Investigating the steady state of multicellular spheroids by revisiting the two-fluid model

  • Received: 01 March 2010 Accepted: 29 June 2018 Published: 01 April 2011
  • MSC : Primary: 92C50; Secondary: 92C17, 76D27, 35R35.

  • In this paper we examine the steady state of tumour spheroids considering a structure in which the central necrotic region contains an inner liquid core surrounded by dead cells that keep some mechanical integrity. This partition is a consequence of assuming that a finite delay is required for the degradation of dead cells into liquid. The phenomenological assumption of constant local volume fraction of cells is also made. The above structure is coupled with a simple mechanical model that views the cell component as a viscous fluid and the extracellular liquid as an inviscid fluid. By imposing the continuity of the normal stress throughout the whole spheroid, we show that a steady state can exist only if the forces on cells at the outer boundary (provided e.g. by a surface tension) are intense enough, and in such a case we can compute the stationary radius. By giving reasonable values to the parameters, the model predicts that the stationary radius decreases with the external oxygen concentration, as expected from experimental observations.

    Citation: Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model[J]. Mathematical Biosciences and Engineering, 2011, 8(2): 239-252. doi: 10.3934/mbe.2011.8.239

    Related Papers:

    [1] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi . Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model. Mathematical Biosciences and Engineering, 2012, 9(3): 697-697. doi: 10.3934/mbe.2012.9.697
    [2] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [3] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Non-local multiscale approach for the impact of go or grow hypothesis on tumour-viruses interactions. Mathematical Biosciences and Engineering, 2021, 18(5): 5252-5284. doi: 10.3934/mbe.2021267
    [4] Abdulhamed Alsisi, Raluca Eftimie, Dumitru Trucu . Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. Mathematical Biosciences and Engineering, 2022, 19(6): 6157-6185. doi: 10.3934/mbe.2022288
    [5] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199
    [6] Huu Thuan Nguyen, Tu Anh Do, Benoît Cosson . Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 2019, 16(5): 5395-5418. doi: 10.3934/mbe.2019269
    [7] Aftab Ahmed, Javed I. Siddique . The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
    [8] Lorena Bociu, Giovanna Guidoboni, Riccardo Sacco, Maurizio Verri . On the role of compressibility in poroviscoelastic models. Mathematical Biosciences and Engineering, 2019, 16(5): 6167-6208. doi: 10.3934/mbe.2019308
    [9] Hongyun Peng, Kun Zhao . On a hyperbolic-parabolic chemotaxis system. Mathematical Biosciences and Engineering, 2023, 20(5): 7802-7827. doi: 10.3934/mbe.2023337
    [10] Nerion Zekaj, Shawn D. Ryan, Andrew Resnick . Fluid-structure interaction modelling of neighboring tubes with primary cilium analysis. Mathematical Biosciences and Engineering, 2023, 20(2): 3677-3699. doi: 10.3934/mbe.2023172
  • In this paper we examine the steady state of tumour spheroids considering a structure in which the central necrotic region contains an inner liquid core surrounded by dead cells that keep some mechanical integrity. This partition is a consequence of assuming that a finite delay is required for the degradation of dead cells into liquid. The phenomenological assumption of constant local volume fraction of cells is also made. The above structure is coupled with a simple mechanical model that views the cell component as a viscous fluid and the extracellular liquid as an inviscid fluid. By imposing the continuity of the normal stress throughout the whole spheroid, we show that a steady state can exist only if the forces on cells at the outer boundary (provided e.g. by a surface tension) are intense enough, and in such a case we can compute the stationary radius. By giving reasonable values to the parameters, the model predicts that the stationary radius decreases with the external oxygen concentration, as expected from experimental observations.


  • This article has been cited by:

    1. ALESSANDRO BERTUZZI, ANTONIO FASANO, ALBERTO GANDOLFI, CARMELA SINISGALLI, MODELING THE EVOLUTION OF A TUMORAL MULTICELLULAR SPHEROID AS A TWO-FLUID BINGHAM-LIKE SYSTEM, 2013, 23, 0218-2025, 2561, 10.1142/S0218202513500401
    2. Antonio Fasano, Alberto Gandolfi, 2013, Chapter 7, 978-1-4614-4177-9, 179, 10.1007/978-1-4614-4178-6_7
    3. Antonio Fasano, Alessandro Bertuzzi, Carmela Sinisgalli, 2014, Chapter 2, 978-1-4939-0457-0, 27, 10.1007/978-1-4939-0458-7_2
    4. Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model, 2012, 9, 1551-0018, 697, 10.3934/mbe.2012.9.697
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2647) PDF downloads(482) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog