Kassa,
Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification,
2018,
6,
2227-9717,
48,
10.3390/pr6050048
|
|
23.
|
S. Bowong, J. Kurths,
Modelling Tuberculosis and Hepatitis B Co-infections,
2010,
5,
0973-5348,
196,
10.1051/mmnp/20105610
|
|
24.
|
Farrah Sadre-Marandi, Yuewu Liu, Jiangguo Liu, Simon Tavener, Xiufen Zou,
Modeling HIV-1 viral capsid nucleation by dynamical systems,
2015,
270,
00255564,
95,
10.1016/j.mbs.2015.10.007
|
|
25.
|
Rajiv Aggarwal,
Dynamics of HIV-TB co-infection with detection as optimal intervention strategy,
2020,
120,
00207462,
103388,
10.1016/j.ijnonlinmec.2019.103388
|
|
26.
|
D. M. Basavarajaiah, Bhamidipati Narasimha Murthy,
2020,
Chapter 7,
978-981-15-0150-0,
181,
10.1007/978-981-15-0151-7_7
|
|
27.
|
E. Bonyah, M.A. Khan, K.O. Okosun, J.F. Gómez‐Aguilar,
On the co‐infection of dengue fever and Zika virus,
2019,
40,
0143-2087,
394,
10.1002/oca.2483
|
|
28.
|
Baojun Song, Zhilan Feng, Gerardo Chowell,
From the guest editors,
2013,
10,
1551-0018,
10.3934/mbe.2013.10.5i
|
|
29.
|
K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade,
On the dynamics of HIV-AIDS and cryptosporidiosis,
2017,
132,
2190-5444,
10.1140/epjp/i2017-11625-3
|
|
30.
|
Nello Blaser, Cindy Zahnd, Sabine Hermans, Luisa Salazar-Vizcaya, Janne Estill, Carl Morrow, Matthias Egger, Olivia Keiser, Robin Wood,
Tuberculosis in Cape Town: An age-structured transmission model,
2016,
14,
17554365,
54,
10.1016/j.epidem.2015.10.001
|
|
31.
|
Cristiana J. Silva, Delfim F. M. Torres,
Modeling TB-HIV Syndemic and Treatment,
2014,
2014,
1110-757X,
1,
10.1155/2014/248407
|
|
32.
|
Bojan Ramadanovic, Krisztina Vasarhelyi, Ali Nadaf, Ralf W. Wittenberg, Julio S. G. Montaner, Evan Wood, Alexander R. Rutherford, Edward White,
Changing Risk Behaviours and the HIV Epidemic: A Mathematical Analysis in the Context of Treatment as Prevention,
2013,
8,
1932-6203,
e62321,
10.1371/journal.pone.0062321
|
|
33.
|
EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER,
MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE,
2010,
52,
1446-1811,
26,
10.1017/S1446181111000587
|
|
34.
|
N M Zetola, C Modongo, P K Moonan, E Click, J E Oeltmann, J Shepherd, A Finlay,
Protocol for a population-based molecular epidemiology study of tuberculosis transmission in a high HIV-burden setting: the Botswana Kopanyo study,
2016,
6,
2044-6055,
e010046,
10.1136/bmjopen-2015-010046
|
|
35.
|
F.B. Agusto, A.I. Adekunle,
Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model,
2014,
119,
03032647,
20,
10.1016/j.biosystems.2014.03.006
|
|
36.
|
D. M. Basavarajaiah, Bhamidipati Narasimha Murthy,
2020,
Chapter 1,
978-981-15-0150-0,
1,
10.1007/978-981-15-0151-7_1
|
|
37.
|
Pierre Magal, Ousmane Seydi, Glenn Webb,
Final Size of an Epidemic for a Two-Group SIR Model,
2016,
76,
0036-1399,
2042,
10.1137/16M1065392
|
|
38.
|
Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez,
The role of mobility and health disparities on the transmission dynamics of Tuberculosis,
2017,
14,
1742-4682,
10.1186/s12976-017-0049-6
|
|
39.
|
M. Atencia, E. García-Garaluz, H. de Arazoza, G. Joya,
Estimation of parameters based on artificial neural networks and threshold of HIV/AIDS epidemic system in Cuba,
2013,
57,
08957177,
2971,
10.1016/j.mcm.2013.03.007
|
|
40.
|
S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira,
Modeling gonorrhea and HIV co-interaction,
2011,
103,
03032647,
27,
10.1016/j.biosystems.2010.09.008
|
|
41.
|
Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng,
2019,
Chapter 7,
978-1-4939-9826-5,
249,
10.1007/978-1-4939-9828-9_7
|
|
42.
|
P. J. Dodd, C. Pretorius, B. G. Williams,
2019,
Chapter 3,
978-3-030-29107-5,
25,
10.1007/978-3-030-29108-2_3
|
|
43.
|
Navjot Kaur, Mini Ghosh, S. S. Bhatia,
The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: a mathematical study,
2014,
40,
0092-0606,
139,
10.1007/s10867-014-9342-3
|
|
44.
|
Hossein Kheiri, Baojun Song, Fereshteh Nazari, Carlos Castillo-Chavez, Azizeh Jabbari,
A two-strain TB model with multiple latent stages,
2016,
13,
1551-0018,
741,
10.3934/mbe.2016017
|
|
45.
|
Wei Yang, Zhan Shu, James Lam, Chengjun Sun,
Global dynamics of an HIV model incorporating senior male clients,
2017,
311,
00963003,
203,
10.1016/j.amc.2017.05.030
|
|
46.
|
Hengki Tasman,
An Optimal Treatment Control of TB-HIV Coinfection,
2016,
2016,
0161-1712,
1,
10.1155/2016/8261208
|
|
47.
|
Cristiana J. Silva, Delfim F. M. Torres,
A TB-HIV/AIDS coinfection model and optimal control treatment,
2015,
35,
1553-5231,
4639,
10.3934/dcds.2015.35.4639
|
|
48.
|
Pei Ding, Zhipeng Qiu, Xuezhi Li,
The population-level impact of HBV and its vaccination on HIV transmission dynamics,
2016,
39,
01704214,
5539,
10.1002/mma.3941
|
|
49.
|
Jummy Funke David, Viviane Dias Lima, Jielin Zhu, Fred Brauer,
A co-interaction model of HIV and syphilis infection among gay, bisexual and other men who have sex with men,
2020,
5,
24680427,
855,
10.1016/j.idm.2020.10.008
|
|
50.
|
Suman Dolai, Amit Kumar Roy, Priti Kumar Roy,
2020,
Chapter 17,
978-981-15-0927-8,
351,
10.1007/978-981-15-0928-5_17
|
|
51.
|
Rajiv Aggarwal, Tamas Kovacs,
Assessing the Effects of Holling Type-II Treatment Rate on HIV-TB Co-infection,
2021,
69,
0001-5342,
1,
10.1007/s10441-020-09385-w
|
|
52.
|
Marcos Marvá, Rafael Bravo de la Parra, Ezio Venturino, A. Morozov,
Modelling the role of opportunistic diseases in coinfection,
2018,
13,
0973-5348,
28,
10.1051/mmnp/2018034
|
|
53.
|
Daozhou Gao, Thomas M. Lietman, Travis C. Porco,
Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting,
2015,
263,
00255564,
121,
10.1016/j.mbs.2015.02.007
|
|
54.
|
Roman Denysiuk, Cristiana J. Silva, Delfim F. M. Torres,
Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem,
2018,
37,
0101-8205,
2112,
10.1007/s40314-017-0438-9
|
|
55.
|
T. O. Orwa, F. Nyabadza, J. Alberto Conejero,
Mathematical modelling and analysis of alcohol-methamphetamine co-abuse in the Western Cape Province of South Africa,
2019,
6,
2574-2558,
1641175,
10.1080/25742558.2019.1641175
|
|
56.
|
Pierre Magal, Glenn Webb,
The parameter identification problem for SIR epidemic models: identifying unreported cases,
2018,
77,
0303-6812,
1629,
10.1007/s00285-017-1203-9
|
|
57.
|
Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng,
2019,
Chapter 8,
978-1-4939-9826-5,
273,
10.1007/978-1-4939-9828-9_8
|
|
58.
|
焕焕 程,
Dynamics of Heroin and HIV Co-Infection and Co-Transmission,
2021,
10,
2324-7991,
1016,
10.12677/AAM.2021.104110
|
|
59.
|
Emile Franc Doungmo Goufo, Abdon Atangana,
On analysis generalization of TB-HIV dynamics by a two-scale reduction process,
2021,
30,
22113797,
104772,
10.1016/j.rinp.2021.104772
|
|
60.
|
Wei Wang, Sifen Lu, Haoxiang Tang, Biao Wang, Caiping Sun, Pai Zheng, Yi Bai, Zuhong Lu, Yulin Kang,
A Scoping Review of Drug Epidemic Models,
2022,
19,
1660-4601,
2017,
10.3390/ijerph19042017
|
|
61.
|
Cheng-Long Wang, Shasha Gao, Xue-Zhi Li, Maia Martcheva,
Modeling Syphilis and HIV Coinfection: A Case Study in the USA,
2023,
85,
0092-8240,
10.1007/s11538-023-01123-w
|
|
62.
|
Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb,
Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative,
2021,
28,
22113797,
104582,
10.1016/j.rinp.2021.104582
|
|
63.
|
Changjin Xu, Zixin Liu, Yicheng Pang, Ali Akgül, Dumitru Baleanu,
Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions,
2022,
165,
09600779,
112879,
10.1016/j.chaos.2022.112879
|
|
64.
|
Rajinder Sharma,
2022,
9780323902403,
563,
10.1016/B978-0-323-90240-3.00031-X
|
|
65.
|
O Krivorotko, D Andornaya,
Sensitivity analysis and practical identifiability of the mathematical model for partial differential equations,
2021,
2092,
1742-6588,
012012,
10.1088/1742-6596/2092/1/012012
|
|
66.
|
Zinabu Teka Melese, Haileyesus Tessema Alemneh,
Enhancing reservoir control in the co-dynamics of HIV-VL: from mathematical modeling perspective,
2021,
2021,
1687-1847,
10.1186/s13662-021-03584-6
|
|
67.
|
HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN,
FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE,
2022,
30,
0218-348X,
10.1142/S0218348X22400369
|
|
68.
|
Muhammad Naeem Jan, Gul Zaman, Nigar Ali, Imtiaz Ahmad, Zahir Shah,
Optimal control application to the epidemiology of HBV and HCV co-infection,
2022,
15,
1793-5245,
10.1142/S1793524521501011
|
|
69.
|
Madhuri Majumder, Pankaj Kumar Tiwari, Samares Pal,
Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: optimal control with awareness and treatment,
2022,
109,
0924-090X,
143,
10.1007/s11071-022-07395-6
|
|
70.
|
Josep Sardanyés, Cristina Alcaide, Pedro Gómez, Santiago F. Elena,
Modelling temperature-dependent dynamics of single and mixed infections in a plant virus,
2022,
102,
0307904X,
694,
10.1016/j.apm.2021.10.008
|
|
71.
|
Oluwaseun F. Egbelowo, Justin B. Munyakazi, Phumlani G. Dlamini, Fadekemi J. Osaye, Simphiwe M. Simelane,
Modeling visceral leishmaniasis and tuberculosis co-infection dynamics,
2023,
9,
2297-4687,
10.3389/fams.2023.1153666
|
|
72.
|
Monica Torres, Jerrold Tubay, Aurelio de losReyes,
Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines,
2023,
85,
0092-8240,
10.1007/s11538-023-01156-1
|
|
73.
|
Qiuyun Li, Fengna Wang,
An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection,
2023,
11,
2227-7390,
2423,
10.3390/math11112423
|
|
74.
|
Aigul Kubegenova, Ainura Gumarova, Gaukhar Kamalova, Jan Rabcan,
2023,
Building a Model and Assessing the Level of Morbidity During the Epidemic,
979-8-3503-0586-9,
85,
10.1109/IDT59031.2023.10194453
|
|
75.
|
Shewafera Wondimagegnhu Teklu, Yohannes Fissha Abebaw, Birhanu Baye Terefe, Dejen Ketema Mamo,
HIV/AIDS and TB co-infection deterministic model bifurcation and optimal control analysis,
2023,
41,
23529148,
101328,
10.1016/j.imu.2023.101328
|
|
76.
|
Fazal Dayan, Nauman Ahmed, Abdul Bariq, Ali Akgül, Muhammad Jawaz, Muhammad Rafiq, Ali Raza,
Computational study of a co-infection model of HIV/AIDS and hepatitis C virus models,
2023,
13,
2045-2322,
10.1038/s41598-023-48085-6
|
|
77.
|
Olga Krivorotko, Sergey Kabanikhin, Victoriya Petrakova,
The Identifiability of Mathematical Models in Epidemiology: Tuberculosis, HIV, COVID-19,
2023,
18,
19946538,
177,
10.17537/2023.18.177
|
|
78.
|
Saduri Das, Prashant K. Srivastava, Pankaj Biswas,
Exploring Hopf-bifurcations and endemic bubbles in a tuberculosis model with behavioral changes and treatment saturation,
2024,
34,
1054-1500,
10.1063/5.0179351
|
|
79.
|
Saduri Das, Prashant K. Srivastava, Pankaj Biswas,
Tuberculosis transmission with multiple saturated exogenous reinfections,
2024,
17,
1793-5245,
10.1142/S179352452350064X
|
|
80.
|
M.G. Roberts,
Infection thresholds for two interacting pathogens in a wild animal population,
2024,
375,
00255564,
109258,
10.1016/j.mbs.2024.109258
|
|
81.
|
Sergey Kabanikhin, Olga Krivorotko, Andrei Neverov, Grigoriy Kaminskiy, Olga Semenova,
Identification of the Mathematical Model of Tuberculosis and HIV Co-Infection Dynamics,
2024,
12,
2227-7390,
3636,
10.3390/math12233636
|
|
82.
|
Tigabu Kasie Ayele, Emile Franc Doungmo Goufo, Stella Mugisha, Joshua Kiddy K. Asamoah,
Co-infection mathematical model for HIV/AIDS and tuberculosis with optimal control in Ethiopia,
2024,
19,
1932-6203,
e0312539,
10.1371/journal.pone.0312539
|
|
83.
|
Saduri Das, Tapan Sarkar, Pankaj Biswas,
Exploring the stability of equilibria and Hopf-bifurcation in a tuberculosis model with delayed treatment,
2025,
100,
0031-8949,
015271,
10.1088/1402-4896/ad9d91
|
|
84.
|
Anum Aish Buhader, Mujahid Abbas, Mudassar Imran, Andrew Omame,
Existence and stability results in a fractional optimal control model for dengue and two-strains of salmonella typhi,
2025,
13,
26668181,
101075,
10.1016/j.padiff.2025.101075
|
|