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Abstract. In this paper we examine the steady state of tumour spheroids
considering a structure in which the central necrotic region contains an inner

liquid core surrounded by dead cells that keep some mechanical integrity. This

partition is a consequence of assuming that a finite delay is required for the
degradation of dead cells into liquid. The phenomenological assumption of

constant local volume fraction of cells is also made. The above structure is

coupled with a simple mechanical model that views the cell component as a
viscous fluid and the extracellular liquid as an inviscid fluid. By imposing

the continuity of the normal stress throughout the whole spheroid, we show
that a steady state can exist only if the forces on cells at the outer boundary

(provided e.g. by a surface tension) are intense enough, and in such a case

we can compute the stationary radius. By giving reasonable values to the
parameters, the model predicts that the stationary radius decreases with the

external oxygen concentration, as expected from experimental observations.

1. Introduction. In recent years it has become more and more apparent that any
realistic approach to cancer modelling has to take into account the mechanical in-
teractions among the various components (cells, extracellular liquid, extracellular
matrix, etc.) [11, 10, 2, 23, 13, 1], besides all the complex aspects related to cell
metabolism [27, 3, 5]. Of course the crucial element in the formulation of a math-
ematical model of a tumour in the framework of mixture theory is the selection of
constitutive laws for the various components and for their mutual interactions. The
price to pay when introducing sophisticated constitutive equations is the number of
parameters to be defined, for which it is sometimes very difficult (if not impossible)
to provide more than a guess of the order of magnitude.

Avoiding the intricacy of the full description of forces is sometimes possible when
dealing with multicellular spheroids, which are the simplest possible tumour struc-
tures and that can be grown in suspensions or in gels under controlled conditions.
Although the presence of some extracellular matrix has been evidenced [18], in vitro
spheroids are usually modelled by considering just two volume filling components:
cells and extracellular liquid, frequently supposed to have the same density. When
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their shape is reasonably approximated by a sphere (cases of symmetry loss are also
possible, see [15]), the introduction of suitable assumptions, like imposing the cell
volume fraction and a rate for the degradation of dead cells (a limit assumption
is the immediate disappearance of dead cells), results in a radical simplification,
since in that case the mechanics enters the model only at the kinematical level
[8, 9, 28, 29, 6]. In other words, mass balance becomes sufficient to determine the
velocity fields of cells and of the extracellular liquid, without referring to any con-
stitutive law for the mixture. This way of approaching the problem has the obvious
advantage of simplicity, but it is based on radical and arbitrary assumptions.

The opposite point of view is to attempt to describe the dynamics of the mixture,
which necessarily brings in the model all the difficulties which have been already
recalled.

It looks very reasonable to search for a compromise between exceedingly simple
and exceedingly complicated models. In a recent paper [14] we made a first attempt
in this direction, considering the specific case of spheroids at a steady state. In
such a condition, which can be experimentally observed, the new cells produced
in the proliferating rim generate a cell flow towards the central necrotic region,
accompanied by a flow of the extracellular liquid in the opposite direction (the latter
flow provides the material needed to proliferation). In [14] we have emphasized
the importance of modelling the distribution of the necrotic material. The model
illustrated there assumed the presence of a liquid necrotic core, surrounded by a
region in which dead cells still keep some integrity, so that the mechanical properties
can be considered in practice identical to the ones of the viable rim (this extreme
situation was obtained supposing that the conversion of dead cells from “solid” to
“liquid” takes a fixed time). Cells (alive or dead) were supposed to occupy a given
volume fraction, but no further assumption of kinematical type have been made.
This view, which somehow parallels the approach of [22], contrasts models in which
the necrotic core is filled by dead cells keeping a constant local volume fraction
while dissolving into liquid with a given rate. In the latter case all components
are known to have zero velocity at the centre, but for the model including a liquid
necrotic core the global flux continuity condition at the solid/liquid interface is not
sufficient to close the system and to determine the stationary radius. The missing
equation was provided in [14] by imposing that at equilibrium the power dissipated
in the motion of the two components has to be balanced by the mechanical power
produced by the proliferating cells, which act as the engine forcing the two flows in
opposite directions. Clearly the computation of the dissipated power requires the
choice of a mechanical model for the mixture. Here comes the compromise, since we
have adopted a simple model in the framework of the two-fluid approach. Two-fluid
schemes are certainly not close to reality, but they have the obvious advantage of
introducing a minimal number of parameters. We point out that, since the approach
of [14] contemplates a constant cell volume fraction, it deviates from the two-fluids
models usually found in the literature, which try to describe cell-cell interactions
by means of a potential depending on the local average cell-cell distance [10, 2].
However, the ensuing simplification allows some explicit computation and a far
easier interpretation of the results.

In order to focus on the mechanical condition closing the system, in [14] we
confined the chemical side of the model to the diffusion-consumption of oxygen.
Having calculated the power dissipated at the steady state, we made the simplify-
ing assumption that all proliferating cells, in any point of the spheroid and under
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any growth condition, produce the same amount of (mechanical) energy. In that
way the total energy produced by cells in the unit time was proportional to the vol-
ume occupied by proliferating cells. To make calculation even simpler, we adopted
a model with thresholds of oxygen concentration for proliferation, quiescence and
death, so that we had regions separated by sharp interfaces. The power produced
by the individual proliferating cell was calculated with reference to a known ex-
perimental condition and then used to predict the spheroid size corresponding to
different external oxygen concentrations. The results showed to follow the expected
trend, known from experimental observations [17].

Despite its promising appearance (energy balance is an undisputable physical
principle), the model of [14] still relies on the arbitrary assumption that proliferating
cells provide the same amount of mechanical power, independently of their local
conditions. This conjecture is obviously questionable. Can we say anything more
rigorous? In the present paper we keep basically the same model as [14], but we
replace the conjecture about the mechanical power delivered by proliferating cell
with the more natural requirement that the normal stress is everywhere continuous.
In particular this amounts to imposing the normal stress continuity at the interface
where the mixture composition is discontinuous, namely the boundary of the liquid
central core. The new model still predicts the reduction of the stationary radius
with the decrease of the external oxygen concentration and, remarkably, shows
that the existence of a steady state requires suitable forces acting selectively on the
cells at the outer boundary. Though the theory here developed does not support the
approach of [14], we shall see that in the practical cases considered the discrepancies
are rather small.

2. Modelling the internal structure of a multicellular spheroid at the
steady state. For our purposes it is convenient to divide the stationary spheroid
into spherically symmetric domains, separated by sharp interfaces. The introduc-
tion of such free boundaries complicates the mathematical structure of the prob-
lem, but it provides a considerable conceptual simplification. As we did in [14],
we consider just oxygen as the limiting nutrient, so oversimplifying the description
of metabolism, in order to concentrate on the mechanical aspects. The partition
of the spheroid is obtained by introducing thresholds for the oxygen concentration
σ(r), where r is the radial coordinate varying between zero and the unknown spher-
oid radius R. More precisely, we have a proliferation threshold σP and a necrosis
threshold σN < σP , so that all cells in the region P = {r : σ(r) > σP } are prolif-
erating (with the rate χ), while the cells in the region Q = {r : σN < σ(r) < σP }
are quiescent. The necrotic region N = {r : σ(r) ≤ σN} is also partitioned into two
sub-domains NS and NL: in NS cells are supposed to keep the mechanical proper-
ties they had upon entering the necrotic region, while the inner core NL is simply
liquid. The latter partition follows from the assumption that the cell membrane
takes some given time τD to degrade and that its degradation marks the transition
from “solid” to “liquid”. Of course this point of view is rather extreme, and various
modifications could be proposed. We note here that nuclear magnetic resonance
(NMR) measurements of the self-diffusion of water in EMT-6 spheroids [25] showed
that whereas in the viable rim water appears to be confined into two compartments
with different diffusion coefficients (intracellular and extracellular water), the cen-
tral necrotic core looks as a single compartment characterised by a single diffusion
coefficient. Moreover, NMR imaging evidenced an intermediate zone between the
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viable rim and the center of the necrotic region, and this intermediate zone ap-
peared too to have two diffusion compartments, although the fraction of volume
of the diffusion-restricted compartment was found lower than the corresponding
fraction in the viable rim.

The above scheme of a stationary spheroid includes three interfaces:

• r = ρP , the P −Q interface;
• r = ρN , the Q−N interface;
• r = ρD, the NS −NL interface.

The determination of ρP , ρN goes through the solution of the following oxygen
diffusion-consumption problem: given the radius R of the spheroid, find a twice
continuously differentiable function σ(r), and ρP , ρN , such that

D∆σ(r) = f(σ(r))ν, in P , (1)

D∆σ(r) =
1

m
f(σ(r))ν, in Q, (2)

σ(R) = σ∗ > σP , (3)

σ(ρP ) = σP , (4)

σ(ρN ) = σN , (5)

σ′(ρN ) = 0. (6)

Here D is the oxygen diffusivity in the spheroid, ∆ = 1
r2

d
dr

(
r2 d
dr

)
is the Laplacian

operator, f(σ(r)) is a Michaelis-Menten type consumption rate in P , reduced by
the factor 1/m < 1 in Q, ν is the constant cell volume fraction in P and Q, and σ∗

is the given oxygen concentration at the exterior. This problem is not trivial, but
it can be proved that (see [4])

• for any given R sufficiently large there exists one and only one solution (oth-
erwise the solution does not exist),

• the differences R− ρP , ρP − ρN tend to stabilize, beyond some value of R, to
values depending on σ∗.

In order to find ρD it is necessary to calculate the velocity field u of the cells in
P ∪ Q ∪ NS. We suppose that the cell volume fraction ν keeps in NS the same
value as in P and Q, and we assume the same mass density for the cells and the
liquid. The saturation condition implies that 1 − ν is the liquid volume fraction.
Denoting by v the liquid velocity field, we have the system

∇ · u = χ, in P, (7)

∇ · u = 0, in Q ∪NS, (8)

∇ · v = −χ ν

1− ν
, in P, (9)

∇ · v = 0, in Q ∪N, (10)

which keeps into account the incompressibility of the mixture, i.e we have ∇· [νu +
(1−ν)v] = 0. Moreover both u and v are radially directed. By imposing the global
flux continuity at r = ρD

v(ρ−D) = νu(ρ+D) + (1− ν)v(ρ+D),

since (10) together with v(0) = 0, which holds by symmetry, imply v(ρ−D) = 0, we
get

νu(ρ+D) + (1− ν)v(ρ+D) = 0,
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so that for any r ∈ (ρD, R) we have

νu + (1− ν)v = 0, (11)

i.e. a global no flux condition holds (therefore, at the steady state both u and v
vanish at r = R). Note that having taken the same density for the cells and for the
liquid, proliferation and degradation do not imply volume changes.

Since u is zero on r = R at the steady state, the radial component u(r) of the
cell velocity can be easily computed giving:

u(r) = − χ

3r2
(R3 − r3), for ρP < r < R, (12)

u(r) = − χ

3r2
(R3 − ρ3P ), for ρD < r < ρP . (13)

The latter formula emphasizes the occurrence of a singularity if ρD is allowed to
vanish. Following the motion along the velocity field (13), we can deduce the value
of ρD imposing that

τD = −
∫ ρN

ρD

dr

u(r)
,

so that ρD is given by
ρ3D = ρ3N − χτD(R3 − ρ3P ), (14)

which represents a constraint on the system, meaning that R has to be sufficiently
large to allow the latter equation to have a positive solution. In other words, through
(13) and (14) we recognize that a transition of cells from the “solid” to the “liquid”
phase that occurs with a fixed delay from death is not compatible (at the steady
state) with a necrotic core fully “solid”, if we want to avoid that the cell velocity
goes to infinity at r = 0.

We write the right hand side of (1) in the form nQσ(r)/(H + σ(r)), where Q
is the maximum oxygen consumption rate per cell and n is the cell concentration.
In the following simulations we will take Q = 8.3 · 10−17mol/(cell· sec) [16], n =
5 · 108cell/cm3 [16], H = 4.64 · 10−3mM [12], m = 2 [7], D = 1.82 · 10−5cm2/sec
[24], σP = 0.05 mM, σN = 0.01 mM, χ = log 2/48 h−1, τD = 48 h.

Fig. 1 shows the radii ρP , ρN , ρD as functions of R, in case of σ∗ = 0.28 mM
[17]. The difference R− ρN and ρN − ρD stabilize for R large enough.
At this point it is clear that the internal structure of the stationary spheroid can
be found once R is known. To proceed further for determining R we must address
the mechanical issue.

3. A mechanical scheme based on the two-fluid model. As we said, we select
the two-fluid model for its simplicity, keeping the additional constraint that the cell
volume fraction ν is everywhere constant. According to such an approach cells are
described as a Newtonian viscous fluid and the extracellular liquid as an inviscid
fluid. There is a general agreement (see [10], [23]) on the following form of the
Cauchy stress tensors for the two components:

TC = ν
[
− pCI + 2ηCDC −

2

3
ηC∇ · uI

]
(15)

TE = (1− ν)
[
− pEI

]
(16)

where DC is the strain rate tensor of the cellular component, ηC is the “viscosity”
of cells (bringing cell-cell interactions in the model), pC , pE , are the pressures in
the respective components. In view of (7), (8) we have ∇ · u = χP (r), where
χP (r) = χ in the region P and vanishes otherwise. Although the two components
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Figure 1. ρP , ρN , ρD as functions of R. Parameter values indi-
cated in the text.

are incompressible, the mass exchange accompanying proliferation makes ∇·u (and
∇ · v) different from zero in the proliferation rim. This explains the structure of
TC . It is important to distinguish between the two pressures pC , pE since it is
possible to apply different normal stresses to each component at the outer surface.
We recall that in spherical coordinates and in spherical symmetry the strain rate
tensor has the form DC = Diag[u′, u/r, u/r].

As in [14], we write the momentum balance equations in the form

δν
du

dt
= ∇ ·TC + mC , (17)

δ(1− ν)
dv

dt
= ∇ ·TE + mE , (18)

where mC , mE are the interaction forces between the components, which are as-
sumed to be proportional to the relative velocity v − u,

mC = λC(v − u), (19)

mE = λE(u− v), (20)

and δ is the common density of the components.
The explicit expression of such forces can be found by imposing that

(i) the overall momentum exchange rate is zero (a customary assumption in mix-
ture theory [26]):

0 = mC + χP δνu + mE − χP δνv =
λE − λC

1− ν
u +

χP δν

1− ν
u. (21)

The momentum exchange is indeed due to direct interaction, through mC ,
mE , and to mass exchange;

(ii) the liquid flow is governed by the Darcy’s law:

v − u = −K∇pE , (22)

where K(1− ν) is the hydraulic conductivity of the spheroid.
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These assumptions yield the formulae

mC = −
(

1

K
+ χP δ

ν

1− ν

)
u, (23)

mE =
u

K
. (24)

In practice mC = −u/K, since the other term is absolutely negligible (and so is
the contribution of mass exchange to the momentum exchange rate).

Inertia is likewise negligible, so that the left hand side of equations (17), (18) can
be replaced with zero. The equations so modified can be looked at as the differential
equations determining the unknown pressures pC , pE in terms of R and of the data
prescribed on the outer surface. After some algebra (see [14] for details) we get
indeed:

p′C = − u

Kν
+

4

3
ηCχδ(r − ρP ), (25)

p′E =
u

K(1− ν)
, (26)

where δ(·) denote the Dirac function.

4. Pressure fields and normal stress continuity. By integrating (25),(26),
where u is expressed by (12),(13), we obtain:

pE(r) = pext +
χ

3K(1− ν)

(
R3

r
+
r2

2
− 3

2
R2

)
, for ρP ≤ r ≤ R, (27)

pE(r) = pE(ρP ) +
χ(R3 − ρ3P )

3K(1− ν)

(
1

r
− 1

ρP

)
, for ρD ≤ r < ρP , (28)

pC(r) = p̂+
2γ

R
− χ

3Kν

(
R3

r
+
r2

2
− 3

2
R2

)
, for ρP < r < R, (29)

pC(r) = pC(ρ−P )− χ(R3 − ρ3P )

3Kν

(
1

r
− 1

ρP

)
, for ρD < r < ρP , (30)

where the jump

pC(ρ+P )− pC(ρ−P ) =
4

3
ηCχ, (31)

is produced by the presence of the Dirac function in equation (25), in turn generated
by the discontinuity of ∇ · u. Note that pE(r) is decreasing and pC(r) is increasing
for r ∈ (ρD, R]. In (27), pext is the external pressure exerted on the extracellular
liquid. The term 2γ/R in (29) is due to the so-called “tumour surface tension”
(denoted by γ), and the sum p̂ + 2γ/R is the total pressure acting on cells at
the outer surface. p̂ is in general greater than pext and includes for example the
reaction of the surrounding medium which has been deformed by the growth of
the spheroid. This is the typical situation in gels. It has been shown [19] that an
increase of the culture gel density results in a reduction of the equilibrium size of
spheroids. The rigorous derivation of p̂ should include the analysis of the stress
in the surrounding material, and the condition of continuity of the normal stress
at r = R. Thus p̂ would include also a contribution originated by the flow itself,
which appears nevertheless to be modest if the cellular viscosity is in the range we
have considered. Since we do not want to deal with the mechanics of the exterior
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domain, here we simply set p̂ = pext, though this question is not trivial and would
deserve a larger discussion.

Remark 1. The physical origin of a surface tension effect in a spheroid is not quite
the same as that of the corresponding phenomenon observed in a liquid drop. In
the latter case surface tension is generated by intermolecular forces in the presence
of curvature. Cells instead interact through macromolecular bridges which can
be formed or destroyed to accommodate internal evolution. Attraction forces are
produced upon stretching of these intercellular bonds and the resulting normal
stress can be considered proportional to curvature only if the latter is not too large.
In any case, the underlying mechanism seems hardly compatible with the “cellular
fluid” model, but we still consider it a necessary compromise. �

Let us turn to our original goal which was to impose the continuity of the normal
component of the stress. The critical interface on which we have to write down this
condition is r = ρD. In the inner liquid core the stress is uniform and isotropic,
reducing to the pressure pE(ρD), which is continuous across the interface. The solid
fraction contribution to the normal stress is

− νpC + 2νηC ~e ·DC~e, (32)

where ~e = ~r/r is the unit normal vector. Since ~e ·DC~e = u′, the continuity of the
normal stress takes the form

νpC(ρ+D)− 2νηCu
′(ρ+D) + (1− ν)pE(ρD) = pE(ρD), (33)

that is

pC(ρ+D) = pE(ρD) + 2ηCu
′(ρ+D). (34)

Taking into account (27)-(31), we obtain the final condition

2γ

R
=

1

ν(1− ν)

χR2

3K

{
R

ρD

[
1−

(ρP
R

)3]
− 3

2

[
1−

(ρP
R

)2]}
+

4

3
ηCχ

{
1 +

(
R

ρD

)3 [
1−

(ρP
R

)3]}
, (35)

which is the desired equation for the determination of R. In this equation, ρP and
ρD are function of R after the solution of problem (1)-(6) and thank to (14). We
recall that to the left hand side we may add any additional normal stress exerted
selectively on cells at the outer surface.

Remark 2. When K is sufficiently small the viscosity term in (35) can be neglected
and the two parameters γ, K enter (35) only through their product. �

Remark 3. When the normal stress is continuous at r = ρD, from (34) we see that
pC(r) is greater than pE(r) for any r in (ρD, R]. �

It is convenient to rewrite (35) in the form

2γ =
1

ν(1− ν)

χR3

3K

{
R

ρD

[
1−

(ρP
R

)3]
− 3

2

[
1−

(ρP
R

)2]}
+

4

3
ηCχR

{
1 +

(
R

ρD

)3 [
1−

(ρP
R

)3]}
, (36)

and to remark that
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(i) the right hand side tends to infinity when R approaches the value for which
ρD vanishes, as well as when R tends to infinity;

(ii) the right hand side has one (and only one) positive minimum, which we will
denote by 2γ∗;

(iii) for γ < γ∗ equation (36) has no solutions. For γ > γ∗ it has two solutions, but
the physical one is the smaller (for a spheroid that has grown to the steady
state from a small size).

A conclusion which seems quite acceptable is therefore that no steady state solu-
tion exists if the external action on the spheroid is not intense enough. The external
action can be provided by the so-called surface tension or by external forces acting
on the cells. This prediction agrees with the results of [22]. When equation (36) has
no solution we must infer that the spheroid grows indefinitely. Of course such state-
ment makes sense only in the framework of the present model and as long as the
chosen boundary conditions can be applied. How to adapt the model to describe
the evolution of a nonstationary spheroid will be the objective of a forthcoming
paper.

5. Numerical results. In [14] we considered, as reference case, a spheroid having
the stationary radius of 1 mm when cultured with σ∗ = 0.28 mM. In that case
we chose ν = 0.6, K = 10−7cm3 · sec/g and ηC = 104 Poise, and we estimated
the power wP supplied by proliferating cells per unit cell volume, obtaining wP =
9.05·10−7g/(cm · sec3). For the hydraulic conductivity measured in tumours, values
two or three orders of magnitude less have been reported [21]. However, we may
observe that the cell number density and the ECM content of in vivo tumours are
likely to be higher than in in vitro spheroids. The chosen value of the cell viscosity
was suggested by measurements reported in [20]. The above values proved to make
the cell-cell friction and the liquid-cell friction contributes to power dissipation of
comparable magnitude.

Keeping the above values for ν, K, ηC , we look for γ such that a value of R close
to 1 mm solves (36) when σ∗ = 0.28 mM. This procedure is illustrated in Fig. 2:
with γ = 0.0107 dyne/cm the equation (36) is solved by R = 984 µm.
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Figure 2. Profile of the r.h.s. of (36) as function of R, for σ∗ =
0.28 mM. The predicted stationary radius is R = 984 µm .
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With γ = 0.0107 dyne/cm, different values of σ∗ yield the results in Fig. 3.
The values in Table 1 reproduce the expected trend of the radius of the stationary
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Figure 3. Profiles of the r.h.s. of (36) as function of R, for differ-
ent values of σ∗. The predicted stationary radii are R = 522 µm
(top) and R = 300 µm (bottom).

spheroid. Though the results are not identical with those of [14], they appear equally
realistic.

We may explore different situations, taking for instance a case in which the liquid-
cell friction dominates (K = 10−8 cm3 · sec/g). In such a case the value γ = 0.0527
dyne/cm predicts R = 971 µm at the steady state for σ∗ = 0.28 mM. With this
value of γ, different values of σ∗ yield the results in Table 1.

It is interesting to make a comparison with the results of [14] based on the
conjecture that any proliferating cell supplies the same power. Clearly, the two
approaches do not look compatible, since the dissipated power (as calculated in
[14] on the basis of the known velocity fields) is not dependent on γ and so will
be the stationary radius determined according to [14]. Nevertheless, in the range
considered, the differences in prediction may be not large. For K = 10−7 cm3 ·
sec/g, σ∗ = 0.28 mM and R = 984 µm, we have computed the dissipated power and
the power per unit cell volume, obtaining wP = 9.67 ·10−7 g/(cm · sec3). Using this
value, by equalling the dissipated power and the power supplied by proliferating
cells we predicted at σ∗ = 0.14 mM and σ∗ = 0.07 mM stationary radii that differ
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K γ σ∗ Radius at the steady state
0.28mM R = 984µm

10−7cm3 · sec/g 0.0107 dyne/cm 0.14mM R = 522µm
0.07mM R = 300µm
0.28mM R = 971µm

10−8cm3 · sec/g 0.0527 dyne/cm 0.14mM R = 493µm
0.07mM R = 293.5µm

Table 1. Radius of the spheroid at the steady state, for different
values of σ∗, K, and γ.

less than 15% from those predicted by the present approach. The same was done for
K = 10−8 cm3 · sec/g, σ∗ = 0.28 mM and R = 971 µm, obtaining wP = 4.30 · 10−6

g/(cm · sec3) and stationary radii even closer to those of Table 1.

6. Modelling cells as a Bingham fluid. Since intercellular links break beyond
some stress, it has been suggested that the Newtonian fluid modelling cells could
be replaced by a Bingham fluid (see [1]).

Let us see how the results of the previous section modify if we adopt this option,
keeping the same symbol for viscosity and introducing the yield stress τ0. The cell
stress tensor is now

TC = −ν
(
pC +

2

3
ηC∇ · u

)
I + ντ (37)

where

τ =

(
2ηC +

τ0√
IIDC

)
DC (38)

if
√
IIτ > τ0, and DC = 0 otherwise. For a tensor A, we define the frame invariant

quantity IIA as

IIA =
1

2
TrA2. (39)

Thus, we find that √
IIτ = 2ηC

√
IIDC

+ τ0, if IIDC
> 0. (40)

Let us compute IIDC
,

IIDC
=
u′2

2
+
u2

r2
, (41)

which on r = ρD gives

IIDC
= 3

u2

ρ2D
, (42)

implying

τ =

(
2ηC +

τ0√
3 |u|ρD

)
DC , for r = ρD. (43)

The radial projection of τ at r = ρD is then 4ηC
|u|
ρD

+ 2 τ0√
3
. Therefore the normal

stress continuity condition on r = ρD is now

νpC − 2νηCu
′ − 2ν

τ0√
3

+ (1− ν)pE = pE . (44)
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Imposing the same condition at r = R, we conclude that (35) modifies to:

2γ

R
=

1

ν(1− ν)

χR2

3K

{
R

ρD

[
1−

(ρP
R

)3]
− 3

2

[
1−

(ρP
R

)2]}
+

4

3
ηCχ

{(
R

ρD

)3 [
1−

(ρP
R

)3]}
+ (

2√
3
−
√

2)τ0. (45)

Again the solution we are looking for is the minimal root. It is immediate to realize
that, if the remaining parameters are not changed, the presence of τ0 has two effects:
it lowers the minimal surface tension for the existence of the steady state, and if
(45) has a solution it is smaller than the solution of (35). For τ0 to be influential,
if e.g. γ/R is of the order of 10−1 dyne/cm2, it must be at least of the order of
10−2dyne/cm2, which happens to be the same order of magnitude of pE(0) − pext
(see [14]).

We may remark that both the surface tension and the yield stress have their
physical origin in the intercellular adhesion bonds. Therefore it is possible that
the surface tension γ has a monotone dependence on the yield stress τ0. In that
case there can be a partial amplification of the effect of the yield stress on the
determination of R.

7. Concluding remarks. In this paper we examined the steady state of tumour
spheroids considering a structure in which the central necrotic region contains an
inner liquid core surrounded by dead cells that keep some mechanical integrity.
This partition is a consequence of assuming that a finite delay is required for the
degradation of dead cells into liquid. The phenomenological assumption of constant
local volume fraction of the cell component is also made. The above structure is
combined with a simple mechanical model that views the cell component as a viscous
fluid and the extracellular liquid as an inviscid fluid. By imposing the continuity of
the normal stress throughout the whole spheroid, we show that a steady state can
exist only if the forces on cells at the outer boundary (provided e.g. by a surface
tension) are intense enough. In such a case we can compute the stationary radius.
The key mechanical parameters are the cell viscosity, the hydraulic conductivity,
and the surface tension coefficient. By giving reasonable values to these parameters,
the model predicts that the stationary radius decreases with the external oxygen
concentration as expected from experimental observations.

The same mechanical scheme was studied in a previous paper [14], in which the
power supplied by each proliferating cells was introduced as a parameter character-
ising all proliferating cells, and the stationary radius was computed by balancing
the dissipated power with the supplied power. The two approaches do not give
the same results (although the results can be numerically similar) because the as-
sumption that the mechanical power supplied by the individual cells is equal for all
the cells, irrespective of their local conditions, is clearly an oversimplification. We
guess that the results could be made congruent by linking the power supplied by
a cell to the component of the local cell-cell interaction which is expressed, in the
two-fluid model, by the difference between the cell pressure and the extracellular
liquid pressure.

As a general remark, we note that the two-fluid approach can be substantially
generalised. Since cells may adapt their mutual interactions to the local dynamical
conditions, one could let the “cell viscosity” depend e.g. on pC (of course this would
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have some influence only when the system is not liquid-dominated). Making the two-
fluid picture more flexible could allow to formulate conjectures on the mechanical
properties of the spheroid, without losing the continuity of the normal stress. For
instance, it would be possible to investigate the possibility that the steady state
radius corresponds to a minimum of the dissipated power (which is certainly not
true for the simple scheme here adopted). As we said in the introduction, the price
to pay for having more flexibility is the introduction of more parameters, which
should always be physically meaningful. The extension proposed in Sect.6 goes in
that direction and is indeed promising,
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