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Abstract. Malaria infection is one of the most serious global health problems

of our time. In this article the blood-stage dynamics of malaria in an infected
host are studied by incorporating red blood cells, malaria parasitemia and im-

mune effectors into a mathematical model with nonlinear bounded Michaelis-

Menten-Monod functions describing how immune cells interact with infected
red blood cells and merozoites. By a theoretical analysis of this model, we show

that there exists a threshold value R0, namely the basic reproduction number,

for the malaria infection. The malaria-free equilibrium is global asymptotically
stable if R0 < 1. If R0 > 1, there exist two kinds of infection equilibria: malaria

infection equilibrium (without specific immune response) and positive equilib-
rium (with specific immune response). Conditions on the existence and stabil-

ity of both infection equilibria are given. Moreover, it has been showed that

the model can undergo Hopf bifurcation at the positive equilibrium and exhibit
periodic oscillations. Numerical simulations are also provided to demonstrate

these theoretical results.

1. Introduction. Malaria is one of the three most dangerous infectious diseases
worldwide (along with HIV/AIDS and tuberculosis). It is endemic in the tropical
and subtropical regions of the world and caused an estimated 243 million cases led
to an estimated 863,000 deaths in 2008 (WHO [42]). It is believed that half of the
world’s population is at risk of malaria (WHO [42]). Malaria infection in a host is
caused by an inoculum of parasites from a blood-feeding female Anopheles mosquito
carrying one or a combination of any of the four species of Plasmodium parasites:
P. falciparum, P. malariae, P. ovale, and P. vivax. Among them, P. falciparum is
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responsible for almost all of the deaths attributed to malaria (McKenzie and Bossert
[25]).

The malaria parasites first penetrate liver cells of the host and then move into the
blood, where they multiply and undergo replication cycles in the red blood cells (or
erythrocytes): the parasites multiply in the red blood cells which cause the infected
red blood cells to burst and release a mass of new parasites (called merozoites)
that quickly invade other red blood cells, and the cycle is repeated. When malaria
parasites evolve in the host, they can stimulate the activity of immune cells in the
host which produce an immune response to fight the infection. Immune response
can either prevent the re-invasion of merozoites or increase the death rate of infected
red blood cells (Stevenson and Riley [38] and Good et al. [12]).

Human immune system is composed of two subdivisions, the innate (non-specific)
immune system and the adaptive (specific) immune system. The innate immune
system is the first line of defense against invading pathogens while the adaptive im-
mune system acts as a second line of defense which also provides protection against
re-exposure to the same pathogen. Malaria infection triggers both innate and adap-
tive immune responses (Augustine et al. [6], Langhorne et al. [21], Malaguarnera
and Musumeci [23]). Innate immune cells such as natural killer cells and dendritic
cells are involved in the clearance of circulating parasites infected red blood cells
(Cuban et al. [8], Augustine et al. [6]). Adaptive immune cells such as CD4+

and CD8+ are important for protection against malaria and B cell responses are
induced by Plasmodium infection (Langhorne et al. [21], Augustine et al. [6]). The
immune system has both cellular and humoral components by which they carry
out their protective function. Cellular immunity is that T lymphocytes secrete pro-
teins to act directly against the pathogens and stimulate cytotoxic T-cells which
protect the host cells by lysis of infected cells and reduce the production of mero-
zoites and gametocytes. Humoral immunity is the immune protection mediated by
B lymphocytes which are activated by merozoites in blood and secrete antibodies
into circulation as they remove merozoites from blood (Deans and Cohen [9] and
Tumwiine et al. [40]). Though antibody-mediated immunity is more effective than
cell-mediated immunity (Deans and Cohen [9]), extensive numerical analysis by An-
derson et al. [4] suggested that it is very difficult to eradicate the parasites from
the host by antibody-mediated attack against the free merozoites alone due to their
short life-expectancy outside the erythrocytes.

In the last two decades, many mathematical models have been employed to de-
scribe the within-host dynamics of malaria infection, namely the dynamics of the
blood stages of the malaria parasites and their interactions with red blood cells
and immune effectors. The first models were proposed by Anderson et al. [4] (see
also Hetzel and Anderson [16] and Anderson [3]) which consisted of healthy red
blood cells, infected red blood cells, malaria parasitemia, without or with immune
effectors. These models have been generalized by many researchers for different
purposes, we refer to a review by Molineaux and Dietz [29] on various such gener-
alizations and references.

Oscillations are common in the immune system (Stark et al. [37]), in particular
when the host is infected by malaria parasites. Periodic occurrence of fever is the
cardinal symptom of malaria and the period has been identified with the length of
the replication cycle (Rouzine and Mckenzie [34]), which is 48 hours for P. falci-
parum. The periodicity indicates that malaria parasite replication in the red blood
cells is synchronized: parasites enter and are released from the red blood cells at
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approximately the same times (Rouzine and Mckenzie [34]). However, the mech-
anism of this synchronization is still not well-understood and quite a few models
have been proposed to study the synchronization. For example, Kwiatkowsti and
Nowak [20] proposed a 2-dimensional discrete model to show that the interaction
between malaria parasites and red blood cells naturally tends to generate periodic
fevers in the host when the replication rate is high. Rouzine and McKenzie [34]
constructed an age-structured model to demonstrate that innate immune responses
cause synchronization between the replication cycles of parasites in red blood cells
which is reflected in periodic fevers in the host. Su et al. [39] proved the exis-
tence of Hopf bifurcation in the age-structured malaria infection model of Rouzine
and McKenzie [34] by using the replication rate as the bifurcation parameter and
showed numerically that synchronization with regular periodic oscillations (of pe-
riod 48 h) occurs when the replication rate increases. Hoshen et al. [17] and Dong
and Cui [11] introduced time delay into the basic model (without immune response)
of Anderson et al. [4] to produce periodic oscillations in host-parasites. See also
Mitchell and Carr [28]. When immune response is included in the basic model, via
numerical simulations Anderson et al. [4] and Hetzel and Anderson [16] observed
that periodic oscillations occur in the model with killing of infected red blood cells
or with immune response directly against merozoites and infected red blood cells.

In this article we study the blood-stage dynamics of malaria in an infected host by
incorporating healthy red blood cells, infected red blood cells, malaria parasitemia
and immune effectors into a mathematical model. The model is a generalization of
the basic models of Anderson et al. [4] and Anderson [3] with nonlinear bounded
Michaelis-Menten-Monod functions describing how immune cells interact with the
infected red blood cells and merozoites. We present some local analysis of the model,
namely the existence and stability of the malaria-free, malaria infection (without
specific immune response), and positive (with specific immune response) equilibria,
in terms of the basic reproduction number. It is shown that if the basic reproduction
numbers is greater than one, then the malaria parasites can infect the host and
establish a persistent infection. The model also exhibits periodic oscillations due
to Hopf bifurcation at the positive equilibrium by using the proliferation rate of
the immune cells induced by infected red blood cells as the bifurcation parameter,
which demonstrates that synchronicity is an inherent feature of malaria infection
with immune response. Thus, we provide theoretical analysis and proof of the
numerical observations of Anderson et al. [4] and Hetzel and Anderson [16] on
the existence of periodic oscillations in the model with immune response. We also
present some numerical simulations to illustrate out results.

This paper is organized as follows. In section 2 we propose a simple mathe-
matical model for the within-host dynamics of malaria infection based on the basic
understanding of biological interactions between malaria parasites, red blood cells,
and immunity effectors, and some simple assumptions about the immune system.
In section 3 we analyze the equilibria and obtain the basic reproduction numbers
for malaria infection. We then present some numerical simulations and give some
discussion in section 4.

2. Mathematical modeling. In the malaria infection process of a host, there are
four dynamical variables of populations: uninfected red blood cells H(t), infected
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red blood cells I(t), free malaria parasites M(t), and immunity effectors E(t) (An-
derson et al. [4], Chiyaka et al. [7], Hetzel and Anderson [16], Molineaux and Dietz
[29], and McQueen and McKenzie [26]).

Red blood cells develop continuously from stem cells in the bone marrow through
reticuloctyes to mature in about 7 days and live a total of about 120 days (Rapaport
[33]). The population of uninfected red blood cells satisfies the equation dH

dt =

λ − d1H in the absence of any infection, which converges to a steady state λ
d1

,
where λ is a constant product rate from the bone marrow and d1 is the constant
death rate of uninfected red blood cells, respectively. A density of about 5 million
red blood cells per µl is maintained in adult males (Rapaport [33] and McQueen
and McKenzie [26]).

In the body system of an infected host, the invading parasites will infect the red
blood cells of the host. We assume that malaria parasites infect the red blood cells
at a rate proportional to the contact rate of their population size, αMH, where α
is a positive constant which describes the rate or probability of successful infection
by a malaria parasite. It has been reported that up to 500, 000 red blood cells per
µl are parasitized with P. falciparum and only 25, 000 cells per µl with P. vivax, P.
ovale, or P. malariae (Mandell et al. [24]). The infected cells die at rate δR per day
so that 1/δ is the life-expectancy of infected red blood cells (approximately 2 days,
see Anderson et al. [4]).

Immune responses against malaria infections are complex and stage-specific. The
malaria parasite induces a specific immune response which can stimulate the release
of cytokines and activate the host’s monocytes, neutrophils, T-cells, and natural
killer cells to react to the different stage parasite (Malaguarnera and Musumeci [23]).
It would be reasonable to include various innate, antibody and T-cell responses to
malaria parasite in modeling the within-host dynamics (see McQueen and McKenzie
[27] and Chiyaka et al. [7]). However, for the sake of simplicity and analysis, we only
consider the immunity effectors E(t) as the total capacity of the immune response
of the host to infected cells by parasites.

Previously, the killing of infected cells by immunity effectors has been modeled
by a simple mass-action term depending only on the product of the densities of
the parasite and the immune cells which is an unbounded bilinear function (see
Anderson et al. [4] and Hetzel and Anderson [16]). Taking into account the fact
that cell proliferation can saturate and that there is a handling time in immune
responses, the more reasonable nonlinear bounded Michaelis-Menten-Monod func-
tion was firstly used by Agur et al. [2] and Antia et al. [5] and late formally
derived and proposed by De Boer and Perelson [10] and Pilyugin and Antia [32]
to describe the interaction between immune cells and their targets (bacteria, para-
sites, viruses, etc.). Though there are no clinical or experimental data to support
that the interaction between immune responses and malaria parasites satisfies the
Michaelis-Menten-Monod function, we follow De Boer and Perelson [10], Pilyugin
and Antia [32], and Chiyaka et al. [7] to use such a function p1IE/(1 + βI) to
describe the killing of infected cells I by the immunity effectors E, where p1 is the
rate or possibility of successful removal of infected red blood cells I by immunity
effectors and 1/β is a saturation constant that simulates immune cells to grow at
half their maximum rate. It is also assumed that the presence of infected cells
stimulates the proliferation of immune cells at a net rate k1IE/(1 + βI), where
k1 is the proliferation rate of lymphocytes. Immune effectors decay at a rate d2.
Free malaria parasites is produced from merozoites which replicate at a rate r in
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an infected red blood cell and die at a rate µ. Note that the replication rate r is
understood as the number (r1) of merozoites produced by each infected red blood
cell times the rate (δ) at which the infected red blood cells burst due to infection.
We also assume that antibody-mediated attack directed against the free merozoites
in the blood system (Anderson et al. [4]), given by p2ME/(1 + γM), and a net
production rate of merozoite-specific antibodies of k2ME/(1 + γM). p2 is the rate
or possibility of successful removal of free merozoites M by immunity effectors, 1/γ
is a saturation constant, and k2 is the proliferation rate of lymphocytes due to the
interactions between E and M.

The mathematical model for malaria parasites infection in a host consists of four
ordinary differential equations:

dH

dt
= λ− d1H − αHM,

dI

dt
= αHM − δI − p1IE

1 + βI
,

dM

dt
= rI − µM − p2ME

1 + γM
,

dE

dt
= −d2E +

k1IE

1 + βI
+

k2ME

1 + γM
.

(1)

The variables and their initial values are presented in Table 1. All parameters and
their biological interpretations are given in Table 2.

Note that the terms ME/(1 + γM) and IE/(1 + βI) describe, respectively, how
the parasites and infected red cells simulate the activation of the immune effectors,
they are regarded to describe the humoral and cell-mediated immunity, respectively
(Anderson et al. [4], Murase et al. [30], Tumwiine et al. [40]).

We would like to make some remarks on the choice of parameter values and
their units. Some parameters were adapted from other references directly, such
as λ and d2 from Anderson et al. [4]. Some other parameters were obtained by
conversion and calculation of that from other references. For example, the term
k1IE
1+βI appeared as (k1/β)IE

(1/β)+βI in Chiyaka et al. [7], so we calculated the parameter

values correspondingly and changed their units accordingly.
Model (1) generalizes several known models, including the basic models in Ander-

son et al. [4] and Anderson [3], the pathogen-immune interaction model developed
by Nowak and Bangham [31], and some variants in Liu [22], Murase et al. [30],
and Tumwiine et al. [40]. When the immune response functions are unbounded
bilinear functions, that is when β = γ = 0, Murase et al. [30] and Tumwiine et al.
[40] studied the stability of these models. In particular, Kajiwara and Sasaki [19]
proved that the models of Liu [22] and Murase et al. [30] are indeed globally stable.
However, numerical simulations by Anderson et al. [4] and Hetzel and Anderson
[16] indicated that periodic oscillations occur in the model with immune response.
We shall study the existence and stability of the malaria-free, malaria infection, and
positive equilibria and show that the model exhibits periodic oscillations via Hopf
bifurcation at the positive equilibrium by using the proliferation rate of the immune
cells induced by infected red blood cells as the bifurcation parameter.

3. Mathematical analysis. In the section we study the dynamics of model (1)
which imply various outcomes of malaria parasite infection within a host. Because
of the biological meaning, we consider system (1) only in the first orthant R4

+ =
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Table 1. Variables in Model (1)

Symbols Variables Initial Values Ref.
H(t) population of red blood cells (RBC) 5× 106cells/µl [4, 7, 16, 26]
I(t) population of infected RBC 0 [4, 7, 16, 26]
M(t) population of malaria parasites 104cells/µl [4, 7, 16, 26]
E(t) population of immunity effectors 10−4cells/µl [4, 7, 16, 26]

Table 2. Parameters in Model (1)

Sym. Paras. I.V. Ref.
λ production rate of RBC 4.15× 104 cells/µl/day [4]
d1 decay rate of RBC 8.3× 10−3/day [4]
µ decay rate of malaria parasites 48/day [16]
d2 decay rate of immunity effectors 0.05/day [4]
α infection of RBC by malaria parasites 2× 10−9 µl/cell/day [16]
δ decay rate of I(t) 1.0/day [16]
r product rate of malaria parasites 12/day [16]
p1 removal rate of I(t) by immune system 10−8 µl/cell/day [16]
p2 removal rate of M(t) by immune system 10−8 µl/cell/day [16]
k1 proliferation rate of E(t) by I(t) 2.5× 10−5 µl/cell/day [7]
k2 proliferation rate of E(t) by M(t) 4.69× 10−5 µl/cell/day [7]
β 1/β half saturation constant for I(t) 5× 10−4 µl/cell [7]
γ 1/γ half saturation constant for M(t) 6.67× 10−4 µl/cell [7]

{(H, I,M,E) : H ≥ 0, I ≥ 0,M ≥ 0, E ≥ 0}. We can show that the first orthant
R4

+ is positively invariant for flows of (1), i.e., every solution of model (1) with the
initial values in R4

+ will always stay there.
We first study the existence of equilibria of system (1) in R4

+. Setting the right-
hand sides of system (1) to zero, we have the following equations

λ− d1H − αHM = 0,

αHM − δI − p1IE
1+βI = 0,

rI − µM − p2ME
1+γM = 0,

−d2E + k1IE
1+βI + k2ME

1+γM = 0.

(2)

Therefore, the existence of equilibria of system (1) in R4
+ is equivalent to that of

nonnegative solutions of equations (2). It can be checked that system (1) always
has one equilibrium P0 = (λ/d1, 0, 0, 0) for all parameters values, which represents
the state in which there is no malaria infection in the host. Hence, we call P0

the malaria-free equilibrium. Now we find malaria infection equilibria. There are
two cases for these equilibria. One case is that the host lacks immune response
as malaria parasites from a blood-feeding female Anopheles mosquito invade and
produce infection in a host. Thus, E = 0. We denote this equilibrium by P1 =
(H1, I1,M1, 0). The other case is a positive equilibrium P ∗ = (H∗, I∗,M∗, E∗)
which implies that the host has immune response when malaria parasites invade
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and produce infection in a host. Let

R0 =
rαλ

d1µδ
.

Following van den Driessche and Watmough [41] and Xiao and Bossert [43], we can
see that R0 is the basic reproduction number for the malaria infection in a host.

From equations (2), we can obtain the following lemma.

Lemma 3.1. System (1) has a unique equilibrium which is the malaria-free equi-
librium P0 = (λ/d1, 0, 0, 0) if R0 ≤ 1 and at least two equilibria if R0 > 1. More
precisely,

(i) system (1) has only two equilibria: P0 = (λ/d1, 0, 0, 0) and P1 = (H1, I1,M1, 0)

if R0 > 1 and d2 ≥ k1
β + k2

γ , where H1 = λ
d1R0

, I1 = λ
δ
(R0−1)
R0

,M1 = d1
α (R0−1);

(ii) system (1) has three equilibria: P0 = (λ/d1, 0, 0, 0), P1 = (H1, I1,M1, 0) and
P ∗ = (H∗, I∗,M∗, E∗) if R0 > 1, k2γ ≤ d2 ≤

k1
β and A4M

4+A3M
3+A2M

2+

A1M+A0 = 0 has a positive solution M∗ with 0 < M∗ < min{d1α (R0−1), L},
where

H∗ =
λ

d1 + αM∗
, I∗ =

d2 + (d2γ − k2)M∗

k1 − βd2 + (k1γ + k2β − d2βγ)M∗
,

E∗ = (1 + γM∗)
rd2 + (rd2γ − rk2 − µk1 + µβd2)M∗ − µ(k1γ + k2β − d2βγ)M∗2

(k1 − βd2)p2M∗ + (k1γ + k2β − d2βγ)p2M∗
2

A4 = p1αµ(k2 − d2)(k1γ + k2β − d2βγ),

A3 = p1α(d2 − k2)(d2γ − k2 − µk1 + µβd2)− p2k1αλ(k1γ + k2β

− p1µ(d1d2 − d1k2 + αd2)(k1γ + k2β − d2βγ)− d2βγ) + p2k1αδ(d2γ − k2),

A2 = p1(d1d2 − d1k2 + αd2)(d2γ − k2 − µk1 + µβd2)− p1d1d2µ(k1γ + k2β − d2βγ)

+ p1d2α(d2 − k2)− p2k1(αλk1 − αβλd2 − δγd1d2 − δd1k2 − αδd2),

A1 = p1d1d2(d2γ − k2 − µk1 + µβd2) + p1d2(d1d2 − d1k2 + αd2) + p2d1d2δk1,

A0 = p1d1d
2
2, L =

r(d2γ − k2)− µ(k1 − βd2) +
√
4

2µ(k1γ + k2β − d2βγ)
,

4 = µ2(k1 − βd2)2 + r2(d2γ − k2)2 + 2µrk1k2 + 2µrβγd2(
k1
β

+
k2
γ
− d2).

Proof. The existence of the equilibrium P0 or P1 can be obtained directly from (2)
by setting E = 0. Thereby, we only need to seek conditions for the existence of the
positive equilibrium P ∗ = (H∗, I∗,M∗, E∗) of system (1).

Suppose that (H∗, I∗,M∗, E∗) is a positive solution of (2). Then from the last
equation of (2) we have

d2 =
k1I
∗

1 + βI∗
+

k2M
∗

1 + γM∗
,

which leads to
k1
β

+
k2
γ
− d2 =

k1
β + β2I∗

+
k2

γ + γ2M∗
> 0.

Hence, it is necessary for the existence of the positive equilibrium P ∗ that
d2 <

k1
β + k2

γ , and

I∗ =
d2 + (d2γ − k2)M∗

k1 − βd2 + (k1γ + k2β − d2βγ)M∗
. (3)
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On the other hand, from the second and the third equations of (2), we respectively
have

αH∗M∗ − δI∗ =
p1I
∗E∗

1 + βI∗
> 0,

rI∗ − µM∗ =
p2M

∗E∗

1 + γM∗
> 0.

Thus, µM∗

r < I∗ < αH∗M∗

δ . Note that H∗ = λ
d1+αM∗ by the first equation of (2).

Hence,
µM∗

r < I∗ < λαM∗

δ(d1+αM∗) <
λαM∗

δd1
. (4)

This gives the other necessary condition for the existence of the positive equilib-
rium P ∗ which is R0 > 1. Therefore, if system (1) has a positive malaria infection
equilibrium P ∗ = (H∗, I∗,M∗, E∗), then R0 > 1 and d2 <

k1
β + k2

γ .

In the following we discuss the sufficient conditions on the existence of the positive
equilibrium P ∗. From (2), we can obtain

H∗ =
λ

d1 + αM∗
,

I∗ =
d2 + (d2γ − k2)M∗

k1 − βd2 + (k1γ + k2β − d2βγ)M∗
,

E∗ =
k1
p1d2

(αH∗M∗ − δI∗) +
k2
p2d2

(rI∗ − µM∗)

= (1 + γM∗)
rd2 + (rd2γ − rk2 − µk1 + µβd2)M∗ − µ(k1γ + k2β − d2βγ)M∗2

(k1 − βd2)p2M∗ + (k1γ + k2β − d2βγ)p2M∗
2 .

(5)

It is clear that H∗ > 0, I∗ > 0, and E∗ > 0 if the following conditions hold:

M∗ > 0,
k2
γ
≤ d2 ≤

k1
β
,

αH∗M∗ − δI∗ > 0, rI∗ − µM∗ > 0.
(6)

From the last two inequalities of (6) and the expression of I∗ in (5), we obtain
that

µM∗

r
<

d2 + (d2γ − k2)M∗

k1 − βd2 + (k1γ + k2β − d2βγ)M∗
<

λαM∗

δ(d1 + αM∗)
.

This is equivalent to the following inequalities

F (M∗) < 0, G(M∗) < 0, (7)

where

F (M∗)
4
= µ(k1γ + k2β − d2βγ)M∗2 + [µ(k1 − βd2)− r(d2γ − k2)]M∗ − rd2,

G(M∗)
4
= α(d2γ − k2)M∗2 + [αd2 − d1(d2γ − k2)(R0 − 1)]M∗ − d1d2(R0 − 1).

Note that F (M∗) = 0 has a negative root and a positive root L,

L =
r(d2γ − k2)− µ(k1 − βd2) +

√
4

2µ(k1γ + k2β − d2βγ)
,

where 4 = µ2(k1 − βd2)2 + r2(d2γ − k2)2 + 2µrk1k2 + 2µrβγd2(k1β + k2
γ − d2).
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Note that G(M∗) = 0 also has a negative root and a positive root d1
α (R0 − 1).

Therefore, when 0 < M∗ < min{L, d1α (R0− 1)}, we have F (M∗) < 0 and G(M∗) <
0.

We now discuss the conditions that M∗ should satisfy. Substituting (5) into the
second equation of (2), after some calculations we obtain the equation

A4M
4 +A3M

3 +A2M
2 +A1M +A0 = 0, (8)

where

A4 = p1αµ(k2 − d2)(k1γ + k2β − d2βγ),

A3 = p1α(d2 − k2)(d2γ − k2 − µk1 + µβd2)− p2k1αλ(k1γ + k2β − d2βγ)

− p1µ(d1d2 − d1k2 + αd2)(k1γ + k2β − d2βγ) + p2k1αδ(d2γ − k2),

A2 = p1(d1d2 − d1k2 + αd2)(d2γ − k2 − µk1 + µβd2)− p1d1d2µ(k1γ + k2β − d2βγ)

+ p1d2α(d2 − k2)− p2k1(αλk1 − αβλd2 − δγd1d2 − δd1k2 − αδd2),

A1 = p1d1d2(d2γ − k2 − µk1 + µβd2) + p1d2(d1d2 − d1k2 + αd2) + p2d1d2δk1,

A0 = p1d1d
2
2.

Therefore, if R0 > 1, k2γ ≤ d2 ≤
k1
β and equation (8) has a positive solution M∗ with

0 < M∗ < min{L, d1α (R0 − 1)}, then (2) has a positive solution (H∗, I∗,M∗, E∗),
which implies statement (ii). We complete the proof.

We now start to study the stability of these equilibria of system (1). We compute
the Jacobian matrix of system (1) at point P = (H, I,M,E), denoted by J(P ).
Then

J(P ) =


−d1 − αM 0 −αH 0

αM −δ − p1E
(1+βI)2 αH − p1I

1+βI

0 r −µ− p2E
(1+γM)2 − p2M

1+γM

0 k1E
(1+βI)2

k2E
(1+γM)2

k1I
1+βI + k2M

1+γM − d2

 .

3.1. Local and global stability of the malaria-free equilibrium P0. At the
malaria-free equilibrium P0 = (λ/d1, 0, 0, 0), we have the Jacobian matrix

J(P0) =


−d1 0 −αλd1 0

0 −δ αλ
d1

0

0 r −µ 0
0 0 0 −d2

 ,

and its characteristic equation is

(Λ + d1)(Λ + d2)(Λ2 + (µ+ δ)Λ + δµ− rαλ/d1) = 0. (9)

From (9), it can be seen that all eigenvalues are negative if R0 < 1 and one of the
eigenvalues is positive if R0 > 1. Therefore, we have the following lemma.

Lemma 3.2. The malaria-free equilibrium P0 of system (1) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

According to Lemma 3.1, we know that system (1) has a unique equilibrium P0

if R0 ≤ 1. We will show that the malaria-free equilibrium is globally stable in R4
+

if R0 ≤ 1.

Theorem 3.3. The malaria-free equilibrium P0 = (λ/d1, 0, 0, 0) is globally asymp-
totically stable in R4

+ if R0 ≤ 1.
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Proof. We first note the fact that dH
dt < 0 in R4

+ if H(t) ≥ λ
d1

, and system (1) has

a unique equilibrium P0 in R4
+ since R0 ≤ 1. Thus, we only need to consider the

stability of P0 in the region

D = {(H, I,M,E); 0 ≤ H ≤ λ

d1
, 0 ≤ I, 0 ≤M, 0 ≤ E}.

Choosing the Liapunov function V = rI + δM in the region D, we calculate the
derivative of V along the solutions of system (1) as follows:

dV
dt |(1) = r dIdt + δ dMdt

= r
(
αHM − δI − p1IE

1+βI

)
+ δ

(
rI − µM − p2ME

1+γM

)
= rαHM − µδM − rp1 EI

1+βI − δp2
EM

1+γM

< rαHM − µδM
= Mµδ( rαµδH − 1)

< Mµδ( rαλd1µδ
− 1)

= µδM(R0 − 1) ≤ 0 if R0 ≤ 1.

Also equation dV
dt |(1) = 0 has a unique solution P0 of system (1) in D. By LaSalle’s

Invariance Principle we know that the malaria-free equilibrium P0 is globally asymp-
totically stable in R4

+ if R0 ≤ 1.

This result indicates that malaria infection cannot be established within a host
if R0 ≤ 1 (see Figure 1).

3.2. Local stability of the malaria infection equilibrium P1 (without spe-
cific immune response). If R0 > 1, then system (1) has a malaria infection
equilibrium P1 = (H1, I1,M1, 0) with

H1 =
λ

d1R0
, I1 =

λ

δ

(R0 − 1)

R0
,M1 =

d1
α

(R0 − 1).

The Jacobian matrix at P1 is

J(P1) =


−d1R0 0 − αλ

d1R0
0

d1(R0 − 1) −δ αλ
d1R0

− p1λ(R0−1)
δR0+βλ(R0−1)

0 r −µ − p2d1(R0−1)
α+d1γ(R0−1)

0 0 0 k1λ(R0−1)
δR0+βλ(R0−1) + k2d1(R0−1)

α+d1γ(R0−1) − d2

 .

The characteristic equation of J(P1) is

(Λ− k1λ(R0 − 1)

δR0 + βλ(R0 − 1)
− k2d1(R0 − 1)

α+ d1γ(R0 − 1)
+ d2)(Λ3 + a1Λ2 + a2Λ + a3) = 0, (10)

where a1 = d1R0 + δ + µ, a2 = d1R0(µ+ δ) and a3 = d1δµ(R0 − 1).
By the Routh-Hurwitz criterion, the roots of (10) have negative real parts if and

only if
k1λ(R0−1)

δR0+βλ(R0−1) + k2d1(R0−1)
α+d1γ(R0−1) − d2 < 0,

a1 > 0, a3 > 0, a1a2 − a3 > 0.

Note that a1, a2 and a3 are positive. We calculate

a1a2 − a3 = d1R0µ(d1R0 + µ+ δ) + d1δR0(d1R0 + δ) + d1µδ > 0.
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Hence, P1 is locally asymptotically stable if and only if k1λ(R0−1)
δR0+βλ(R0−1)+ k2d1(R0−1)

α+d1γ(R0−1)−
d2 < 0. This inequality holds if k1

β + k2
γ − d2 ≤ 0. Thus, from Lemmas 3.1 and 3.2,

we have the following result.

Theorem 3.4. If R0 > 1 and d2 ≥ k1
β + k2

γ , then system (1) has only two equilibria

P0 and P1, the malaria-free equilibrium P0 is unstable and the malaria infection
equilibrium P1 is locally asymptotically stable. Moreover, both P0 and P1 are unsta-
ble if R0 > 1 and

k1λ(R0 − 1)

δR0 + βλ(R0 − 1)
+

k2d1(R0 − 1)

α+ d1γ(R0 − 1)
− d2 > 0.

This theorem implies that malaria infection (without specific immune response)
can be established within a host if R0 > 1 and d2 ≥ k1

β + k2
γ (see Figure 2).

3.3. Local stability of the positive equilibrium P ∗ (with specific immune
response). From Lemma 3.1, we know that the coordinates of the two malaria in-
fection equilibria P1 = (H1, I1,M1, 0) and P ∗ = (H∗, I∗,M∗, E∗) have the following
relationships:

M∗ < M1 = d1
α (R0 − 1),

H∗ = λ
d1+αM∗ >

λ
d1+αM1

= H1,

I∗ = λ−d1H∗

δ − p1I
∗E∗

δ(1+βI∗) <
λ−d1H∗

δ < λ−d1H1

δ = I1.

These imply that

k1I1
1 + βI1

+
k2M1

1 + γM1
− d2 =

k1I1
1 + βI1

+
k2M1

1 + γM1
− (

k1I
∗

1 + βI∗
+

k2M
∗

1 + γM∗
) > 0.

Thus, if the positive equilibrium P ∗ exists, then P0 and P1 are always unstable.
Now we study the stability of the positive equilibrium P ∗. The local stability of

P ∗ is established from the Jacobian matrix at P ∗ given by

J(P ∗) =


−d1 − αM∗ 0 −αH∗ 0

αM∗ −δ − p1E
∗

(1+βI∗)2 αH∗ − p1I
∗

1+βI∗

0 r −µ− p2E
∗

(1+γM∗)2 − p2M
∗

1+γM∗

0 k1E
∗

(1+βI∗)2
k2E

∗

(1+γM∗)2 0

 .

The characteristic equation is

λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0. (11)

where

b1 = d1 + µ+ δ + αM∗ + p1E
∗

(1+βI∗)2 + p2E
∗

(1+γM∗)2 ,

b2 = (d1 + αM∗)(δ + p1E
∗

(1+βI∗)2 ) + (d1 + αM∗)(µ+ p2E
∗

(1+γM∗)2 )

+(δ + p1E
∗

(1+βI∗)2 )(µ+ p2E
∗

(1+γM∗)2 )− αrH∗

+(µ+ p2E
∗

(1+γM∗)2 ) + p1k1I
∗E∗

(1+βI∗)3 + p2k2M
∗E∗

(1+γM∗)3 ,

b3 = (d1 + αM∗)(δ + p1E
∗

(1+βI∗)2 )(µ+ p2E
∗

(1+γM∗)2 )− rd1αH∗

+(d1 + αM∗)(p1k1I
∗E∗

(1+βI∗)3 + p2k2M
∗E∗

(1+γM∗)3 ) + p2k1H
∗M∗

(1+γM∗)(1+βI∗)2

+p1k1I
∗E∗

(1+βI∗)3 (µ+ p2E
∗

(1+γM∗)2 ) + p2k2M
∗E∗

(1+γM∗)3 (δ + p1E
∗

(1+βI∗)2 ) + p1k2rI
∗E∗

(1+βI∗)(1+γM∗) ,

b4 = p2k1d1αH
∗M∗E∗

(1+γM∗)(1+βI∗)2 + p1k1I
∗E∗

(1+βI∗)3 (d1 + αM∗)(µ+ p2E
∗

(1+γM∗)2 )

+p2k2M
∗E∗

(1+γM∗)3 (d1 + αM∗)(δ + p1E
∗

(1+βI∗)2 ) + p1k2rI
∗E∗(d1+αM

∗)
(1+βI∗)(1+γM∗)2 .
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Using the Routh-Hurwitz criterion, we obtain that the roots of (11) have negative
real parts if and only if

b1 > 0, b1b2 − b3 > 0, (b1b2 − b3)b3 − b21b4 > 0,
(b1b2 − b3)b3b4 − b21b24 > 0.

(12)

Hence, we have the following theorem on the existence and stability of positive
equilibrium by the conclusion (ii) of Lemma 3.1, which implies successful parasite
invasion of the host even with the specific immune response.

Theorem 3.5. Assume that R0 > 1, k2γ ≤ d2 ≤
k1
β and A4M

4 +A3M
3 +A2M

2 +

A1M + A0 = 0 has a positive solution M∗ with 0 < M∗ < min{d1α (R0 − 1), L}.
Then system (1) has a positive equilibrium P ∗, which is locally asymptotically stable
if the inequalities in (12) hold.

We can find some parameters values for system (1) such that all conditions of
Theorem 3.5 hold (see Figure 3). Thus, a persistent malaria infection with specific
immune response can be established for system (1).

Next we shall determine when the positive equilibrium P ∗ becomes unstable
and Hopf bifurcation occurs. Following the analysis of a fourth-order characteris-
tic equation in Ruan and Wolkowicz [35], we look for conditions which guarantee
characteristic equation (11) having two roots with negative real part and a pair of
conjugate purely imaginary roots. After some calculations, we obtain that

b1 > 0, b4 > 0, b1b2 − b3 > 0, (b1b2 − b3)b3 − b21b4 = 0. (13)

To prove the occurrence of Hopf bifurcation at the positive equilibrium P ∗, it
remains to verify the transversal condition. We choose k1 as a bifurcation parameter.
Define

ψ(k1) = (b1(k1)b2(k1)− b3(k1))b3(k1)− b21(k1)b4(k1). (14)

Suppose that there exists a k∗1 > 0 such that b1(k∗1) > 0, b4(k∗1) > 0, b1(k∗1)b2(k∗1)−
b3(k∗1) > 0 and ψ(k∗1) = 0. Then equation (11) has four roots, ±ωi, λ1 and λ2,

where ω =
√

b3(k∗1 )
b1(k∗1 )

, Re(λ1) < 0 and Re(λ2) < 0. When 0 < |k1 − k∗1 | � 1, we

assume that equation (11) has four roots, ν(k1)±ω(k1)i, λ1(k1) and λ2(k1), where
ν(k∗1) = 0, ω(k∗1) = ω, λ1(k∗1) = λ1 and λ2(k∗1) = λ2. In the following we calculate
the derivative of ν(k1) with k1 at k∗1 . Note that

(ν(k1) + iω(k1))4 + b1(k1)(ν(k1) + iω(k1))3 + b2(k1)(ν(k1)

+iω(k1))2 + b3(k1)(ν(k1) + iω(k1)) + b4(k1) = 0.
(15)

By (14) and some calculations, we obtain that

dν(k1)

dk1
|k1=k∗1 = − b1(k∗1)

2((b1(k∗1)b2(k∗1)− 2b3(k∗1))2 + b1(k∗1)3b3(k∗1))

dψ(k1)

dk1
|k1=k∗1 .

Hence, the transversal condition holds under some conditions. By the Hopf bifurca-
tion theorem, we have the following result on bifurcation at the positive equilibrium
P ∗.

Theorem 3.6. Assume that system (1) has a positive equilibrium at P ∗. If there
exists a k∗1 > 0 such that b1(k∗1) > 0, b4(k∗1) > 0, b1(k∗1)b2(k∗1) − b3(k∗1) > 0, and

ψ(k∗1) = 0 and dψ(k1)
dk1
|k1=k∗1 6= 0, then Hopf bifurcation occurs and a periodic solution

appears near P ∗ when k1 passes through k∗1 .
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This result indicates that when the host is infected by malaria parasites, a persis-
tent malaria infection with specific immune response can be established. Oscillations
in the quantities of H, I, M and E in the host can be observed. We would like
to mention that though the positive equilibrium P ∗(H∗, I∗,M∗, E∗) is not given
explicitly in terms of parameters due to the complexity of the model, we have given
some sufficient conditions symbolically for the stability of P ∗ and the existence of
Hopf bifurcation in Theorems 3.5 and 3.6, respectively. In next section, numeri-
cal simulations will show validity of these theoretical results, that is, the positive
equilibrium of system (1) is stable for some parameter values, and it will become
unstable and a family of periodic solutions will bifurcate from the positive equilib-
rium via Hopf bifurcation when k1 passes through a critical value (see Figures 3
and 4).

Remark 1. Notice that in the bifurcation analysis we selected k1, the proliferation
rate of the immune cells induced by infected red blood cells, as the bifurcation
parameter. Similarly, we may choose k2, the proliferation rate of immune cells due
to the interactions between the immune response and merozoites, as the bifurcation
parameter and obtain analogous results under certain conditions (such as R0 > 1
and k2

γ < d2 <
k1
β )(see Figures 5 and 6). These agree with the numerical simulations

by Anderson et al. [4] and Hetzel and Anderson [16] that periodic oscillations occur
in the model with killing of infected red blood cells or with immune response directly
against merozoites and infected red blood cells.
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Figure 1. When R0 = 0.0025 < 1, the disease-free equilibrium
P0 = (5 × 106, 0, 0, 0) is globally asymptotically stable. Here the
parameter values are given in Table 2 and H(0) = 5× 105.
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4. Numerical simulations and discussion. In this section we provide some
numerical simulations to illustrate the dynamics of model (1). First, with parameter
values giving in Table 2, we can verify that R0 = 0.0025 < 1. Thus, Theorem 3.3
implies that the malaria-free equilibrium P0 = (5 × 106, 0, 0, 0) is globally stable
(see Figure 1).

Next, we choose α = 9×10−7, d2 = 0.13 and take all other parameters as in Table
2. Then we can verify that R0 = 1.125 > 1 and k1

β + k2
γ < d2. By Theorem 3.4,

we know that the malaria infection equilibrium without specific immune response
P1 = (4.44× 106, 4611, 1153, 0) is locally asymptotically stable (see Figure 2).
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Figure 2. Taking α = 9× 10−7, d2 = 0.13 and the other parame-
ter values as in Table 2, then k1

β + k2
γ < d2 and R0 = 1.125 > 1. The

malaria infection equilibrium without specific immune response
P1 = (4.44× 106, 4611, 1153, 0) is stable.

For malaria infection equilibrium with specific immune response P ∗, we choose
α = 9 × 10−7, d2 = 0.09, k1 = 4.5001 × 10−5 and take all other parameters as in
Table 2. Thus, we have k∗1 = 4.5045409 × 10−5. In this case, R0 = 1.125 > 1 and
k2
γ < d2 <

k1
β . The equilibrium P ∗ = (4.49 × 106, 4209, 1052, 2.94 × 106) is stable

(see Figure 3).
While k1 increases and passes through k∗1 = 4.5045409 × 10−5, for example,

k1 = 9.5×10−5, we have R0 = 1.125 > 1, k2γ < d2 <
k1
β and the positive equilibrium

P ∗ = (4.82 × 106, 1363, 340, 1.39 × 107) which becomes unstable. Theorem 3.5
implies that system (1) undergoes Hopf bifurcation and a periodic solution appears
(see Figure 4).

Finally, as mentioned in Remark 1 we can choose k2 as a bifurcation parameter
to obtain Hopf bifurcation at P ∗. For example, choose α = 9×10−7, d2 = 0.04, k2 =
1.03× 10−5 and take all other parameters as in Table 2, we have k∗2 = 1.033488×
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Figure 3. When R0 = 1.125 > 1, k2γ < d2 <
k1
β and k1 < k∗1 , The

malaria infection equilibrium with specific immune response P ∗ =
(4.49×106, 4209, 1052, 2.94×106) is stable when k1 = 4.5001×10−5.

10−5. In this case, R0 = 1.125 > 1 and k2
γ < d2 < k1

β . The equilibrium P ∗ =

(4.49× 106, 4134, 1033, 3.44× 106) is stable (see Figure 5).
While k2 increases and passes through k∗2 = 1.033488×10−5, for example, choose

k2 = 2.305 × 10−5, we have R0 = 1.125 > 1, k2
γ < d2 < k1

β and the positive

equilibrium P ∗ = (4.65× 106, 2778, 693, 1.06× 107) which becomes unstable and a
periodic solution appears (see Figure 6).

The conditions for the existence of Hopf bifurcation can be stated as follows:
R0 = rαλ

d1µδ
> 1, k2

γ < d2 < k1
β , there exists a k∗1 > 0 such that (13) hold and

ψ′(k∗1) 6= 0. Rewrite the first condition as r
µ
λ
d1
α
δ > 1. Recall the biological meaning

of these parameters, we know that λ
d1

is the initial density of red blood cells (RBCs),
r
µ represents the successful invasion of the malaria parasites during their life time,

and α
δ describes the successful infection of RBCs in that process. Thus, R0 > 1

means that, before encountering immune response, with given initial density of
RBCs, when there are enough numbers of malaria parasites that cause successful
infection of RBCs, then the host is infected with malaria. The second condition
indicates that the decay rate d2 is somehow balanced between the proliferations
induced by the malaria parasites k2

γ and infected RBCs k1
β . The remaining conditions

are mainly on the proliferation rate of the immune cells induced by infected red
blood cells k1, which roughly means that there is a critical value of k1, once it is
reached periodic oscillations in all components will occur. This demonstrates that
synchronicity is an inherent feature of malaria infection with immune response.
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Figure 4. When R0 = 1.125 > 1 , k2
γ < d2 <

k1
β and k1 > k∗1 ,

there is a periodic solution bifurcated from the positive equilibrium
P ∗ = (4.82× 106, 1363, 340, 1.39× 107) when k1 = 9.5× 10−5.

These are helpful for us to better understand how immune response defends against
the malaria parasite infection and possibly causes the periodic fevers in the host.

We would like to make some remarks about our model (1). The model is a
generalization of the basic model of Anderson et al. [4] and Anderson [3] with
a nonlinear bounded Michaelis-Menten-Monod function describing the interaction
between healthy red blood cells, infected red blood cells, malaria parasitemia and
immune effectors. Since the replication rate of merozoites is described by the num-
ber of merozoites produced by each infected red blood cell times the rate at which
the infected red blood cells burst due to infection, Soul [36] pointed out the possible
unrealistic large growth of parasites in the absence of immunity by the model in
Anderson et al. [4] considering the parasite growth cycle (which is 48 hours for P.
falciparum). To address this problem, Gravenor and Lloyd [13] (see also Gravenor
et al. [14, 15]) proposed to estimate the dynamics of malaria parasites by using
multiple stages for the infected red blood cells. The overall parasite life-span is now
described by a sum of n exponential distributions and the modified multiple stage
model is a system of n + 2 ordinary differential equations. Interestingly, Gravenor
and Lloyd [13] found that the basic model of Anderson et al. [4] leads to equilibrium
solutions that are identical to those obtained from the multiple stage model. Adda
et al. [1] and Iggidr et al. [18] preformed global stability analysis of the multi-
ple stage model and showed the existence and global stability of a unique endemic
equilibrium which rules out the existence of possible oscillations via bifurcations.
Our model predicts periodic oscillations in all components that are induced by Hopf
bifurcation at the positive equilibrium by using the proliferation rate of the immune



THE WITHIN-HOST DYNAMICS OF MALARIA INFECTION 1015

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

5e+06

H(t)

0 200 400 600 800 1000 1200 1400
t

0

5000

10000

15000

20000

25000

30000

I(t)

0 200 400 600 800 1000 1200 1400
t

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M(t)

0 200 400 600 800 1000 1200 1400
t

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

E(t)

17500 18000 18500 19000 19500 20000 20500 21000 21500 22000
t

Figure 5. When R0 = 1.125 > 1, k2
γ < d2 <

k1
β and k2 < k∗2 ,

The endemic equilibrium P ∗ = (4.49× 106, 4134, 1033, 3.44× 106)
is stable when k2 = 1.03× 10−5.

cells induced by infected red blood cells as the bifurcation parameter. Notice that
immune response was not included in the multiple stage model of Gravenor and
Lloyd [13]. It will be interesting to see if the immune system can also induce Hopf
bifurcation in their model. Another option is, as did in Hoshen et al. [17], Dong and
Cui [11], and Mitchell and Carr [28], to introduce a time delay into the basic model
of Anderson et al. [4] to describe the parasite growth cycle which will produce the
observed periodic oscillations in host-parasite dynamics.

Another remark we would like to make is that in model (1) we used only one
component E(t) to represent the total capacity of the immune response of the host to
infected cells by parasites for the sake of simplicity and analysis. Immune responses
against malaria infections are complex and stage-specific. The malaria parasite
induces a specific immune response which can stimulate the release of cytokines
and activate the host’s monocytes, neutrophils, T-cells, and natural killer cells to
react to the different stage parasites (Malaguarnera and Musumeci [23]). It would
be more reasonable to model cellular and humoral immune responses separately
by including various innate, antibody and T-cell responses to malaria parasites in
modeling the within-host dynamics (see McQueen and McKenzie [27] and Chiyaka
et al. [7]). However, that would increase the number of equations in the model
and make the analysis much more difficult if it is not impossible. Our work focuses
on studying the nonlinear dynamics of a basic simple model including the essential
parameters of within-host malaria by a single compartment of parasites. This study
provides an example of how basic mathematical frameworks may be used to explore
the mechanisms of complex parasite dynamics within their hosts.
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Figure 6. When R0 = 1.125 > 1 , k2
γ < d2 <

k1
β and k2 > k∗2 ,

there is a periodic solution bifurcated from the positive equilibrium
P ∗ = (4.65× 106, 2778, 693, 1.06× 107) when k2 = 2.305× 10−5.

As pointed out by Augustine et al. [6], many coinfections that have profound
effects on the immune system, such as infection with human immunodeficiency virus
(HIV) and Mycobacterium tuberculosis (TB), are common in people living malaria
endemic regions. It will be interesting to study the effect of immune response to
the coinfection of malaria and HIV (Xiao and Bossert [43]) or TB. We leave this for
future consideration.
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