The Within-Host dynamics of malaria infection with immune response

  • Received: 01 December 2010 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 34C23, 34D23; Secondary: 92C60.

  • Malaria infection is one of the most serious global health problems of our time. In this article the blood-stage dynamics of malaria in an infected host are studied by incorporating red blood cells, malaria parasitemia and immune effectors into a mathematical model with nonlinear bounded Michaelis-Menten-Monod functions describing how immune cells interact with infected red blood cells and merozoites. By a theoretical analysis of this model, we show that there exists a threshold value $R_0$, namely the basic reproduction number, for the malaria infection. The malaria-free equilibrium is global asymptotically stable if $R_0<1$. If $R_0>1$, there exist two kinds of infection equilibria: malaria infection equilibrium (without specific immune response) and positive equilibrium (with specific immune response). Conditions on the existence and stability of both infection equilibria are given. Moreover, it has been showed that the model can undergo Hopf bifurcation at the positive equilibrium and exhibit periodic oscillations. Numerical simulations are also provided to demonstrate these theoretical results.

    Citation: Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999

    Related Papers:

    [1] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
    [2] Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006
    [3] Jia Li . A malaria model with partial immunity in humans. Mathematical Biosciences and Engineering, 2008, 5(4): 789-801. doi: 10.3934/mbe.2008.5.789
    [4] Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246
    [5] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [6] Beryl Musundi . An immuno-epidemiological model linking between-host and within-host dynamics of cholera. Mathematical Biosciences and Engineering, 2023, 20(9): 16015-16032. doi: 10.3934/mbe.2023714
    [7] Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr . On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Mathematical Biosciences and Engineering, 2014, 11(4): 741-759. doi: 10.3934/mbe.2014.11.741
    [8] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [9] Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361
    [10] Zhilan Feng, Carlos Castillo-Chavez . The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3(3): 467-483. doi: 10.3934/mbe.2006.3.467
  • Malaria infection is one of the most serious global health problems of our time. In this article the blood-stage dynamics of malaria in an infected host are studied by incorporating red blood cells, malaria parasitemia and immune effectors into a mathematical model with nonlinear bounded Michaelis-Menten-Monod functions describing how immune cells interact with infected red blood cells and merozoites. By a theoretical analysis of this model, we show that there exists a threshold value $R_0$, namely the basic reproduction number, for the malaria infection. The malaria-free equilibrium is global asymptotically stable if $R_0<1$. If $R_0>1$, there exist two kinds of infection equilibria: malaria infection equilibrium (without specific immune response) and positive equilibrium (with specific immune response). Conditions on the existence and stability of both infection equilibria are given. Moreover, it has been showed that the model can undergo Hopf bifurcation at the positive equilibrium and exhibit periodic oscillations. Numerical simulations are also provided to demonstrate these theoretical results.


  • This article has been cited by:

    1. Tianqi Song, Chuncheng Wang, Boping Tian, Modelling intra-host competition between malaria parasites strains, 2020, 39, 2238-3603, 10.1007/s40314-020-1072-5
    2. Hongyan Chen, Wendi Wang, Rui Fu, Jianfeng Luo, Global analysis of a mathematical model on malaria with competitive strains and immune responses, 2015, 259, 00963003, 132, 10.1016/j.amc.2015.02.073
    3. Neha Thakre, Priyanka Fernandes, Ann-Kristin Mueller, Frederik Graw, Examining the Reticulocyte Preference of Two Plasmodium berghei Strains during Blood-Stage Malaria Infection, 2018, 9, 1664-302X, 10.3389/fmicb.2018.00166
    4. Woldegebriel A. Woldegerima, Miranda I. Teboh-Ewungkem, Gideon A. Ngwa, The Impact of Recruitment on the Dynamics of an Immune-Suppressed Within-Human–Host Model of the Plasmodium falciparum Parasite, 2019, 81, 0092-8240, 4564, 10.1007/s11538-018-0436-0
    5. THE COUPLED WITHIN-AND BETWEEN-HOST DYNAMICS IN THE EVOLUTION OF HIV/AIDS IN CHINA, 2015, 5, 2156-907X, 731, 10.11948/2015056
    6. Titus Okello Orwa, Rachel Waema Mbogo, Livingstone Serwadda Luboobi, Uncertainty and Sensitivity Analysis Applied to an In-Host Malaria Model with Multiple Vaccine Antigens, 2019, 5, 2349-5103, 10.1007/s40819-019-0658-3
    7. Caroline O. Buckee, Amy Wesolowski, Nathan N. Eagle, Elsa Hansen, Robert W. Snow, Mobile phones and malaria: Modeling human and parasite travel, 2013, 11, 14778939, 15, 10.1016/j.tmaid.2012.12.003
    8. F.B. Agusto, M.C.A. Leite, M.E. Orive, The transmission dynamics of a within-and between-hosts malaria model, 2019, 38, 1476945X, 31, 10.1016/j.ecocom.2019.02.002
    9. A. M. Elaiw, A. D. Al Agha, Global analysis of a reaction–diffusion blood-stage malaria model with immune response, 2020, 13, 1793-5245, 2050029, 10.1142/S1793524520500291
    10. Titus Okello Orwa, Rachel Waema Mbogo, Livingstone Serwadda Luboobi, Mathematical Model for Hepatocytic-Erythrocytic Dynamics of Malaria, 2018, 2018, 0161-1712, 1, 10.1155/2018/7019868
    11. Ahmed Elaiw, Afnan Al Agha, Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response, 2020, 8, 2227-7390, 563, 10.3390/math8040563
    12. Liming Cai, Necibe Tuncer, Maia Martcheva, How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria, 2017, 40, 01704214, 6424, 10.1002/mma.4466
    13. GIDEON A. NGWA, WOLDEGEBRIEL A. WOLDEGERIMA, MIRANDA I. TEBOH-EWUNGKEM, A MATHEMATICAL STUDY OF THE IMPLICIT ROLE OF INNATE AND ADAPTIVE IMMUNE RESPONSES ON WITHIN-HUMAN PLASMODIUM FALCIPARUM PARASITE LEVELS, 2020, 28, 0218-3390, 377, 10.1142/S0218339020400069
    14. Titus Okello Orwa, Rachel Waema Mbogo, Livingstone Serwadda Luboobi, Multiple-Strain Malaria Infection and Its Impacts on Plasmodium falciparum Resistance to Antimalarial Therapy: A Mathematical Modelling Perspective, 2019, 2019, 1748-670X, 1, 10.1155/2019/9783986
    15. Ramses Djidjou Demasse, Arnaud Ducrot, An Age-Structured Within-Host Model for Multistrain Malaria Infections, 2013, 73, 0036-1399, 572, 10.1137/120890351
    16. Steffen E. Eikenberry, Abba B. Gumel, Mathematical modeling of climate change and malaria transmission dynamics: a historical review, 2018, 77, 0303-6812, 857, 10.1007/s00285-018-1229-7
    17. Titus Orwa, Rachel Mbogo, Livingstone Luboobi, Mathematical Model for the In-Host Malaria Dynamics Subject to Malaria Vaccines, 2018, 5, 23737867, 10.30707/LiB5.1Orwa
    18. Maia Martcheva, Xue-Zhi Li, Linking immunological and epidemiological dynamics of HIV: the case of super-infection, 2013, 7, 1751-3758, 161, 10.1080/17513758.2013.820358
    19. Ramsès Djidjou-Demasse, Arnaud Ducrot, Nicole Mideo, Gaëtan Texier, Understanding dynamics of Plasmodium falciparum gametocytes production: Insights from an age-structured model, 2022, 539, 00225193, 111056, 10.1016/j.jtbi.2022.111056
    20. Titus Okello Orwa, Rachel Waema Mbogo, Livingstone Serwadda Luboobi, Optimal control analysis of hepatocytic-erythrocytic dynamics of Plasmodium falciparum malaria, 2022, 7, 24680427, 82, 10.1016/j.idm.2021.11.006
    21. I. M. Elbaz, M. A. Sohaly, H. El-Metwally, Modeling the stochastic within-host dynamics SARS-CoV-2 infection with discrete delay, 2022, 141, 1431-7613, 365, 10.1007/s12064-022-00379-5
    22. Shade Horn, Jacky L. Snoep, David D. van Niekerk, Uncovering the effects of heterogeneity and parameter sensitivity on within-host dynamics of disease: malaria as a case study, 2021, 22, 1471-2105, 10.1186/s12859-021-04289-z
    23. Jian Liu, Zhiming Guo, Hongpeng Guo, The blood-stage dynamics of malaria infection with immune response, 2022, 16, 1751-3758, 294, 10.1080/17513758.2021.2017033
    24. 潇洒 孙, Coupled Models of Malaria and Vector-Borne Disease, 2022, 11, 2324-7991, 695, 10.12677/AAM.2022.112076
    25. Nitesh Kumawat, Mubasher Rashid, Akriti Srivastava, Jai Prakash Tripathi, Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response, 2023, 176, 09600779, 114151, 10.1016/j.chaos.2023.114151
    26. Ann Nwankwo, Daniel Okuonghae, Numerical assessment of the impact of hemozoin on the dynamics of a within-host malaria model, 2024, 126, 0307904X, 526, 10.1016/j.apm.2023.11.010
    27. Jemal Muhammed Ahmed, Getachew Teshome Tilahun, Shambel Tadesse Degefa, Within-host mathematical model of malaria parasite with cell-mediated and antibody-mediated immune systems, 2023, 0228-6203, 1, 10.1080/02286203.2023.2288771
    28. Jemal Muhammed Ahmed, Getachew Teshome Tilahun, Shambel Tadesse Degefa, A cell-level dynamical model for malaria parasite infection with antimalarial drug treatment, 2023, 9, 2297-4687, 10.3389/fams.2023.1282544
    29. Jemal Muhammed Ahmed, Getachew Tashome Tilahun, Shambel Tadesse Degefa, In-host fractional order model for malaria parasite dynamics with immune system, 2024, 2363-6203, 10.1007/s40808-024-02004-4
    30. Jemal Muhammed Ahmed, Getachew Teshome Tilahun, Shambel Tedesse Degefa, Mathematical model and analysis for within-host dynamics of the malaria parasite infection with optimal control strategies, 2024, 26667207, 100470, 10.1016/j.rico.2024.100470
    31. Jemal Muhammed Ahmed, Getachew Tashome Tilahun, Shambel Tadesse Degefa, Vladimir Mityushev, A Mathematical Model for the Within‐Host Dynamics of Malaria Parasite with Adaptive Immune Responses, 2024, 2024, 0161-1712, 10.1155/2024/6667262
    32. Junyuan Yang, Xinyi Duan, Guiquan Sun, An immuno-epidemiological model with non-exponentially distributed disease stage on complex networks, 2024, 00225193, 111964, 10.1016/j.jtbi.2024.111964
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3551) PDF downloads(733) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog