Special Issues

Age-structured cell population model to study the influence of growth factors on cell cycle dynamics

  • Cell proliferation is controlled by many complex regulatory networks. Our purpose is to analyse, through mathematical modeling, the effects of growth factors on the dynamics of the division cycle in cell populations.
        Our work is based on an age-structured PDE model of the cell division cycle within a population of cells in a common tissue. Cell proliferation is at its first stages exponential and is thus characterised by its growth exponent, the first eigenvalue of the linear system we consider here, a growth exponent that we will explicitly evaluate from biological data.Moreover, this study relies on recent and innovative imaging data (fluorescence microscopy) that make us able to experimentally determine the parameters of the model and to validate numerical results.This model has allowed us to study the degree of simultaneity of phase transitions within a proliferating cell population and to analyse the role of an increased growth factor concentration in this process.
        This study thus aims at helping biologists to elicit the impact of growth factor concentration on cell cycle regulation, at making more precise the dynamics of key mechanisms controlling the division cycle in proliferating cell populations, and eventually at establishing theoretical bases for optimised combined anticancer treatments.

    Citation: Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 1-17. doi: 10.3934/mbe.2013.10.1

    Related Papers:

    [1] Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098
    [2] Shinji Nakaoka, Hisashi Inaba . Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences and Engineering, 2014, 11(2): 363-384. doi: 10.3934/mbe.2014.11.363
    [3] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [4] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
    [5] Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281
    [6] Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445
    [7] Jacek Banasiak, Aleksandra Falkiewicz . A singular limit for an age structured mutation problem. Mathematical Biosciences and Engineering, 2017, 14(1): 17-30. doi: 10.3934/mbe.2017002
    [8] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [9] Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake . A model for asymmetrical cell division. Mathematical Biosciences and Engineering, 2015, 12(3): 491-501. doi: 10.3934/mbe.2015.12.491
    [10] Rujing Zhao, Xiulan Lai . Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Mathematical Biosciences and Engineering, 2023, 20(1): 656-682. doi: 10.3934/mbe.2023030
  • Cell proliferation is controlled by many complex regulatory networks. Our purpose is to analyse, through mathematical modeling, the effects of growth factors on the dynamics of the division cycle in cell populations.
        Our work is based on an age-structured PDE model of the cell division cycle within a population of cells in a common tissue. Cell proliferation is at its first stages exponential and is thus characterised by its growth exponent, the first eigenvalue of the linear system we consider here, a growth exponent that we will explicitly evaluate from biological data.Moreover, this study relies on recent and innovative imaging data (fluorescence microscopy) that make us able to experimentally determine the parameters of the model and to validate numerical results.This model has allowed us to study the degree of simultaneity of phase transitions within a proliferating cell population and to analyse the role of an increased growth factor concentration in this process.
        This study thus aims at helping biologists to elicit the impact of growth factor concentration on cell cycle regulation, at making more precise the dynamics of key mechanisms controlling the division cycle in proliferating cell populations, and eventually at establishing theoretical bases for optimised combined anticancer treatments.


    [1] Acta Biotheor., 43 (1995), 3-25.
    [2] SIAM J. Appl. Math., 53 (1993), 1480-1504.
    [3] J. Theor. Med., 1 (1997), 35-51.
    [4] Math. Biosci., 218 (2009), 1-14.
    [5] Bull Math. Biol., 67 (2005), 815-830.
    [6] Bull Math. Biol., 69 (2007) 1673-1690.
    [7] Mathematical Modelling of Natural Phenomena, 7 (2012) 306-336.
    [8] Math. Comp. Simul., 2012. in press, available on line Apr. 2012.
    [9] Personalized Medicine, 8 (2011), 271-286.
    [10] Mathematical Modelling of Natural Phenomena, 4 (2009), 183-209.
    [11] Mathematical and Computer Modelling, 53 (2011), 1558-1567.
    [12] Technical report, Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France, 2003.
    [13] PLoS one, 4 (2009), 1-12.
    [14] Cell, 64 Jan. (1991), 271-280.
    [15] Cancer Causes Control, 17 (2006), 539-545.
    [16] J. Biosci. Bioeng., 114 (2012), 220-227.
    [17] Cancer Causes Control, 17 (2006), 509-514.
    [18] Mutat. Res., 680 (2009), 95-105.
    [19] Genes Cancer, 1 Nov. (2010), 1124-1131.
    [20] J. Math. Biol., 28 (1990), 671-694.
    [21] Cancer Causes Control, 17 (2006), 531-537.
    [22] in "Advances on Estimation of Distribution Algorithms" (editors, J. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea), 75-102. Springer, New York, 2006.
    [23] Theor. Biol. Med. Model, 4 (2007), pp.14.
    [24] J. Theor. Biol., 203 (2000), 177-186.
    [25] Oncogene, 19 Nov. (2000), 5558-5567.
    [26] Math. Models Methods Appl. Sci., 16 (2006), 1155-1172.
    [27] Annu. Rev. Pharmacol. Toxicol., 50 (2010), 377-421.
    [28] Annu. Rev. Pharmacol. Toxicol., 47 (2007), 593-628.
    [29] Nat. Rev. Mol. Cell Biol., 1 Dec. (2000), 169-178.
    [30] Cell, 103 Oct. (2000), 295-309.
    [31] Arch. Med. Res., 39 (2008), 743-752.
    [32] Proc. Natl. Acad. Sci. USA, 31 (1997), 814-819.
    [33] Proc. Edinburgh Math. Soc., 54 (1926), 98-130.
    [34] J. Clin. Oncol., 14 (2003), 2787-2799.
    [35] volume 68 of Lecture Notes in Biomathematics. Springer, New York, 1986.
    [36] Proc. Natl. Acad. Sci. USA, 71 (1974), 1286-1290.
    [37] Frontiers in Mathematics series. Birkhäuser, Boston, 2007.
    [38] J. Cell Sci. Suppl., 18 (1994), 69-73.
    [39] Mol. Cell Biol., 14 (1994), 1669-1679.
    [40] J. Theor. Biol., 243 (2006), 532-541.
    [41] Cell, 132 (2008), 487-498.
    [42] Chem. Biol., 15 (2008), 1243-1248.
    [43] Proc. Natl. Acad. Sci. USA, 105 (2008), 17256-17261.
    [44] Biotechnol. Bioeng., 99 (2008), 960-974.
    [45] Nat. Rev. Mol. Cell Biol., 5 Oct. (2004), 836-847.
    [46] Rocky Mountain J. Math., 20 (1990), 1195-1216.
    [47] Curr. Opin. Cell Biol., 7 Dec. (1995), 835-842.
  • This article has been cited by:

    1. Vitalii V. Akimenko, Asymptotically stable states of non-linear age-structured monocyclic population model II. Numerical simulation, 2017, 133, 03784754, 24, 10.1016/j.matcom.2015.06.003
    2. Rebecca H. Chisholm, Tommaso Lorenzi, Jean Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, 2016, 1860, 03044165, 2627, 10.1016/j.bbagen.2016.06.009
    3. Jong Hyuk Byun, Il Hyo Jung, Mathematical modeling of the receptor-mediated endocytosis process of targeted therapeutic agents in drug delivery systems, 2020, 79, 0307904X, 300, 10.1016/j.apm.2019.10.037
    4. Sara Maad Sasane, An age structured cell cycle model with crowding, 2016, 444, 0022247X, 768, 10.1016/j.jmaa.2016.06.065
    5. Krzysztof Psiuk-Maksymowicz, Damian Borys, Sebastian Student, Andrzej Świerniak, 2014, Chapter 23, 978-3-319-06592-2, 261, 10.1007/978-3-319-06593-9_23
    6. W. Djema, H. Özbay, C. Bonnet, E. Fridman, F. Mazenc, J. Clairambault, Analysis of Blood Cell Production under Growth Factors Switching * *This work is supported by ALMA-project on the «Analysis of Acute Myeloid Leukemia», Paris-Saclay (France), also in part by the PHC Bosphore 2016 France-Turkey under project numbers 35634QM (France) and EEEAG-115E820 TUBITAK)., 2017, 50, 24058963, 13312, 10.1016/j.ifacol.2017.08.1331
    7. J. Clairambault, O. Fercoq, G. Bocharov, J. Clairambault, V. Volpert, Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology, 2016, 11, 1760-6101, 45, 10.1051/mmnp/201611604
    8. Vitalii Akimenko, Roumen Anguelov, Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay, 2017, 11, 1751-3758, 75, 10.1080/17513758.2016.1236988
    9. K. Kuritz, D. Stöhr, N. Pollak, F. Allgöwer, On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models, 2017, 414, 00225193, 91, 10.1016/j.jtbi.2016.11.024
    10. V. V. Akimenko, Yu. V. Zahorodnii, Modeling the Dynamics of Age-Structured Polycyclic Population of Biological Cells on the Parameterized Set of Algebraic Functions, 2014, 50, 1060-0396, 578, 10.1007/s10559-014-9646-0
    11. Youssef El Alaoui, Larbi Alaoui, Asymptotic Behavior in a Cell Proliferation Model with Unequal Division and Random Transition using Translation Semigroups, 2017, 10, 0974-5645, 1, 10.17485/ijst/2017/v10i28/101042
    12. Vincent Quedeville, Jérôme Morchain, Philippe Villedieu, Rodney O. Fox, A critical analysis of Powell’s results on the interdivision time distribution, 2019, 9, 2045-2322, 10.1038/s41598-019-44606-4
    13. 2017, 9781785481161, 189, 10.1016/B978-1-78548-116-1.50008-2
    14. Ana Victoria Ponce Bobadilla, Thomas Carraro, Helen M. Byrne, Philip K. Maini, Tomás Alarcón, Age Structure Can Account for Delayed Logistic Proliferation of Scratch Assays, 2019, 81, 0092-8240, 2706, 10.1007/s11538-019-00625-w
    15. Thibault Bourgeron, Marie Doumic, Miguel Escobedo, Estimating the division rate of the growth-fragmentation equation with a self-similar kernel, 2014, 30, 0266-5611, 025007, 10.1088/0266-5611/30/2/025007
    16. Annabelle Ballesta, Pasquale F. Innominato, Robert Dallmann, David A. Rand, Francis A. Lévi, Stephanie W. Watts, Systems Chronotherapeutics, 2017, 69, 0031-6997, 161, 10.1124/pr.116.013441
    17. H.T. Banks, D.F. Kapraun, W. Clayton Thompson, Cristina Peligero, Jordi Argilaguet, Andreas Meyerhans, A novel statistical analysis and interpretation of flow cytometry data, 2013, 7, 1751-3758, 96, 10.1080/17513758.2013.812753
    18. Vitalii V. Akimenko, Asymptotically stable states of nonlinear age-structured monocyclic population model I. Travelling wave solution, 2017, 133, 03784754, 2, 10.1016/j.matcom.2015.06.004
    19. Jérôme Morchain, Maxime Pigou, Noureddine Lebaz, A population balance model for bioreactors combining interdivision time distributions and micromixing concepts, 2017, 126, 1369703X, 135, 10.1016/j.bej.2016.09.005
    20. G. Bocharov, A. Bouchnita, J. Clairambault, V. Volpert, G. Bocharov, J. Clairambault, V. Volpert, Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods, 2016, 11, 1760-6101, 1, 10.1051/mmnp/201611601
    21. W. Djema, F. Mazenc, C. Bonnet, J. Clairambault, E. Fridman, 2018, Stability Analysis of a Nonlinear System with Infinite Distributed Delays Describing Cell Dynamics, 978-1-5386-5428-6, 1220, 10.23919/ACC.2018.8430869
    22. Jean Clairambault, 2014, Chapter 9, 978-1-4939-0457-0, 265, 10.1007/978-1-4939-0458-7_9
    23. Aaron Goldman, Mohammad Kohandel, Jean Clairambault, Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer, Part 2: from Theoretical Biology to Mathematical Models, 2017, 3, 2198-7866, 260, 10.1007/s40778-017-0098-0
    24. Iqra Batool, Naim Bajcinca, Barbara Szomolay, Stability analysis of a multiscale model of cell cycle dynamics coupled with quiescent and proliferating cell populations, 2023, 18, 1932-6203, e0280621, 10.1371/journal.pone.0280621
    25. Vitalii V. Akimenko, Fajar Adi-Kusumo, Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics, 2021, 18, 1551-0018, 6155, 10.3934/mbe.2021308
    26. M. Kuznetsov, J. Clairambault, V. Volpert, Improving cancer treatments via dynamical biophysical models, 2021, 39, 15710645, 1, 10.1016/j.plrev.2021.10.001
    27. Grégory Dumont, Alberto Pérez-Cervera, Boris Gutkin, Jonathan Rubin, A framework for macroscopic phase-resetting curves for generalised spiking neural networks, 2022, 18, 1553-7358, e1010363, 10.1371/journal.pcbi.1010363
    28. Iqra Batool, Naim Bajcinca, Stability analysis of a multiscale model including cell-cycle dynamics and populations of quiescent and proliferating cells, 2023, 8, 2473-6988, 12342, 10.3934/math.2023621
    29. Chenhui Ma, Evren Gurkan-Cavusoglu, A comprehensive review of computational cell cycle models in guiding cancer treatment strategies, 2024, 10, 2056-7189, 10.1038/s41540-024-00397-7
    30. Sweta Sinha, Paramjeet Singh, A numerical investigation of nonlinear age-structured tumor with bidirectional proliferative and quiescent phase transitions, 2025, 0129-1831, 10.1142/S0129183125500068
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3887) PDF downloads(658) Cited by(30)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog