
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2013.10.59
AND ENGINEERING
Volume 10, Number 1, February 2013 pp. 59–73

APPROXIMATE SMOOTH SOLUTIONS OF

A MATHEMATICAL MODEL FOR THE ACTIVATION AND

CLONAL EXPANSION OF T CELLS

D. Criaco

Department of Mathematics and Informatics, University of Messina

Viale F. Stagno d’Alcontres n.31, 98166 Messina, Italy

M. Dolfin

Department I.C.I.E.A.M.A., University of Messina

Contrada Di Dio (S.Agata), 98166 Messina, Italy

L. Restuccia

Department of Mathematics and Informatics, University of Messina

Viale F. Stagno d’Alcontres n.31, 98166 Messina, Italy

Abstract. In a previous paper a mathematical model was developed for the

dynamics of activation and clonal expansion of T cells during the immune re-
sponse to a single type of antigen challenge, constructed phenomenologically in

the macroscopic framework of a thermodynamic theory of continuum mechan-

ics for reacting and proliferating fluid mixtures. The present contribution deals
with approximate smooth solutions, called asymptotic waves, of the system of

PDEs describing the introduced model, obtained using a suitable perturbative

method. In particular, in the one-dimensional case, after deriving the expres-
sion of the velocity along the characteristic rays and the equation of the wave

front, the transport equation for the first perturbation term of the asymptotic

solution is obtained. Finally, it is shown that this transport equation can be
reduced to an equation similar to Burgers equation.

1. Introduction. In a previous paper [1], a mathematical model was proposed
regarding the dynamics of activation and clonal expansion of T cells during the
immune response to a single type of antigen challenge. This model was constructed
phenomenologically, deriving the balance equations for the densities and velocities of
four populations of cells (naive T, Th1, Th2 and dendritic cells) and two populations
of chemical mediators (two sets of cytokines); all the populations were modelled as
a mixture of interacting fluids in which proliferative events occur. Interactions are
characterized by the genetic mutations of naive T cells into Th1 or Th2 cells and
the phenomenon of chemotaxis acting on Th1 and Th2 cells, while proliferative
events (i.e. resulting in non conservative balance equations for the densities of two
populations of Th1 and Th2 cells) characterize the clonal expansion of Th1 and Th2
cells.

The present paper deals with approximate smooth solutions, called asymptotic
waves, of a system of PDEs describing the above introduced model of activation
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and clonal expansion of T cells. To obtain a class of approximate smooth solutions
for the considered system of PDEs, we adopt a perturbative method derived by
Boillat [2, 3] and generalized by Fusco in [4], following also [5]-[15]. Applications
of the mathematical theory of asymptotic waves were carried out in the context of
mechanical media (Maxwell, viscoelastic media with and without memory) by one
of the authors (see for instance [16, 17, 18]). The applied method analyzes systems
of PDEs including terms that contain second order derivatives multiplied by a very
small parameter. These terms play a very important role because they usually
have a balancing effect on the non-linear steepening of the waves (called dissipative
waves because their amplitude attenuate with time). Following A. Jeffrey in [19],
the solution of systems of PDEs are referred to as waves, because they may be
interpreted as representing propagating wavefronts. The solution on the side of
the wavefronts towards which propagation takes place may be regarded as being
the undisturbed solution ahead of the wavefront, while the solution on the other
side may be regarded as a propagating disturbance wave which is entering a region
occupied by the undisturbed solution.

In Section 2, the phenomenology of the activation and clonal expansion of cells
during the immunoresponse to an antigen challenge is briefly introduced; moreover
the matrix form of the balance equations for the density and velocities of the con-
stituents of the mixture of reacting-proliferating fluids modelling the introduced
immunoresponse is given. In Section 3, an approximate smooth solution of the
introduced system of balance equations is analyzed, in the one-dimensional case.
In particular, after deriving the expressions of the velocities along the character-
istic rays and the equation of the wave front, the transport equation for the first
perturbation term of the asymptotic solution is obtained. Finally, it is shown that
this transport equation, using a suitable Hopf’s transformation, can be reduced to
a Burgers equation [4].

2. Mixture of reacting-proliferating T cells: Phenomenology and mod-
elization. In this Section we briefly recall the mathematical model developed in
[1] whose approximate solutions will be analyzed in the next sections by means of
an asymptotic perturbative method.

We remark that in the modeling we consider only the macroscopic phenomeno-
logical outputs of phenomena which happen at the meso- and microscopic levels.
Although the dynamics under observation happen mainly in lymph nodes, to re-
duce the complexity in this first effort of modeling, we consider an unbounded tissue
medium.

In the immune system response to antigens an important involved population of
cells is that of lymphocytes, which is divided into two main groups: T cells and B
cells. The mathematical modeling of this paper regards some particular dynamics of
the immune response involving T cells only. T cells are produced in the thymus and
they are antigen specific, bearing specific antigen receptors, but in their first stage
of maturation they do not have specific functionalities and they are called in general
Antigen Not Experienced T cells (or naive T cells). Due to the first encounter with
the specific antigen of which they bear the receptors (primary immune response),
naive T cells undertake genetic mutations acquiring specific functionalities and at
this first stage of maturation they are called in general Antigen Experienced T cells
(this process regards the so called activation phase).
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Antigen Experienced T cells are collected into three main groups, depending on
their functionalities: T helper cells, cytotoxic T cells and suppressor T cells. T
helper cells divide into two main groups: T helper 1 Th1) and T helper 2 (Th2).
The main characteristic of Antigen Experienced T cells is that due to a second
encounter with the same type of antigen (secondary immune response), they can
proliferate generating clones; (this process regards the so called clonal expansion
phase). During the activation and clonal expansion phases of T cells a crucial role
is played by some chemical soluble mediators which are collectively called cytokines
and which induce signal transductions inside the nucleus of the cell determining the
genetic mutation of Antigen Not Experienced cells into Antigen Experienced cells.

T lymphocytes cannot recognize antigens directly, but recognize peptides derived
from antigens which have been processed and appropriately presented. This func-
tion is performed mainly by two classes of so called accessory cells: macrophages
and dendritic cells. The presence of accessory cells bearing the antigen is necessary
for the induction of both cell activation and clonal expansion; in our model we have
introduced the population of dendritic cells which play a major role in the case
of naive T cell activation. Dendritic cells “capture” the antigen “presenting” very
small parts of the antigen (peptides) on the surface and they are then driven to the
lymph nodes by the chemoattraction induced by some specific cytokines. In our
model we consider the population of dendritic cells as one of the constituents of the
mixture of biological fluids modeling the activation and clonal expansion of T cells
due to their basic role in presenting the antigen T helper cells.

The proposed mathematical model has been constructed in the macroscopic
framework of a thermodynamic theory for reacting fluid mixtures [20, 21] of con-
tinuum mechanics, by using a phenomenological approach, adapting the balance
equations to the case in which proliferative events occur, i.e. events which do not
preserve the mass of the mixture as a whole, in the present case the clonal expansion
of T cells. The introduced field equations describe some dynamics and interactions
of Antigen Not Experienced T cells (naive T cells) and two types of Antigen Expe-
rienced T helper cells (Th1 and Th2 cells) in presence of Antigen Presenting Cells,
i.e. cells bearing the antigen (dendritic cells in our case). The interactions (due to
chemotaxis and genetic mutations) among these four populations of cells are induced
by the presence of two sets of chemicals (cytokines) which act as chemical mediators
among the involved cell populations during the immune response, inducing genetic
mutations and clonal expansion by means of signaling pathways. Cytokines are
produced by the dendritic cells bearing the antigen but the populations of Th1 and
Th2 cells secrete the same cytokines determining a feedback effect.

The constituents of the mixture of reacting-proliferating biological fluids mode-
ling activation and clonal expansion of T cells due to a single type of antigen chal-
lenge are characterized by the following quantities:

1. naive T cells: mass density ρT , concentration cT and population velocity vT ;
2. Th1 cells: mass density ρT1

, concentration cT1
and population velocity vT1

;
3. Th2 cells: mass density ρT2

, concentration cT2
and population velocity vT2

;
4. dendritic cells: mass density ρd, concentration cd and population velocity vd;
5. 1th set of cytokines (IFN-γ, IL-2): mass density ρ1, concentration c1 and

population velocity v1;
6. 2th set of cytokines (IL-10, IL-4, IL-5, IL-13): mass density ρ2, concentration
c2 and population velocity v2.
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The density ρ of the mixture of fluids is given by

ρ = ρT + ρT1 + ρT2 + ρd + ρ1 + ρ2. (1)

The concentrations of the constituents are cT = ρT
ρ , cT1

=
ρT1
ρ , cT2

=
ρT2
ρ , cd = ρd

ρ ,

c1 = ρ1
ρ , c2 = ρ2

ρ , with cT + cT1
+ cT2

+ cd + c1 + c2 = 1, and the baricentral velocity

v of the mixture has the form

v =
1

ρ
(ρTvT + ρT1vT1 + ρT2vT2 + ρdvd + ρ1v1 + ρ2v2). (2)

Regarding the constituents of the mixture, the following biological and physical
phenomena are taken into account by the model:

• genetic mutations of naive T cells into Th1 or Th2 cells,
• chemotaxis induced by the cytokines on Th1, Th2 and dendritic cells,
• random motility of cells (describing diffusion-like phenomena),
• activation of naive T cells mutating into Th1 or Th2 cells,
• generation of newly borne naive T cells in the thymus,
• programmed cell death of naive T cells,
• activation induced cell death of Th1 and Th2 cells,
• production of cytokines by means of dendritic, Th1 and Th2 cells,
• consumption of the cytokines,
• diffusion of the cytokines.

The balance equation of mass density of naive T cells is

∂ρT
∂t

+∇ · (ρTvT ) + r∇ · JT = (k0 − kap)ρT − h1ρT c1 − h2ρT c2, (3)

where r is the random cell motility coefficient and the contributions −h1ρT c1 and
−h2ρT c2 describe the activation of naive T cells into Th1 and Th2 cells, respectively,
due to the “interactions” with the two sets of cytokines. Taking into account the
random motility of cells, generating a diffusion-like flux [22, 23]

JT = −r∇ρT , (4)

eq.(3) reads

∂ρT
∂t

+∇ · (ρTvT )− r M ρT = (k0 − kap)ρT − h1ρT c1 − h2ρT c2, (5)

where k0 is the constant growth rate of naive T cells, kap is its constant apoptotic
rate, h1 and h2 are the constant activation rate of naive T cells into Th1 and Th2
cells respectively and r is the random motility coefficient nof the cells. Furthermore,
the local form of the balance equation of momentum density of naive T cells has
the form

∂ρTvT
∂t

+∇ · (ρTvT ⊗ vT ) = mT (6)

with mT = (k0 − kap − h1c1 − h2c2)ρTvT . mT is the production of momentum
density and it was obtained by multiplying the produced mass in the specific case
by the related velocity vT .

Among the seven introduced mass densities (ρ, ρT , ρT1
, ρT2

, ρd, ρ1, ρ2) only
7 − 1 = 6 are independent (see eq. (1)). Then, we choose the following set C of
independent unknown fields
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C = (ρ, ρT1
, ρT2

, ρd, ρ1, ρ2,v,vT1
,vT2

,vd,v1,v2). (7)

For the determination of these fields we need the appropriate number of field
equations [21]. They are based on the balance equations of density of mass and
momentum of the constituents; these equations have been deduced in [1] and are
summarized in the following



∂ρ
∂t +∇ · (ρv)− r4ρ+ (r −D)4(ρ1 + ρ2) = [α− 1]ρ̃T1

+ [β − 1]ρ̃T2
,

∂ρT1
∂t +∇ · (ρT1

vT1
)− r4ρT1

= αρ̃T1
,

∂ρT2
∂t +∇ · (ρT2vT2)− r4ρT2 = βρ̃T2 ,

∂ρd
∂t +∇ · (ρdvd)− r4ρd = 0,

∂ρ1
∂t +∇ · (ρ1v1)−D4ρ1 = (ρ

(int)
1 − 1

γ1
)ρ1,

∂ρ2
∂t +∇ · (ρ2v2)−D4ρ2 = (ρ

(int)
2 − 1

γ2
)ρ2,

∂(ρv)
∂t +∇ · [ρv ⊗ v − t] = [α− 1]ρ̃T1

vT1
+ [β − 1]ρ̃T2

vT2
,

∂(ρT1vT1 )

∂t +∇ · [ρT1vT1 ⊗ vT1 − tT1 ] = αρ̃T1vT1 + χ1ρT1∇
ρ1
ρ ,

∂(ρT2vT2 )

∂t +∇ · [ρT2
vT2
⊗ vT2

− tT2
] = βρ̃T2

vT2
+ χ2ρT2

∇ρ2
ρ ,

∂(ρdvd)
∂t +∇ · [ρdvd ⊗ vd − td] = χdρd(∇ρ1

ρ +∇ρ2
ρ ),

∂ρ1v1

∂t +∇ · [ρ1v1 ⊗ v1 − t1] = (ρ
(int)
1 − 1

γ1
)ρ1v1,

∂ρ2v2

∂t +∇ · [ρ2v2 ⊗ v2 − t2] = (ρ
(int)
2 − 1

γ2
)ρ2v2,

(8)

where we have made the positions

ρ̃T1 = c1(h1ρT − hapρT1), ρ̃T2 = c2(h2ρT − hapρT2), (9)

and the above quantities come from the activation phase due to the interactions
with the cytokines (for details about the phenomenology see [1]). Moreover, we
have made the positions

ρ
(int)
1 = µ1

ρT1

ρ
+ ν1

ρd
ρ
, ρ

(int)
2 = µ2

ρT2

ρ
+ ν2

ρd
ρ
. (10)

Furthermore, α and β are the proliferation rate factors of Th1 and Th2 cells, re-
spectively. The coefficients µ1, ν1 and µ2, ν2 describe the interactions of the first
and second set of cytokines with the Th1, Th2 and dendritic cells. Also, in the
right hand side of eq. (8)1, the source term is due only to the interaction of the
two components ρT1

and ρT2
with the two sets of cytokines. Consequentely, in eq.

(8)7, the contributes of the other components different from ρT1 and ρT2 are null.
The last term on the right hand side of eq. (8)8 (analogously for eq. (8)9) is due
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to the chemotaxis acting on the Th1 cells due to the presence of the first set of
cytokines (chemotactic force) and the source term of eq. (8)10 is due to the chemo-
taxis exerted by both set of cytokines on dendritic cells. The effect of chemotaxis is
introduced as a source term in the balance equations of momentum for the involved
quantities [24, 25]. Regarding eq. (8)1, it was obtained by summing the equation
(5) and equations (8)2, (8)3, (8)4, (8)5 and (8)6 and by considering a first phase of
activation followed by a second phase of clonal expansion. During the first phase
phenomena are conservative (the sum of the production terms is null)

(k0−kap)ρT−hapc1ρT−hapc2ρT+
(
µ1cT1 + ν1cd −

1

γ1

)
ρ1+

(
µ2cT2 + ν2cd −

1

γ2

)
ρ2 = 0.

(11)

In eq. (8)1, the second and third terms on the left hand side account for the
fact that the motility is due only to the Th1, Th2 and dendritic cells of densities
ρT1

, ρT2
and ρd respectively (see eq. (1) and that only the two sets of cytokines,

of densities ρ1 and ρ2, diffuse, where D is the diffusion coefficient characterizing
the fluxes J1 and J2 of the two sets of cytokines (J1 = −D∇ρ1, J1 = −D∇ρ1).
Regarding the momentum balance equations, the production of momentum density
for each equation was obtained by multiplying the production of mass density of each
quantity by the related velocity of the constituents of the mixture and by introducing
for the Th1 and Th2 cells the interaction forces due to the chemotaxis induced by
the two sets of cytokines (χ1ρT1∇

ρ1
ρ and χ2ρT2∇

ρ2
ρ , respectively). Finally, the

equation for the mixture momentum density was obtained by summing up eq. (6)
and eq.s (8)7, (8)8, (8)9, (8)10, (8)11 and (8)12, and by taking into account the
relation defining the density of the mixture (1) and that the mixture stress tensor
t is defined as follows (see [20, 21])

t = tT + tT1 + tT2 + td + t1 + t2 − ρTuT ⊗ uT − ρT1uT1 ⊗ uT1 − ρT2uT2 ⊗ uT2+
−ρdud ⊗ ud − ρ1u1 ⊗ u1 − ρ2u2 ⊗ u2,

(12)
where the partial velocities (i. e. the velocity of the constituents with respect to the
baricentral velocity v) uT = vT − v, uT1

= vT1
− v, uT2

= vT2
− v, ud = vd − v,

u1 = v1 − v and u2 = v2 − v have been introduced.
The balance equations of mixture mass and momentum densities are obtained by

summing up all the balance equations of mass and momentum for the constituents of
the mixture and by applying the requirements of conservation of mass and momen-
tum densities regarding the conservative event of activation of T cells (for details
about their derivation the reader is kindly suggested to see [1]).

2.1. Physical assumptions. Constitutive equations for the stress tensor of each
constituent of the mixture are needed in order to close the system of equations (8).
In our model, we assume that the fluids modelling the populations of cells and the
chemicals are non-viscous and simple [20, 21], i. e. the following relations hold

tT = −pT (ρT , T )I, tT1
= −pT1

(ρT1
, T )I, tT2

= −pT2
(ρT2

, T )I

td = −pd(ρd, T )I, t1 = −p1(ρ1, T )I, t2 = −p2(ρ2, T )I

where I is the identity matrix and T is the absolute temperature. Each fluid con-
stituent of the mixture is simple in the sense that the partial pressure of each
constituent depends only on its own density, and on T [21]. In our model the
process is isothermal.
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By substituting the constitutive equations (13) into the expression for the stress
tensor of the mixture (12), the following equation is obtained

t = −pI− (ρTuT ⊗ uT + ρT1
uT1
⊗ uT1

+ ρT2
uT2
⊗ uT2

+

ρdud ⊗ ud + ρ1u1 ⊗ u1 + ρ2u2 ⊗ u2)
(13)

where p = pT + pT1
+ pT2

+ pd + p1 + p2 is the scalar pressure of the mixture. In the
case of isothermal processes in non-viscous fluids, the following equation of state
holds [26] p = ∂F

∂ρ ρ
2 where F is the free energy and T the absolute temperature.

By assuming a linear relation regarding the dependance of the free energy on the
density, we obtain the following equations of state for the partial pressures

pT = p̂T ρ
2
T , pT1 = p̂T1ρ

2
T1
, pT2 = p̂T2ρ

2
T2
, pd = p̂dρ

2
d, p1 = p̂1ρ

2
1, p2 = p̂2ρ

2
2,

(14)
where the quantities p̂T , p̃T1

, p̂T2
, p̂d, p̂1, p̂2 are positive constants [27, 28]. Because of

the low involved velocities of the cells and the chemicals [27, 28], we disregard all the
inertial terms in the balance equations of momentum densities; from a modelization
point of view this means that we do not take into account from now on in our model
the effect of persistence in cell motion. The system (8), together with (13) and (14)
(and neglecting the effect of persistence in cell motion), takes the form

∂ρ

∂t
+∇ · (ρv)− r4ρ+ (r −D)4(ρ1 + ρ2) = [α(t)− 1]ρ̃T1 + [β(t)− 1]ρ̃T2 ,

∂ρT1

∂t
+∇ · (ρT1

vT1
)− r4ρT1

= α(t)ρ̃T1
,

∂ρT2

∂t
+∇ · (ρT2

vT2
)− r4ρT2

= β(t)ρ̃T2
,

∂ρd
∂t

+∇ · (ρdvd)− r4ρd = 0,

∂ρ1
∂t

+∇ · (ρ1v1)−D4ρ1 = (ρ
(int)
1 ρ1 −

1

γ1
),

∂ρ2
∂t

+∇ · (ρ2v2)−D4ρ2 = (ρ
(int)
2 ρ2 −

1

γ2
), (15)

∂(ρv)

∂t
+ 2p̂ρ∇ρ = [α(t)− 1]ρ̃T1

vT1
+ [β(t)− 1]ρ̃T2

vT2
,

∂ρT1
vT1

∂t
+ 2p̂T1

ρT1
∇ρT1

− χ1ρT1
∇ρ1
ρ

= α(t)
ρ1
ρ
ρ̃T1

vT1
+ χ1ρT1

∇ρ1
ρ
,

∂ρT2
vT2

∂t
+ 2p̂T2ρT2∇ρT2 − χ2ρT2∇

ρ2
ρ

= β(t)
ρ2
ρ
ρ̃T2vT2 + χ2ρT2∇

ρ2
ρ
,

∂ρdvd
∂t

+ 2p̂dρd∇ρd − ρdχd(∇
ρ1
ρ

+∇ρ2
ρ

) = 0,

∂ρ1v1

∂t
+ 2p̂1ρ1∇ρ1 = (ρ

(int)
1 − 1

γ1
)ρ1v1,

∂ρ2v2

∂t
+ 2p̂2ρ2∇ρ2 = (ρ

(int)
2 − 1

γ2
)ρ2v2.

(16)

Eqs. (15) form a system of 24 quasi-linear second order PDEs for mass density of
the mixture, Th1, Th2, dendritic cells and the 1th and 2th sets of cytokines together
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with the related velocities. Let

U = (ρ, ρT1
, ρT2

, ρd, ρ1, ρ2,v,vT1
,vT2

,vd,v1,v2)T . (17)

Then the system of equations (15) can be written in the following matrix form

Aα(U)
∂U

∂xα
+ εHk(U)

∂2U

∂(xk)2
+ B(U, x0) = 0, (18)

where α = 0, 1, 2, 3 and the xk, (k = 1, 2, 3), x0 = t represent, respectively, the
spatial coordinates (i.e. the components of the position vector x in Eulerian coor-
dinates in a cartesian reference frame) and time, Aα(U) (with α = 0, 1, 2, 3) and
Hk(U)( with k = 1, 2, 3) are appropriate 24 × 24 square matrices and B(U, x0)
is the appropriate column vector. The terms containing derivatives of the second
order is multiplied by a very small parameter ε � 1 . Throughout this paper the
dummy index convention is understood.

3. Approximate asymptotic smooth solutions in the activation and clonal
expansion of T cells. In this Section we deal with approximate smooth solutions,
called asymptotic waves of the system of PDEs characterizing the activation and
clonal expansion of T cells during the immunoreaction, in the case of one space
dimension for the sake of simplicity. In one space dimension the quasi linear system
of PDEs (15) reads

∂ρ

∂t
+
∂ρv

∂x
− r ∂

2ρ

∂x2
+ (r −D)

∂2(ρ1 + ρ2)

∂x2
= [α− 1]ρ̃T1

+ [β − 1]ρ̃T2
,

∂ρT1

∂t
+
∂(ρT1vT1)

∂x
− r ∂

2ρT1

∂x2
= αρ̃T1

,

∂ρT2

∂t
+
∂(ρT2

vT2
)

∂x
− r ∂

2ρT2

∂x2
= βρ̃T2 ,

∂ρd
∂t

+
∂(ρdvd)

∂x
− r ∂

2ρd
∂x2

= 0,

∂ρ1
∂t

+
∂(ρ1v1)

∂x
−D∂

2ρ1
∂x2

= (ρ
(int)
1 ρ1 −

1

γ1
),

∂ρ2
∂t

+
∂(ρ2v2)

∂x
−D∂

2ρ2
∂x2

= (ρ
(int)
2 ρ2 −

1

γ2
), (19)

∂(ρv)

∂t
+ 2p̂ρ

∂ρ

∂x
= [α− 1]ρ̃T1

vT1
+ [β − 1]ρ̃T2

vT2
,

∂ρT1
vT1

∂t
+ 2p̂T1ρT1

∂ρT1

∂x
− χ1ρT1

∂(ρ1ρ )

∂x
= α(t)

ρ1
ρ
ρ̃T1vT1 + χ1ρT1

∂(ρ1ρ )

∂x
,

∂ρT2
vT2

∂t
+ 2p̂T2ρT2

∂ρT2

∂x
− χ2ρT2

∂(ρ2ρ )

∂x
= β(t)

ρ2
ρ
ρ̃T2vT2 + χ2ρT2

∂(ρ2ρ )

∂x
,

∂ρdvd
∂t

+ 2p̂dρd
∂ρd
∂x
− ρdχd

(
∂(ρ1ρ )

∂x
+
∂(ρ2ρ )

∂x

)
= 0,

∂ρ1v1
∂t

+ 2p̂1ρ1
∂ρ1
∂x

=

(
ρ
(int)
1 − 1

γ1

)
ρ1v1,

∂ρ2v2
∂t

+ 2p̂2ρ2
∂ρ2
∂x

=

(
ρ
(int)
2 − 1

γ2

)
ρ2v2.



ASYMPTOTIC WAVES OF T CELLS 67

Eqs. (19) form a system of 12 quasi-linear second order PDEs for mass density of
the mixture, Th1, Th2, dendritic cells and the 1th and 2th sets of cytokines together
with the related velocities. In matrix form and in one space dimension the quasi
linear system of PDEs (19) reads

Aα(U)
∂U

∂xα
+ εH(U)

∂2U

∂x2
+ B(U, x0) = 0 (20)

with α = 0, 1, x0 = t and x1 = x. The matrices of the coefficients can be written
as the following block matrices

A0 =


|

A0
11 | A0

12

− − | − −
A0

21 | A0
22

|

 , (21)

A1 =


|

A1
11 | A1

12

− − | − −
A1

21 | A1
22

|

 , (22)

H1 =


|

H1
11 | H1

12

− − | − −
H1

21 | H1
22

|

 , (23)

where A0
11 = I (identity matrix), A0

21 = A1
11 are diagonal matrices having the

velocities of the mixture constituents along the principal diagonal, A0
22 = A1

12

are diagonal matrices having the densities of the mixture constituents along the
principal diagonal, A0

12 = A1
22 = H12 = H21 = H22 = 0 (null matrix) and

A1
21 =



2p̂ρ 0 0 0 0 0
χ1ρT1ρ1

ρ2
2p̂T1ρT1 0 0

−χ1ρT1
ρ

0
χ2ρT2ρ2

ρ2
0 2p̂T2ρT2 0 0

−χ2ρT2
ρ

χdρd(ρ1+ρ2)

ρ2
0 0 2p̂dρd

−χdρd
ρ

−χdρd
ρ

0 0 0 0 2p̂1ρ1 0
0 0 0 0 0 2p̂2ρ2


, (24)

H11 =


−s 0 0 0 s(r−D)

r
s(r−D)

r
0 −s 0 0 0 0
0 0 −s 0 0 0
0 0 0 −s 0 0
0 0 0 0 − sDr 0
0 0 0 0 0 − sDr

 , (25)

where s = r/ε. Finally, it is
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B =



−[α− 1]ρ̃T1 − [β − 1]ρ̃T2

−αρ̃T1

−βρ̃T2

0

−(ρ
(int)
1 + 1

γ1
)ρ1

−(ρ
(int)
2 + 1

γ2
)ρ2

−[α− 1]ρ̃T1
vT1
− [β − 1]ρ̃T2

vT2

−αρ̃T1ρvT1

−βρ̃T1ρvT2

0

−(ρ
(int)
1 ρ1 + 1

γ1
)v1

−(ρ
(int)
2 + 1

γ2
)ρ2v2



. (26)

We consider a known uniform unperturbed state characterized by the following
constant solution of the system (20)

U0 = (ρ0, ρ0T1
, ρ0T2

, ρ0d, ρ
0
1, ρ

0
2, 0, 0, 0, 0, 0, 0). (27)

We look for the solution of the equations as an asymptotic series of powers
of the small parameter, say ε , namely with respect to the asymptotic sequence

{1, εa+1, εa+2, ..., } or {1, ε
1
p , ε

2
p , ..., } as ε→ 0. Following [3] in our case we consider

p = 1, such that U is written as an asymptotic power series of ε, i.e. with respect
to the asymptotic sequence 1, ε, ε2, ..., as ε→ 0, the U i(i = 1, 2, ..., ) being functions
of xα(α = 0, 1) and a new variable ξ. It is supposed [3, 4] that the vector U can be
developed in the following asymptotic form around U0

U(xα, ξ) = U0(xα, ξ) + εU1(xα, ξ) + ε2U2(xα, ξ) + ... (α = 0, 1). (28)

where ξ = ε−1ϕ(xα) is asymptotically fixed, i.e. ξ = Ord(1) as ε→ 0, ε−1 >> 1 is
a large parameter and ϕ(xα) = 0 is the unknown so called wave front [5, 10] which
is to be determined. In [3, 4] and [16, 17, 18]
ε is supposed a very small parameter and the equations of the system describing

the proposed mathematical model are written in dimensional form. In our case ε is
given by ε = r/s (see [3, 4] and [16, 18] for the definition of ε in other dimensional
PDEs describing real physical problems). The variable ξ is a fast variable that
characterizes the so-called interior-layers, across which the solution U(xα) or/and
its derivatives undergo steep variations, situated in the neighbourhood of a family
of moving surfaces S(t) in E3 (parametrized by the time t) of equation ϕ(xα) = ξ̄,
with ξ̄ = const, related to the wavefront ϕ(xα) = 0. On the contrary, along the
surfaces S(t) the variation of U is slow. In this case it is said that U, starting from
U0, evolves in progressives waves and the surfaces S(t) are the wave surfaces or,
simply, waves. Then, we assume that the solution depends on the old variable xα as
well on the new variable ξ. From (28) we see that the following relations are valid

Aα(U) = Aα(U0) + ε∇Aα(U0)U1 +O
(
ε2
)

(α = 0, 1), (29)

H(U) = H(U0) + ε∇H(U0)U1 +O
(
ε2
)
, (30)

B(U) = B(U0) + ε∇B(U0)U1 +O(ε2) (31)
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where ∇ = ∂
∂U . Inserting the asymptotic expansion (28)-(31) into the system of

PDEs (20) and matching the obtained series, one has the following results

(Aα)0Φα
∂U1

∂ξ
= 0 (α = 0, 1), (32)

(Aα)0(
∂U1

∂xα
+Φα

∂U2

∂ξ
)+(∇Aα)0U

1
(
Φ
∂U1

∂ξ

)
+(Hk)0(Φk)2

∂2U1

∂ξ2
= (∇B)0U

1 (33)

where Φα = ∂ϕ
∂xα (α = 0, 1) and the symbol “0” indicates that the quantities are

calculated in U0. We introduce the notation

λ = − ∂ϕ/∂t

|gradϕ|
, (34)

being λ the velocity normal to the progressive waves. The unit vector normal to
the wave front n is defined by

n =
gradϕ

|gradϕ|
. (35)

With these notations, eq. (32) takes the form

((An)0 − λI)
∂U1

∂ξ
= 0, (36)

with An(U) = An.
By integrating eq. (36), one obtains

U1(xα, ξ) = u(xα, ξ)r(U0,n) + ν1(xα) (α = 0, 1), (37)

where u is a scalar function to be determined and ν1 is an arbitrary vector of
integration which can be taken as zero, without loss of generality [2, 3].

We show now how the wave front ϕ can be determined. Eqs. (28)-(37) are also
valid in three dimensional case (3D) when α = 0, 1, 2, 3. In the general 3D theory
[2, 3], by introducing the quantity

Ψ(U,Φα) = ϕt + |gradϕ|λ(U,n) (α = 0, 1, 2, 3), (38)

the radial velocity Λ is defined by

Λi(U,n) =
∂Ψ

∂Φ
= λni +

∂λ

∂ni
−
(
n · ∂λ

∂n

)
ni (i = 1, 2, 3). (39)

Since we are considering the propagation into an uniform unperturbed state, it
is known that the wave front ϕ, propagating with velocity λ, satisfy the partial
differential equation

Ψ(U0,Φα) = ϕt + |gradϕ|λ(U0,n0) = 0 (α = 0, 1, 2, 3). (40)

The characteristic equations for (40) are

dxα
dσ

=
∂Ψ0

∂Φα
(α = 0, 1, 2, 3), (41)

dΦα
dσ

= −∂Ψ0

∂xα
(α = 0, 1, 2, 3), (42)

where σ is the time along the rays. From (40) it is seen that Ψ0 depends only on
Φα (α = 0, 1, 2, 3) and eq. (42) gives that Φα are constants along the characteristic
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rays. By virtue of (36), this property is also possessed by n. By integration of (41)
one has

x0 = t = σ, (43)

xi = (x)0i − Λ0
i (U

0,n0)t, (44)

where

(x)0i = (xi)t=0 (45)

and n0 indicates the constant value of n along the rays. If we denote by φ0 the
given initial surface, we have (φ)t=0 = φ0[(xi)0] and n0 represents the normal vector

at the point (xi)0 defined by n0 =
(
gradφ
|gradφ|

)
t=0

= grad0φ0

|grad0φ0| , where grad0 ≡ ∂
∂(x)0 .

Then x = x|t=0+λ0t and, since the Jacobian of the transformation is not vanishing,
(x)0i can be deduced from equations (44) and φ in the first approximation takes the
following form

ϕ(t, xi) = ϕ0(xi − Λ0
i t). (46)

In the one-dimensional case, when we have α = 0, 1, eq. (39) gives the following
result for the radial velocity calculated in U0

Λ0 = Λ0(U0, n0) =
∂Ψ0

∂Φ
= λn+

∂λ

∂n
−
(
n
∂λ

∂n

)
n = n

√
∂p1
∂ρ1

, (47)

having chosen n = (n, 0, 0), and eq. (46) gives

ϕ(t, x) = ϕ0

(
x− n

√
∂p1
∂ρ1

t

)
. (48)

The method to obtain the approximate smooth solutions is valid only for waves
propagating with a velocity λ such that ∇λ · r 6= 0 (with r the right eigenvector of
An)0 corresponding to the eigenvalue λ), i.e. with a velocity that does not satisfy
the Lax-Boillat exceptionality condition [9]. We calculate the eigenvalues in the
case of our system of PDEs (19), obtaining

λ
(±)
1 = ±n

√
∂p
∂ρ , λ

(±)
2 = ±n

√
∂p1
∂ρ1

, λ
(±)
3 = ±

√
∂p2
∂ρ2

,

λ
(±)
4 = ±n

√
∂pd
∂ρd

, λ
(±)
5 = ±n

√
∂pT1
∂ρT1

, λ
(±)
6 = ±n

√
∂pT2
∂ρT2

,
(49)

where
∂p

∂ρ
,
∂p1
∂ρ1

,
∂p2
∂ρ2

,
∂pd
∂ρd

,
∂pT1

∂ρT1

,
∂pT2

∂ρT2

are the velocities of the related acoustic waves of each constituent [20]. All the
eigenvalues do not satisfy the Lax-Boillat exceptionality condition, so that the sys-
tem of PDEs is genuinely non linear. In the following we fix our attention on the

eigenvalue λ
(+)
2 (that is related to the first component of the mixture) which corre-

sponds to a progressive longitudinal wave travelling to the right. Analogous results
can be obtained for the other eigenvalues.

The right and left eigenvectors corresponding to λ
(+)
2 are
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r
(+)
2 = 1

2ρ(v1−
√
2p̂1ρ1)

[0,
χ1ρ1ρT1

p̂1ρ1−p̂T1ρT1
, 0, χdρ1ρd

p̂1ρ1−p̂dρd ,−2ρρ1, 0, 0,
χ1(−vT1+

√
2p̂1ρ1)ρ1

p̂1ρ1−p̂T1ρT1
, 0, χd(−vd+

√
2p̂1ρ1)ρ1

p̂1ρ1−p̂dρd , 2ρ(v1 −
√

2p̂1ρ1), 0]
(50)

l
(+)
2 = [0, 0, 0, 0,

v1 +
√

2p̂1ρ1
ρ1

, 0, 0, 0, 0, 0, 1, 0]. (51)

4. First approximation of wavefront and of U. In [4] it is shown that, by
using (33) and (37) , the following equation for u(xα, ξ) can be obtained:

∂u

∂σ
+ (∇Ψ · r)0u

∂u

∂ξ
+

1

ϑ

∂ϑ

∂σ
u+ µ0

∂2u

∂ξ2
= ν0u, (52)

where

ϑ =
√
J, (53)

(∇ψ · r)0 = (|gradϕ|{∇λ · r})0, (54)

µ0 =
(l)0 · {(H)0Φ2}(r)0

(l · r)0
, (55)

ν0 =
(l · ∇Br)0

(l · r)0
. (56)

Straightforward calculations give in the case of λ
(+)
2 , with r

(+)
2 and l

(+)
2 the corre-

sponding right and left eigenvectors, the following results

µ0 = −1

2

D

r
Φ2

0, (57)

ν0 =
χdν1ρ

0
1ρ

0
d

4(ρ0)2(p̂1ρ01 − p̂dρ0d)
+

χ1µ1ρ
0
1ρ

0
T1

4(ρ0)2(p̂1ρ01 − p̂T1ρ
0
T1

)
+

1

2
(

1

γ1
− ν1ρ

0
d

ρ0
−
µ1ρ

0
T1

ρ0
), (58)

where it is supposed the conditions p̂1ρ
0
1 6= p̂dρ

0
d and p̂1ρ

0
1 6= p̂T1

ρ0T1
are satisfied to

provide the coefficient ν0 (see eq. (56)) is limited in (52). By using the transforma-
tion of variables (see [4])

u =
v

ϑ
ew, κ =

∫ σ

0

1

2
|gradϕ|0 e

w

ϑ
dσ, (59)

where

w = ν0σ, (60)

eq. (52) can be reduced to an equation of the type

∂v

∂κ
+ v

∂v

∂ξ
+ µ̂0

∂2v

∂ξ2
= 0, with µ̂0 =

2µ0ϑe
−w

(|gradϕ|)0
. (61)

Eq. (61) is valid along each characteristic ray and it is the generalized Burgers
equation which has been extensively studied by many authors (see for instance
[29]), the solution of which is known and asintotically stable for very large time.
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5. Appendix. In this Appendix we present a table illustrating the involved pa-
rameters together with the involved biological phenomena.

Parameter Name Biological phenomenon
α(t) Proliferation rate of Th1 clonal expansion of Th1
β(t) Proliferation rate of Th2 clonal expansion of Th2
h1 Growth rate factor of

Th1

Genetic mutation into Th1

h2 Growth rate factor of
Th2

Genetic mutation into Th2

k0 Generation factor Generation of T naive
kap Death factor of Th1 and

Th2

Programmed cell death of Th1 and
Th2

r cells Random cell motility Motility of all cells
hap Activation induced

death factor
Activation induced cell death

χ1 10 Chemotactic constant chemotaxis of Th1
χ2 20 Chemotactic constant chemotaxis of Th2
χd 30 Chemotactic constant chemotaxis of dendritic cells
D Diffusivity constant Diffusion of cytokines
µ1 growth rate factor of 10

set cytokines
Production by the Th1

ν1 growth rate factor of 10

set cytokines
Production by the dendritic

γ1 Consumption factor 10

set
Consumption of the 10 set

µ2 growth rate factor of 20

set cytokines
Production of 20 set by the Th2

ν2 growth rate factor of 20

set cytokines
Production of 20 set by the dendritic

γ2 Consumption factor 20

set
Consumption of the 20 set
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