Processing math: 100%

Modeling TB and HIV co-infections

  • Received: 01 October 2007 Accepted: 29 June 2018 Published: 01 September 2009
  • MSC : Primary: 92D25, 92D30; Secondary: 34C60.

  • Tuberculosis (TB) is the leading cause of death among individuals infected with the human immunodeficiency virus (HIV). The study of the joint dynamics of HIV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. Furthermore, although there is overlap in the populations at risk of HIV and TB infections, the magnitude of the proportion of individuals at risk for both diseases is not known. Here, we consider a highly simplified deterministic model that incorporates the joint dynamics of TB and HIV, a model that is quite hard to analyze. We compute independent reproductive numbers for TB (\R1) and HIV (\R2) and the overall reproductive number for the system, \R=max{\R1,\R2}. The focus is naturally (given the highly simplified nature of the framework) on the qualitative analysis of this model. We find that if \R<1 then the disease-free equilibrium is locally asymptotically stable. The TB-only equilibrium ET is locally asymptotically stable if \R1>1 and \R2<1. However, the symmetric condition, \R1<1 and \R2>1, does not necessarily guarantee the stability of the HIV-only equilibrium EH, and it is possible that TB can coexist with HIV when \R2>1. In other words, in the case when \R1<1 and \R2>1 (or when \R1>1 and \R2>1), we are able to find a stable HIV/TB coexistence equilibrium. Moreover, we show that the prevalence level of TB increases with \R2>1 under certain conditions. Through simulations, we find that i) the increased progression rate from latent to active TB in co-infected individuals may play a significant role in the rising prevalence of TB; and ii) the increased progression rates from HIV to AIDS have not only increased the prevalence level of HIV while decreasing TB prevalence, but also generated damped oscillations in the system.

    Citation: Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez. Modeling TB and HIV co-infections[J]. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815

    Related Papers:

    [1] Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song . Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences and Engineering, 2008, 5(1): 145-174. doi: 10.3934/mbe.2008.5.145
    [2] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [3] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche . Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333
    [4] Carlos Castillo-Chavez, Baojun Song . Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences and Engineering, 2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361
    [5] Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189
    [6] Nawei Chen, Shenglong Chen, Xiaoyu Li, Zhiming Li . Modelling and analysis of the HIV/AIDS epidemic with fast and slow asymptomatic infections in China from 2008 to 2021. Mathematical Biosciences and Engineering, 2023, 20(12): 20770-20794. doi: 10.3934/mbe.2023919
    [7] Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri . A two-strain TB model with multiplelatent stages. Mathematical Biosciences and Engineering, 2016, 13(4): 741-785. doi: 10.3934/mbe.2016017
    [8] Silvia Martorano Raimundo, Hyun Mo Yang, Ezio Venturino . Theoretical assessment of the relative incidences of sensitive andresistant tuberculosis epidemic in presence of drug treatment. Mathematical Biosciences and Engineering, 2014, 11(4): 971-993. doi: 10.3934/mbe.2014.11.971
    [9] Chuanqing Xu, Kedeng Cheng, Yu Wang, Maoxing Liu, Xiaojing Wang, Zhen Yang, Songbai Guo . Analysis of the current status of TB transmission in China based on an age heterogeneity model. Mathematical Biosciences and Engineering, 2023, 20(11): 19232-19253. doi: 10.3934/mbe.2023850
    [10] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661
  • Tuberculosis (TB) is the leading cause of death among individuals infected with the human immunodeficiency virus (HIV). The study of the joint dynamics of HIV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. Furthermore, although there is overlap in the populations at risk of HIV and TB infections, the magnitude of the proportion of individuals at risk for both diseases is not known. Here, we consider a highly simplified deterministic model that incorporates the joint dynamics of TB and HIV, a model that is quite hard to analyze. We compute independent reproductive numbers for TB (\R1) and HIV (\R2) and the overall reproductive number for the system, \R=max{\R1,\R2}. The focus is naturally (given the highly simplified nature of the framework) on the qualitative analysis of this model. We find that if \R<1 then the disease-free equilibrium is locally asymptotically stable. The TB-only equilibrium ET is locally asymptotically stable if \R1>1 and \R2<1. However, the symmetric condition, \R1<1 and \R2>1, does not necessarily guarantee the stability of the HIV-only equilibrium EH, and it is possible that TB can coexist with HIV when \R2>1. In other words, in the case when \R1<1 and \R2>1 (or when \R1>1 and \R2>1), we are able to find a stable HIV/TB coexistence equilibrium. Moreover, we show that the prevalence level of TB increases with \R2>1 under certain conditions. Through simulations, we find that i) the increased progression rate from latent to active TB in co-infected individuals may play a significant role in the rising prevalence of TB; and ii) the increased progression rates from HIV to AIDS have not only increased the prevalence level of HIV while decreasing TB prevalence, but also generated damped oscillations in the system.


  • This article has been cited by:

    1. Rajiv Aggarwal, Tamas Kovacs, 2020, Chapter 21, 978-3-030-46305-2, 343, 10.1007/978-3-030-46306-9_21
    2. C.P. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of HIV/AIDS and hepatitis C virus co-infection, 2013, 12, 17301270, 37, 10.1016/j.hivar.2013.03.001
    3. Chandra Dash Purna, P. Rajendran, 2017, 9781315366487, 181, 10.1201/b19944-7
    4. Roslyn I. Hickson, Geoffry N. Mercer, Kamalini M. Lokuge, Madhukar Pai, A Metapopulation Model of Tuberculosis Transmission with a Case Study from High to Low Burden Areas, 2012, 7, 1932-6203, e34411, 10.1371/journal.pone.0034411
    5. D. M. Basavarajaiah, Bhamidipati Narasimha Murthy, 2020, Chapter 13, 978-981-15-0150-0, 309, 10.1007/978-981-15-0151-7_13
    6. Chikodili Helen Ugwuishiwu, D. S. Sarki, G. C. E. Mbah, Nonlinear Analysis of the Dynamics of Criminality and Victimisation: A Mathematical Model with Case Generation and Forwarding, 2019, 2019, 1110-757X, 1, 10.1155/2019/9891503
    7. O. I. Krivorotko, D. V. Andornaya, S. I. Kabanikhin, Sensitivity Analysis and Practical Identifiability of Some Mathematical Models in Biology, 2020, 14, 1990-4789, 115, 10.1134/S1990478920010123
    8. E. Lungu, T. J. Massaro, E. Ndelwa, N. Ainea, S. Chibaya, N. J. Malunguza, Mathematical Modeling of the HIV/Kaposi’s Sarcoma Coinfection Dynamics in Areas of High HIV Prevalence, 2013, 2013, 1748-670X, 1, 10.1155/2013/753424
    9. Daozhou Gao, Travis C. Porco, Shigui Ruan, Coinfection dynamics of two diseases in a single host population, 2016, 442, 0022247X, 171, 10.1016/j.jmaa.2016.04.039
    10. Nita H Shah, Nisha Sheoran, Yash Shah, Dynamics of HIV-TB Co-Infection Model, 2020, 9, 2075-1680, 29, 10.3390/axioms9010029
    11. Y. Ma, C. R. Horsburgh, L. F. White, H. E. Jenkins, Quantifying TB transmission: a systematic review of reproduction number and serial interval estimates for tuberculosis, 2018, 146, 0950-2688, 1478, 10.1017/S0950268818001760
    12. A Ducrot, P Magal, T Nguyen, G F Webb, Identifying the number of unreported cases in SIR epidemic models, 2020, 37, 1477-8599, 243, 10.1093/imammb/dqz013
    13. Yan Wu, Meng Huang, Ximei Wang, Yong Li, Lei Jiang, Yuan Yuan, The prevention and control of tuberculosis: an analysis based on a tuberculosis dynamic model derived from the cases of Americans, 2020, 20, 1471-2458, 10.1186/s12889-020-09260-w
    14. Sachin Kumar, Shikha Jain, Assessing the effects of treatment in HIV-TB co-infection model, 2018, 133, 2190-5444, 10.1140/epjp/i2018-12117-8
    15. Sergey Kabanikhin, Olga Krivorotko, Victoriya Kashtanova, Varvara Latyshenko, 2017, Identification the mathematical model of the transmission TB/HIV co-infection in endemic areas, 978-1-5386-1596-6, 77, 10.1109/SIBIRCON.2017.8109841
    16. Juan Wang, Sha-Sha Gao, Xue-Zhi Li, A TB Model with Infectivity in Latent Period and Imperfect Treatment, 2012, 2012, 1026-0226, 1, 10.1155/2012/184918
    17. A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012
    18. Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva, Coinfection dynamics of heroin transmission and HIV infection in a single population, 2020, 14, 1751-3758, 116, 10.1080/17513758.2020.1726516
    19. Yali Yang, Jianhong Wu, Jianquan Li, Xiaxia Xu, Tuberculosis with relapse: A model, 2017, 24, 0889-8480, 3, 10.1080/08898480.2014.998550
    20. Dao Nguyen Vinh, Dang Thi Minh Ha, Nguyen Thi Hanh, Guy Thwaites, Maciej F. Boni, Hannah E. Clapham, Nguyen Thuy Thuong Thuong, Modeling tuberculosis dynamics with the presence of hyper-susceptible individuals for Ho Chi Minh City from 1996 to 2015, 2018, 18, 1471-2334, 10.1186/s12879-018-3383-3
    21. Georgi Kapitanov, A double age-structured model of the co-infection of tuberculosis and HIV, 2015, 12, 1551-0018, 23, 10.3934/mbe.2015.12.23
    22. Temesgen Awoke, Semu Kassa, Optimal Control Strategy for TB-HIV/AIDS Co-Infection Model in the Presence of Behaviour Modification, 2018, 6, 2227-9717, 48, 10.3390/pr6050048
    23. S. Bowong, J. Kurths, Modelling Tuberculosis and Hepatitis B Co-infections, 2010, 5, 0973-5348, 196, 10.1051/mmnp/20105610
    24. Farrah Sadre-Marandi, Yuewu Liu, Jiangguo Liu, Simon Tavener, Xiufen Zou, Modeling HIV-1 viral capsid nucleation by dynamical systems, 2015, 270, 00255564, 95, 10.1016/j.mbs.2015.10.007
    25. Rajiv Aggarwal, Dynamics of HIV-TB co-infection with detection as optimal intervention strategy, 2020, 120, 00207462, 103388, 10.1016/j.ijnonlinmec.2019.103388
    26. D. M. Basavarajaiah, Bhamidipati Narasimha Murthy, 2020, Chapter 7, 978-981-15-0150-0, 181, 10.1007/978-981-15-0151-7_7
    27. E. Bonyah, M.A. Khan, K.O. Okosun, J.F. Gómez‐Aguilar, On the co‐infection of dengue fever and Zika virus, 2019, 40, 0143-2087, 394, 10.1002/oca.2483
    28. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    29. K. O. Okosun, M. A. Khan, E. Bonyah, S. T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis, 2017, 132, 2190-5444, 10.1140/epjp/i2017-11625-3
    30. Nello Blaser, Cindy Zahnd, Sabine Hermans, Luisa Salazar-Vizcaya, Janne Estill, Carl Morrow, Matthias Egger, Olivia Keiser, Robin Wood, Tuberculosis in Cape Town: An age-structured transmission model, 2016, 14, 17554365, 54, 10.1016/j.epidem.2015.10.001
    31. Cristiana J. Silva, Delfim F. M. Torres, Modeling TB-HIV Syndemic and Treatment, 2014, 2014, 1110-757X, 1, 10.1155/2014/248407
    32. Bojan Ramadanovic, Krisztina Vasarhelyi, Ali Nadaf, Ralf W. Wittenberg, Julio S. G. Montaner, Evan Wood, Alexander R. Rutherford, Edward White, Changing Risk Behaviours and the HIV Epidemic: A Mathematical Analysis in the Context of Treatment as Prevention, 2013, 8, 1932-6203, e62321, 10.1371/journal.pone.0062321
    33. EMMA G. THOMAS, HANNAH E. BARRINGTON, KAMALINI M. LOKUGE, GEOFFRY N. MERCER, MODELLING THE SPREAD OF TUBERCULOSIS, INCLUDING DRUG RESISTANCE AND HIV: A CASE STUDY IN PAPUA NEW GUINEA’S WESTERN PROVINCE, 2010, 52, 1446-1811, 26, 10.1017/S1446181111000587
    34. N M Zetola, C Modongo, P K Moonan, E Click, J E Oeltmann, J Shepherd, A Finlay, Protocol for a population-based molecular epidemiology study of tuberculosis transmission in a high HIV-burden setting: the Botswana Kopanyo study, 2016, 6, 2044-6055, e010046, 10.1136/bmjopen-2015-010046
    35. F.B. Agusto, A.I. Adekunle, Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, 2014, 119, 03032647, 20, 10.1016/j.biosystems.2014.03.006
    36. D. M. Basavarajaiah, Bhamidipati Narasimha Murthy, 2020, Chapter 1, 978-981-15-0150-0, 1, 10.1007/978-981-15-0151-7_1
    37. Pierre Magal, Ousmane Seydi, Glenn Webb, Final Size of an Epidemic for a Two-Group SIR Model, 2016, 76, 0036-1399, 2042, 10.1137/16M1065392
    38. Victor Moreno, Baltazar Espinoza, Kamal Barley, Marlio Paredes, Derdei Bichara, Anuj Mubayi, Carlos Castillo-Chavez, The role of mobility and health disparities on the transmission dynamics of Tuberculosis, 2017, 14, 1742-4682, 10.1186/s12976-017-0049-6
    39. M. Atencia, E. García-Garaluz, H. de Arazoza, G. Joya, Estimation of parameters based on artificial neural networks and threshold of HIV/AIDS epidemic system in Cuba, 2013, 57, 08957177, 2971, 10.1016/j.mcm.2013.03.007
    40. S. Mushayabasa, J.M. Tchuenche, C.P. Bhunu, E. Ngarakana-Gwasira, Modeling gonorrhea and HIV co-interaction, 2011, 103, 03032647, 27, 10.1016/j.biosystems.2010.09.008
    41. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 7, 978-1-4939-9826-5, 249, 10.1007/978-1-4939-9828-9_7
    42. P. J. Dodd, C. Pretorius, B. G. Williams, 2019, Chapter 3, 978-3-030-29107-5, 25, 10.1007/978-3-030-29108-2_3
    43. Navjot Kaur, Mini Ghosh, S. S. Bhatia, The role of screening and treatment in the transmission dynamics of HIV/AIDS and tuberculosis co-infection: a mathematical study, 2014, 40, 0092-0606, 139, 10.1007/s10867-014-9342-3
    44. Hossein Kheiri, Baojun Song, Fereshteh Nazari, Carlos Castillo-Chavez, Azizeh Jabbari, A two-strain TB model with multiple latent stages, 2016, 13, 1551-0018, 741, 10.3934/mbe.2016017
    45. Wei Yang, Zhan Shu, James Lam, Chengjun Sun, Global dynamics of an HIV model incorporating senior male clients, 2017, 311, 00963003, 203, 10.1016/j.amc.2017.05.030
    46. Hengki Tasman, An Optimal Treatment Control of TB-HIV Coinfection, 2016, 2016, 0161-1712, 1, 10.1155/2016/8261208
    47. Cristiana J. Silva, Delfim F. M. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment, 2015, 35, 1553-5231, 4639, 10.3934/dcds.2015.35.4639
    48. Pei Ding, Zhipeng Qiu, Xuezhi Li, The population-level impact of HBV and its vaccination on HIV transmission dynamics, 2016, 39, 01704214, 5539, 10.1002/mma.3941
    49. Jummy Funke David, Viviane Dias Lima, Jielin Zhu, Fred Brauer, A co-interaction model of HIV and syphilis infection among gay, bisexual and other men who have sex with men, 2020, 5, 24680427, 855, 10.1016/j.idm.2020.10.008
    50. Suman Dolai, Amit Kumar Roy, Priti Kumar Roy, 2020, Chapter 17, 978-981-15-0927-8, 351, 10.1007/978-981-15-0928-5_17
    51. Rajiv Aggarwal, Tamas Kovacs, Assessing the Effects of Holling Type-II Treatment Rate on HIV-TB Co-infection, 2021, 69, 0001-5342, 1, 10.1007/s10441-020-09385-w
    52. Marcos Marvá, Rafael Bravo de la Parra, Ezio Venturino, A. Morozov, Modelling the role of opportunistic diseases in coinfection, 2018, 13, 0973-5348, 28, 10.1051/mmnp/2018034
    53. Daozhou Gao, Thomas M. Lietman, Travis C. Porco, Antibiotic resistance as collateral damage: The tragedy of the commons in a two-disease setting, 2015, 263, 00255564, 121, 10.1016/j.mbs.2015.02.007
    54. Roman Denysiuk, Cristiana J. Silva, Delfim F. M. Torres, Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem, 2018, 37, 0101-8205, 2112, 10.1007/s40314-017-0438-9
    55. T. O. Orwa, F. Nyabadza, J. Alberto Conejero, Mathematical modelling and analysis of alcohol-methamphetamine co-abuse in the Western Cape Province of South Africa, 2019, 6, 2574-2558, 1641175, 10.1080/25742558.2019.1641175
    56. Pierre Magal, Glenn Webb, The parameter identification problem for SIR epidemic models: identifying unreported cases, 2018, 77, 0303-6812, 1629, 10.1007/s00285-017-1203-9
    57. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 8, 978-1-4939-9826-5, 273, 10.1007/978-1-4939-9828-9_8
    58. 焕焕 程, Dynamics of Heroin and HIV Co-Infection and Co-Transmission, 2021, 10, 2324-7991, 1016, 10.12677/AAM.2021.104110
    59. Emile Franc Doungmo Goufo, Abdon Atangana, On analysis generalization of TB-HIV dynamics by a two-scale reduction process, 2021, 30, 22113797, 104772, 10.1016/j.rinp.2021.104772
    60. Wei Wang, Sifen Lu, Haoxiang Tang, Biao Wang, Caiping Sun, Pai Zheng, Yi Bai, Zuhong Lu, Yulin Kang, A Scoping Review of Drug Epidemic Models, 2022, 19, 1660-4601, 2017, 10.3390/ijerph19042017
    61. Cheng-Long Wang, Shasha Gao, Xue-Zhi Li, Maia Martcheva, Modeling Syphilis and HIV Coinfection: A Case Study in the USA, 2023, 85, 0092-8240, 10.1007/s11538-023-01123-w
    62. Wei-Yun Shen, Yu-Ming Chu, Mati ur Rahman, Ibrahim Mahariq, Anwar Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, 2021, 28, 22113797, 104582, 10.1016/j.rinp.2021.104582
    63. Changjin Xu, Zixin Liu, Yicheng Pang, Ali Akgül, Dumitru Baleanu, Dynamics of HIV-TB coinfection model using classical and Caputo piecewise operator: A dynamic approach with real data from South-East Asia, European and American regions, 2022, 165, 09600779, 112879, 10.1016/j.chaos.2022.112879
    64. Rajinder Sharma, 2022, 9780323902403, 563, 10.1016/B978-0-323-90240-3.00031-X
    65. O Krivorotko, D Andornaya, Sensitivity analysis and practical identifiability of the mathematical model for partial differential equations, 2021, 2092, 1742-6588, 012012, 10.1088/1742-6596/2092/1/012012
    66. Zinabu Teka Melese, Haileyesus Tessema Alemneh, Enhancing reservoir control in the co-dynamics of HIV-VL: from mathematical modeling perspective, 2021, 2021, 1687-1847, 10.1186/s13662-021-03584-6
    67. HUSSAM ALRABAIAH, MATI UR RAHMAN, IBRAHIM MAHARIQ, SAMIA BUSHNAQ, MUHAMMAD ARFAN, FRACTIONAL ORDER ANALYSIS OF HBV AND HCV CO-INFECTION UNDER ABC DERIVATIVE, 2022, 30, 0218-348X, 10.1142/S0218348X22400369
    68. Muhammad Naeem Jan, Gul Zaman, Nigar Ali, Imtiaz Ahmad, Zahir Shah, Optimal control application to the epidemiology of HBV and HCV co-infection, 2022, 15, 1793-5245, 10.1142/S1793524521501011
    69. Madhuri Majumder, Pankaj Kumar Tiwari, Samares Pal, Impact of saturated treatments on HIV-TB dual epidemic as a consequence of COVID-19: optimal control with awareness and treatment, 2022, 109, 0924-090X, 143, 10.1007/s11071-022-07395-6
    70. Josep Sardanyés, Cristina Alcaide, Pedro Gómez, Santiago F. Elena, Modelling temperature-dependent dynamics of single and mixed infections in a plant virus, 2022, 102, 0307904X, 694, 10.1016/j.apm.2021.10.008
    71. Oluwaseun F. Egbelowo, Justin B. Munyakazi, Phumlani G. Dlamini, Fadekemi J. Osaye, Simphiwe M. Simelane, Modeling visceral leishmaniasis and tuberculosis co-infection dynamics, 2023, 9, 2297-4687, 10.3389/fams.2023.1153666
    72. Monica Torres, Jerrold Tubay, Aurelio de losReyes, Quantitative Assessment of a Dual Epidemic Caused by Tuberculosis and HIV in the Philippines, 2023, 85, 0092-8240, 10.1007/s11538-023-01156-1
    73. Qiuyun Li, Fengna Wang, An Epidemiological Model for Tuberculosis Considering Environmental Transmission and Reinfection, 2023, 11, 2227-7390, 2423, 10.3390/math11112423
    74. Aigul Kubegenova, Ainura Gumarova, Gaukhar Kamalova, Jan Rabcan, 2023, Building a Model and Assessing the Level of Morbidity During the Epidemic, 979-8-3503-0586-9, 85, 10.1109/IDT59031.2023.10194453
    75. Shewafera Wondimagegnhu Teklu, Yohannes Fissha Abebaw, Birhanu Baye Terefe, Dejen Ketema Mamo, HIV/AIDS and TB co-infection deterministic model bifurcation and optimal control analysis, 2023, 41, 23529148, 101328, 10.1016/j.imu.2023.101328
    76. Fazal Dayan, Nauman Ahmed, Abdul Bariq, Ali Akgül, Muhammad Jawaz, Muhammad Rafiq, Ali Raza, Computational study of a co-infection model of HIV/AIDS and hepatitis C virus models, 2023, 13, 2045-2322, 10.1038/s41598-023-48085-6
    77. Olga Krivorotko, Sergey Kabanikhin, Victoriya Petrakova, The Identifiability of Mathematical Models in Epidemiology: Tuberculosis, HIV, COVID-19, 2023, 18, 19946538, 177, 10.17537/2023.18.177
    78. Saduri Das, Prashant K. Srivastava, Pankaj Biswas, Exploring Hopf-bifurcations and endemic bubbles in a tuberculosis model with behavioral changes and treatment saturation, 2024, 34, 1054-1500, 10.1063/5.0179351
    79. Saduri Das, Prashant K. Srivastava, Pankaj Biswas, Tuberculosis transmission with multiple saturated exogenous reinfections, 2024, 17, 1793-5245, 10.1142/S179352452350064X
    80. M.G. Roberts, Infection thresholds for two interacting pathogens in a wild animal population, 2024, 375, 00255564, 109258, 10.1016/j.mbs.2024.109258
    81. Sergey Kabanikhin, Olga Krivorotko, Andrei Neverov, Grigoriy Kaminskiy, Olga Semenova, Identification of the Mathematical Model of Tuberculosis and HIV Co-Infection Dynamics, 2024, 12, 2227-7390, 3636, 10.3390/math12233636
    82. Tigabu Kasie Ayele, Emile Franc Doungmo Goufo, Stella Mugisha, Joshua Kiddy K. Asamoah, Co-infection mathematical model for HIV/AIDS and tuberculosis with optimal control in Ethiopia, 2024, 19, 1932-6203, e0312539, 10.1371/journal.pone.0312539
    83. Saduri Das, Tapan Sarkar, Pankaj Biswas, Exploring the stability of equilibria and Hopf-bifurcation in a tuberculosis model with delayed treatment, 2025, 100, 0031-8949, 015271, 10.1088/1402-4896/ad9d91
    84. Anum Aish Buhader, Mujahid Abbas, Mudassar Imran, Andrew Omame, Existence and stability results in a fractional optimal control model for dengue and two-strains of salmonella typhi, 2025, 13, 26668181, 101075, 10.1016/j.padiff.2025.101075
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4448) PDF downloads(846) Cited by(84)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog