Loading [Contrib]/a11y/accessibility-menu.js

A leaky integrate-and-fire model with adaptation for the generation of a spike train

  • Received: 01 April 2015 Accepted: 29 June 2018 Published: 01 January 2016
  • MSC : Primary: 60J60; Secondary: 60H35.

  • A model is proposed to describe the spike-frequency adaptation observed in many neuronal systems. We assume that adaptation is mainly due to a calcium-activated potassium current, and we consider two coupled stochastic differential equations for which an analytical approach combined with simulation techniques and numerical methods allow to obtain both qualitative and quantitative results about asymptotic mean firing rate, mean calcium concentration and the firing probability density. A related algorithm, based on the Hazard Rate Method, is also devised and described.

    Citation: Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train[J]. Mathematical Biosciences and Engineering, 2016, 13(3): 483-493. doi: 10.3934/mbe.2016002

    Related Papers:

    [1] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [2] Hideaki Kim, Shigeru Shinomoto . Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences and Engineering, 2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49
    [3] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [4] Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño . Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences and Engineering, 2014, 11(1): 27-48. doi: 10.3934/mbe.2014.11.27
    [5] Sven Blankenburg, Benjamin Lindner . The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences and Engineering, 2016, 13(3): 461-481. doi: 10.3934/mbe.2016001
    [6] Shinsuke Koyama, Lubomir Kostal . The effect of interspike interval statistics on the information gainunder the rate coding hypothesis. Mathematical Biosciences and Engineering, 2014, 11(1): 63-80. doi: 10.3934/mbe.2014.11.63
    [7] Virginia González-Vélez, Amparo Gil, Iván Quesada . Minimal state models for ionic channels involved in glucagon secretion. Mathematical Biosciences and Engineering, 2010, 7(4): 793-807. doi: 10.3934/mbe.2010.7.793
    [8] Achilleas Koutsou, Jacob Kanev, Maria Economidou, Chris Christodoulou . Integrator or coincidence detector --- what shapes the relation of stimulus synchrony and the operational mode of a neuron?. Mathematical Biosciences and Engineering, 2016, 13(3): 521-535. doi: 10.3934/mbe.2016005
    [9] Roberta Sirovich, Luisa Testa . A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences and Engineering, 2016, 13(3): 597-611. doi: 10.3934/mbe.2016010
    [10] Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci . On a spike train probability model with interacting neural units. Mathematical Biosciences and Engineering, 2014, 11(2): 217-231. doi: 10.3934/mbe.2014.11.217
  • A model is proposed to describe the spike-frequency adaptation observed in many neuronal systems. We assume that adaptation is mainly due to a calcium-activated potassium current, and we consider two coupled stochastic differential equations for which an analytical approach combined with simulation techniques and numerical methods allow to obtain both qualitative and quantitative results about asymptotic mean firing rate, mean calcium concentration and the firing probability density. A related algorithm, based on the Hazard Rate Method, is also devised and described.


    [1] Neural Computation, 15 (2003), 2523-2564.
    [2] Journal of Neurophysiology, 94 (2005), 3637-3642.
    [3] Nature, 183 (1980), 673-676.
    [4] Mathematical Biosciences and Engineering, 11 (2014), 1-10.
    [5] in Computer Aided Systems Theory - EUROCAST 2005, Lecture Notes in Computer Science, 5717, Springer, Berlin-Heidelberg, 2009, 152-158.
    [6] Neural Computation, 22 (2010), 2558-2585.
    [7] Advances in Applied Probability, 19 (1987), 784-800.
    [8] Biological Cybernetics, 95 (2006), 1-19.
    [9] Neural Computation, 15 (2003), 253-278.
    [10] Neural Computation, 10 (1998), 837-854.
    [11] Neural Computation, 23 (2011), 421-434.
    [12] Neural Computation, 13 (2001), 1285-1310.
    [13] The Journal of Physiology, 493 (1996), 83-97.
    [14] Journal of Neurophysiology, 88 (2002), 761-770.
    [15] The Journal of Physiology, 168 (1963), 911-931.
    [16] Sinauer Associates, Sunderland, MA, 2001.
    [17] Journal of Physiology, 117 (1952), 500-544.
    [18] Springer-Verlag, New York, 1976.
    [19] Journal of Neuroscience Methods, 169 (2008), 417-424.
    [20] Frontiers in Computational Neuroscience, 3 (2009), p9.
    [21] Neural Computation, 16 (2004), 2101-2124.
    [22] Journal of Computational Neuroscience, 10 (2001), 24-45.
    [23] The Journal of Physiology, 354 (1984), 319-331.
    [24] Journal of Applied Probability, 22 (1985), 360-369.
    [25] Journal of Physiology, 93 (1999), 101-114.
    [26] Journal of Neurophysiology, 90 (2003), 1598-1612.
    [27] in Stochastic Biomathematical Models with Applications to Neuronal Modeling (eds. Bachar, Batzel and Ditlevsen), Lecture Notes in Mathematics 2058, Springer, Berlin-Heidelberg (2013), 99-148.
    [28] Trends in Neurosciences, 19 (1996), 150-154.
    [29] Neural Computation, 11 (1999), 935-951.
    [30] Journal of Neurosciences, 13 (1993), 334-350.
    [31] Cambridge University Press, Cambridge, England, 1988.
  • This article has been cited by:

    1. Giacomo Ascione, Enrica Pirozzi, 2018, Chapter 1, 978-3-319-74726-2, 3, 10.1007/978-3-319-74727-9_1
    2. Angelo Pirozzi, Enrica Pirozzi, 2019, Chapter 100665-1, 978-1-4614-7320-6, 1, 10.1007/978-1-4614-7320-6_100665-1
    3. Giacomo Ascione, Bruno Toaldo, A Semi-Markov Leaky Integrate-and-Fire Model, 2019, 7, 2227-7390, 1022, 10.3390/math7111022
    4. Lei Wang, Ye Wang, Wen-long Fu, Li-hong Cao, Modulation of neuronal dynamic range using two different adaptation mechanisms, 2017, 12, 1673-5374, 447, 10.4103/1673-5374.202931
    5. Mario Abundo, Enrica Pirozzi, On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes, 2019, 7, 2227-7390, 991, 10.3390/math7100991
    6. Enrica Pirozzi, 2020, Chapter 26, 978-3-030-45092-2, 211, 10.1007/978-3-030-45093-9_26
    7. Ludmila Brochini, Ariadne de Andrade Costa, Miguel Abadi, Antônio C. Roque, Jorge Stolfi, Osame Kinouchi, Phase transitions and self-organized criticality in networks of stochastic spiking neurons, 2016, 6, 2045-2322, 10.1038/srep35831
    8. Ariadne Costa, Ludmila Brochini, Osame Kinouchi, Self-Organized Supercriticality and Oscillations in Networks of Stochastic Spiking Neurons, 2017, 19, 1099-4300, 399, 10.3390/e19080399
    9. Giuseppe D’Onofrio, Claudio Macci, Enrica Pirozzi, Asymptotic Results for First-Passage Times of Some Exponential Processes, 2018, 20, 1387-5841, 1453, 10.1007/s11009-018-9659-7
    10. Enrica Pirozzi, Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing, 2018, 112, 0340-1200, 25, 10.1007/s00422-017-0731-0
    11. Giacomo Ascione, Yuliya Mishura, Enrica Pirozzi, Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications, 2021, 23, 1387-5841, 53, 10.1007/s11009-019-09748-y
    12. Emilio F. Galera, Osame Kinouchi, Physics of psychophysics: Large dynamic range in critical square lattices of spiking neurons, 2020, 2, 2643-1564, 10.1103/PhysRevResearch.2.033057
    13. Mario Abundo, Enrica Pirozzi, Integrated stationary Ornstein–Uhlenbeck process, and double integral processes, 2018, 494, 03784371, 265, 10.1016/j.physa.2017.12.043
    14. Alexander Vidybida, Olha Shchur, Relation Between Firing Statistics of Spiking Neuron with Delayed Fast Inhibitory Feedback and Without Feedback, 2018, 17, 0219-4775, 1850005, 10.1142/S0219477518500050
    15. Angelo Pirozzi, Enrica Pirozzi, 2022, Chapter 100665, 978-1-0716-1004-6, 1674, 10.1007/978-1-0716-1006-0_100665
    16. Lu Chen, Xingzhong Xiong, Jun Liu, A Survey of Intelligent Chip Design Research Based on Spiking Neural Networks, 2022, 10, 2169-3536, 89663, 10.1109/ACCESS.2022.3200454
    17. Renata Pazzini, Osame Kinouchi, Ariadne A. Costa, Neuronal avalanches in Watts-Strogatz networks of stochastic spiking neurons, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.014137
    18. M. F. Carfora, 2023, Chapter 8, 978-3-031-33049-0, 137, 10.1007/978-3-031-33050-6_8
    19. Sathiyadevi Kanagaraj, Irene Moroz, Premraj Durairaj, Anitha Karthikeyan, Karthikeyan Rajagopal, Imperfect chimera and synchronization in a hybrid adaptive conductance based exponential integrate and fire neuron model, 2023, 1871-4080, 10.1007/s11571-023-10000-0
    20. Zhefei Cai, Rui Yang, Yingle Fan, Wei Wu, A contour detection method based on the projective coding model of the visual cortex information flow, 2024, 2379-8920, 1, 10.1109/TCDS.2023.3285909
    21. Nils A. Koch, Benjamin W. Corrigan, Michael Feyerabend, Roberto A. Gulli, Michelle S. Jimenez-Sosa, Mohamad Abbass, Julia K. Sunstrum, Sara Matovic, Megan Roussy, Rogelio Luna, Samuel A. Mestern, Borna Mahmoudian, Susheel Vijayraghavan, Hiroyuki Igarashi, Kartik S. Pradeepan, William J. Assis, J. Andrew Pruszynski, Shreejoy Tripathy, Jochen F. Staiger, Guillermo Gonzalez-Burgos, Andreas Neef, Stefan Treue, Stefan Everling, Wataru Inoue, Anmar Khadra, Julio C. Martinez-Trujillo, Spike frequency adaptation in primate lateral prefrontal cortex neurons results from interplay between intrinsic properties and circuit dynamics, 2025, 44, 22111247, 115159, 10.1016/j.celrep.2024.115159
    22. Rekha Sahu, Prasant Kumar Pattnaik, Kalaiarasi Sonai Muthu Anbananthen, Saravanan Muthaiyah, Identification of Depression Patients Using LIF Spiking Neural Network Model From the Pattern of EEG Signals, 2025, 13, 2169-3536, 55156, 10.1109/ACCESS.2025.3552619
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3392) PDF downloads(668) Cited by(22)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog