Loading [Contrib]/a11y/accessibility-menu.js
Special Issues

Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells

  • In a previous paper a mathematical model was developed for thedynamics of activation and clonal expansion of T cells during theimmune response to a single type of antigen challenge, constructedphenomenologically in the macroscopic framework of a thermodynamictheory of continuum mechanicsfor reacting and proliferatingfluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.

    Citation: D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59

    Related Papers:

    [1] Guanyu Wang . The Effects of Affinity Mediated Clonal Expansion of Premigrant Thymocytes on the Periphery T-Cell Repertoire. Mathematical Biosciences and Engineering, 2005, 2(1): 153-168. doi: 10.3934/mbe.2005.2.153
    [2] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [3] Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . Finite difference schemes for a structured population model in the space of measures. Mathematical Biosciences and Engineering, 2020, 17(1): 747-775. doi: 10.3934/mbe.2020039
    [4] Lorena Bociu, Giovanna Guidoboni, Riccardo Sacco, Maurizio Verri . On the role of compressibility in poroviscoelastic models. Mathematical Biosciences and Engineering, 2019, 16(5): 6167-6208. doi: 10.3934/mbe.2019308
    [5] Jibin Li, Weigou Rui, Yao Long, Bin He . Travelling wave solutions for higher-order wave equations of KDV type (III). Mathematical Biosciences and Engineering, 2006, 3(1): 125-135. doi: 10.3934/mbe.2006.3.125
    [6] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [7] Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679
    [8] Aftab Ahmed, Javed I. Siddique . The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Mathematical Biosciences and Engineering, 2019, 16(2): 603-618. doi: 10.3934/mbe.2019029
    [9] Sung Woong Cho, Sunwoo Hwang, Hyung Ju Hwang . The monotone traveling wave solution of a bistable three-species competition system via unconstrained neural networks. Mathematical Biosciences and Engineering, 2023, 20(4): 7154-7170. doi: 10.3934/mbe.2023309
    [10] Ghulam Mustafa, Dumitru Baleanu, Syeda Tehmina Ejaz, Kaweeta Anjum, Ali Ahmadian, Soheil Salahshour, Massimiliano Ferrara . A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems. Mathematical Biosciences and Engineering, 2020, 17(6): 6659-6677. doi: 10.3934/mbe.2020346
  • In a previous paper a mathematical model was developed for thedynamics of activation and clonal expansion of T cells during theimmune response to a single type of antigen challenge, constructedphenomenologically in the macroscopic framework of a thermodynamictheory of continuum mechanicsfor reacting and proliferatingfluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.


    [1] Mathematical and Computer Modelling, 53 (2011), 314-329.
    [2] $1^{st}$ edition, Gauthier-Villars, Paris, 1965.
    [3] Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31-44 (in french).
    [4] Bollettino U.M.I, 16-A (1976), 450-458 (in italian).
    [5] $1^{st}$ edition, Academic Press, New York, 1964.
    [6] Z. A. M. P. 14 (1963), 31-314.
    [7] SIAM Review, 14 (1972), 582-653.
    [8] Arch. Rational Mech. Anal., 14 (1963), 27-37.
    [9] Comm. Pure Appl. Math., 6 (1983), 231-238.
    [10] $1^{st}$ edition, Chapman and Hall, London, 1995.
    [11] $1^{st}$ edition, C. N. R. Press, Rome, 1987.
    [12] J. Math. Pures et Appl., 48 (1968), 117-158 (in french).
    [13] $1^{st}$ edition, Princeton University Press, Princeton, 1954.
    [14] Comm. Pure Appl. Math., 10 (1957), 537-566.
    [15] J. Phys. Soc. Japan, 24 (1968), 941-946.
    [16] Physica A, 132 (1985), 606-616.
    [17] Physica A, 131 (1985), 251-262.
    [18] Physica A, 142 (1987), 309-320.
    [19] $1^{st}$ edition, Pitman, London, 1976.
    [20] $1^{st}$ edition, Pitman Advanced Publishing Program, Princeton, 1985.
    [21] $1^{st}$ edition, Springer, Berlin-Heidelberg-New York, 1998.
    [22] Bullettin of Mathematical Biology, 53 (1991), 721-749.
    [23] Theoretical Biology, 81 (1979,) 475-503.
    [24] Mathematical Biology, 68 (2006), 1819-1836.
    [25] Mathematical Medicine and Biology, 20 (2003), 341-366.
    [26] edition, Springer, Mediterranean Press , 1989.
    [27] $2^{nd}$ edition, Springer, Berlin-Heidelberg-New York, 2002.
    [28] $2^{nd}$ edition, Springer, Berlin-Heidelberg-New York, 2002.
    [29] Comm. Appl. Math., 3 (1950), 201-230.
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2683) PDF downloads(451) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog