
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016002
AND ENGINEERING
Volume 13, Number 3, June 2016 pp. 483–493

A LEAKY INTEGRATE-AND-FIRE MODEL WITH ADAPTATION

FOR THE GENERATION OF A SPIKE TRAIN

Aniello Buonocore, Luigia Caputo and Enrica Pirozzi

Dipartimento di Matematica e Applicazioni
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Abstract. A model is proposed to describe the spike-frequency adaptation

observed in many neuronal systems. We assume that adaptation is mainly due
to a calcium-activated potassium current, and we consider two coupled sto-

chastic differential equations for which an analytical approach combined with

simulation techniques and numerical methods allow to obtain both qualitative
and quantitative results about asymptotic mean firing rate, mean calcium con-

centration and the firing probability density. A related algorithm, based on

the Hazard Rate Method, is also devised and described.

1. Introduction. Spike-frequency adaptation is a ubiquitous phenomenon in the
central nervous system, that may play a prominent role in neural information pro-
cessing. One of the first attempts to investigate the adaptation of discharge fre-
quency in repetitive firing neurons is due to Granit et al. [15]; they found a brief
phase of “adaptation”preceding the steady state of firing, in which the impulse fre-
quency diminishes at a rate varying from cell to cell and depending on intensity.
They also noted that at the beginning of adaptation, during the release of initial
spikes, after-hyperpolarization develops and contributes to the adaptive process by
diminishing the firing rate. However, the functional role of adaptation is still not
completely clear. Crook et al [10] showed in a theoretical framework that spike
frequency adaptation in a small network of cortical neurons stabilized the synchro-
nous behaviour with mutual excitation. Ermentrout et al [12] explored the role of
adaptation in enhancing the synchronization properties of cortical neurons. Also
Fuhrmann et al. [14] suggested that adaptation could be one of the crucial factors
in setting the frequency of population rhythms in the neocortex. Other possible
roles have been suggested, including the phenomena of forward masking and selec-
tive attention [22], when the neuronal response to subsequent or weaker inputs is
inhibited.

There is a large variety of mechanisms responsible for firing rate adaptation. The
prominent ones are the ionic currents related to the voltage-dependent potassium
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channels (M-type currents, [3]), further those related to the slow calcium dependent
potassium channels (AHP currents, [23, 25, 28]) and those responsible for the recov-
ery from inactivation of the sodium channel [13]. Benda and Herz [1] suggested that
all these different adaptation mechanisms could be described by a generic voltage
gated current as introduced by Hodgkin and Huxley [17] so to derive a “universal”
model independent of the biophysical processes underlying adaptation.

Despite that detailed conductance-based neuron models of the Hodgkin-Huxley
type [16, 17] explicitly considering many ion channels have been proposed, their
complexity strongly limits their applicability. On the other hand, simplified phe-
nomenological models as the stochastic leaky integrate-and-fire (LIF) one [27, 31] are
certainly less exact, but mathematically more tractable. It has been shown [29, 30]
that the classical LIF model is unable to reproduce some high order statistics of
the observed interspike intervals (ISIs). However, generalized LIF models are still
able to give an effective description of neural activity, reproducing the observed
spiking behavior [2, 14, 19, 20]. Finally, such low-dimensional simplified models are
well suited for network simulations and can be a useful tool to explore the role of
adaptation on the systems level [10].

The generalization of a LIF model to include spike-frequency adaptation is often
realized by coupling the equation for the evolution of the membrane potential to
an equation for the dynamics of a given ion species. After each spike, due to the
opening and closing of specific gates, the intracellular concentration of that species
is abruptly modified and then decays to its resting value; as a consequence, a result-
ing ion-dependent current affects the discharge rate ([22, 26]). Alternative models
assume that adaptation is generated by a dynamically varying firing threshold: such
a threshold is transiently elevated following a spike and subsequently decays until
the next spike is generated ([9, 18, 21]).

In the present work we consider a model inspired by the work of Liu and
Wang [22]. We assume that adaptation is provoked mainly by a calcium-activated
potassium current: each spike generates a small amount of calcium influx that adds
to the intracellular calcium concentration so that the potassium current is incre-
mented accordingly. We stress that the randomness of the voltage crossing times
due to the diffusion in membrane potential equation causes randomness of the initial
calcium concentration, so that in the present model both equations are stochastic.

The proposed model is described in Section 2. Some quantitative results, specif-
ically relating the mean firing rate to the mean calcium concentration and the
corresponding asymptotic relationships are reported in Section 3. Finally, Section 4
is devoted to the description of the simulation algorithm and to the discussion of
numerical results. Section 5 concludes and points to possible developments.

2. The model. The diffusive approximation for a LIF model with synaptic cur-
rents (excitatory and inhibitory) of homogeneous Poisson type is governed by:
(i) the Equation

dV (τ) = − gL

Cm

[
V (τ)− Vrest]dτ + µdτ + σdW (τ) (τ ≥ τ0), (1)

with initial condition V (τ0) = Vreset (see Eqs. (15) and related observation; Eqs. (21)
in [8]); (ii) the presence of a threshold value Vth for the membrane potential V (τ)
that, once attained, produces an action potential (spike); (iii) the reset mechanism
for the membrane potential on the value Vreset. In Eq. (1) W (τ) is a standard
Wiener process, Cm represents the membrane capacitance, gL the leak membrane
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conductance and Vrest the resting membrane potential. Moreover, the parameters
µ and σ are such that Vrest + µCm/gL and σ2Cm/(2gL) represent the asymptotic
values for the mean and the variance, respectively, of the free membrane potential.
Indeed, referring to homogeneous Poisson processes for excitation and inhibition, it
results

µ := aEλE − aIλI; σ2 := a2
EλE + a2

IλI,

where aE and aI represent the unitary increments and decrements and λE, λI the
corresponding arrival rates, so that the synaptic current is

Isyn(τ) = Cmµ+ Cmσ
dW (τ)

dτ
.

Here, along the lines of Liu and Wang [22], we consider explicitly the role of the
potassium ion channel whose conductance gAHP is assumed to be proportional to
the instantaneous calcium concentration: gAHP(τ) = βAHP[Ca2+](τ). Then, the
current generated by the potassium channel is

IAHP(τ) = βAHP[Ca2+](τ)[V (τ)− VK]

where VK represents the reversal potential of the potassium channel. Furthermore,
the calcium concentration decays exponentially with its characteristic time τCa while
each spike generates a calcium influx α.

Therefore, the proposed model for the generation of a spike train is described by
the Equations:

dV (τ) = − gL

Cm

[
V (τ)− Vrest]dτ −

IAHP(τ)

Cm
dτ +

Isyn(τ)

Cm
dτ (τ ≥ τ0), (2)

d[Ca2+](τ)

dτ
= − 1

τCa
[Ca2+](τ) (3)

with the reset mechanism,1

if τf : V (τ−f ) = Vth then V (τ+
f ) = Vreset, [Ca2+](τ+

f ) = [Ca2+](τ−f ) + α,

and τf = τ0.
(4)

For motivations and consequences of such assumptions see again Liu and Wang
[22]; see also La Camera [21], where a different repositioning mechanism is consid-
ered.

Remark 1. With respect to Eq. (1), the resting membrane potential Vrest and the
leakage conductance gL should be renamed since we excluded from these parameters
the contribution of the potassium channel, expressed in terms of VK and gAHP;
however, for readability we maintain the previous notation. /

Remark 2. As shown in Eq. (4), the term “reset” is a misnomer for the calcium
concentration: at the beginning of each ISI it is a random variable Y function of the
already observed spikes. In this regard we find useful to use two different letters to
indicate the time: τ (for the dynamics of a single ISI) that is reset after each spike,
and t (for the entire spike train) that goes until the saturation of calcium level.
Obviously t − τ coincides with the sum of ISIs already occurred. Furthermore,
t0 = τ0 and the effective value of calcium concentration, at the beginning of each
spike train, is not considered significant, i.e. [Ca2+](t0) = 0. /

1As usual the superscripts − and + denote left and right limits, respectively.
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By setting

Y (τ) := [Ca2+](τ); θL := Cm/gL, ρ := Vrest, γ := Cm/βAHP,

Eq. (2) becomes

dV (τ) = −
[
V (τ)− ρ

θL
+
V (τ)− VK

γ
Y (τ)− µ

]
dτ + σdW (τ) (τ ≥ τ0),

and finally, by setting

ΘL(τ) :=
θL

1 + θLY (τ)/γ
, P (τ) :=

[
ρ

θL
+
VK

γ
Y (τ)

]
ΘL(τ), (5)

it can be rewritten as

dV (τ) = −
[
V (τ)− P (τ)

ΘL(τ)
− µ

]
dτ + σdW (τ) (τ ≥ τ0). (6)

We stress that in Eq. (6) the calcium concentration Y (τ), the passive membrane
time constant ΘL(τ) and the resting membrane potential P (τ) represent stochastic
processes.

To choose suitable values for the involved parameters we followed the indications
given by several authors for cortical regular spiking pyramidal neurons: Vrest = 0,2

Vth = 16 mV, Vreset = 10 mV, VK = −10 mV, τCa = 500 ms, θL = 20 ms,
α = 0.2 µM, γ = 150 ms·µM, µ ∈ (0.4, 0.8) mV/ms and σ2 = 1 mV2/ms. In
the sequel, for brevity, these settings will be indicated by the expression considered
parametric configuration.

3. Adaptation quantitative features. Eq. (6) defines a generalized OU process
already considered by Buonocore et al. [5, 6]. The analysis of the model described via
Eqs. (3), (4) and (6) is made more complex by the stochastic nature of the calcium
concentration; however, the change in calcium concentration is slow compared with
the evolution of the membrane potential. Hence we can apply a fast-slow variable
analysis ([22] and references therein) where the slower calcium dynamics can be
solved by averaging over the faster voltage subsystem.

In the following we outline the steps of the devised procedure. It is quite evident
that the mean firing rate is a decreasing function of the calcium concentration.
Then, to derive an empirical relationship between these two quantities, we observe
that in the case of constant deterministic calcium concentration y, i.e. when Eq. (4)
reduces to [Ca2+](τ) = y, Eq. (6) describes the evolution of the potential membrane

Ṽ (t) as a standard LIF model with passive membrane time constant and reset
membrane potential given by Eq. (5) with Y (τ) replaced by y. On the other hand,
the corresponding firing rate f(y) can be obtained as the reciprocal of the mean

first passage time (FPT) of the process Ṽ (τ) through Vth having y as calcium

concentration: τ1(y) := E
[
TṼ ,Vth

(Vreset, τ0; y)
]
. By applying a version with rescaled

parameter of the formula (6.a) in [24] we numerically evaluate τ1(y) for a suitable
range of fixed values y, coherent with the adaptation phenomenon (y ranging from
0 to a few units of the calcium concentration influx α), whose reciprocal f(y) quite
remarkably fits a quadratic relationship:

f(y) = f0 + f1y + f2y
2, (7)

2So that the values for the membrane potential and the firing threshold are rescaled with
respect to the real value of the rest potential.



A LIF MODEL WITH ADAPTATION FOR THE GENERATION OF A SPIKE TRAIN 487

where f0 > 0, f1 < 0 and f2 ≥ 0. For µ = 0.8 mV/ms, part (a) of Figure 1 confirms
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Figure 1. For the considered parametric configuration with µ =
0.8 mV/ms: part (a) shows the plot of the calculated (by means of
Eq. (6.a) in [24]) mean firing rate f(y) as a function of calcium con-
centration y and its quadratic trend line (they are overlapped); part
(b) shows again the plot of the calculated mean firing rate (solid
line) and its linear trend line (dotted line). τ1(y) indicates mean
first passage time of membrane potential through firing threshold
in the case of degenerate Eq. (3): Y (τ) ≡ y. Firing rate in ms−1

and calcium concentration in µM.

the goodness of the quadratic relationship in the considered range of the calcium
concentration; in such an interval the two curves are essentially overlapped with
absolute error of order 10−3. As a comparison, part (b) of the same figure outlines
that a linear relationship is unable to reproduce the firing rates in particular at
the ends of the considered range of calcium concentration, where the relative error
is about 100 times greater than the one obtained by the quadratic approximation.
The difference in the goodness of fit between the two trend lines (quadratic and
linear) decreases for smaller values of µ (not shown).

Now we consider the mean mY (t) := E[Y (t)] of the process Y (t). Averaging over
the fast dynamics of the membrane potential V (t), the mean calcium influx at time
t is given by αf(t) ≡ αf [mY (t)] and the evolution equation for the slow variable
mY (t) becomes

ṁY = αf − mY

τCa
, (8)

that together with the quadratic relationship (7) leads to:

ṁY = αf0 +

(
αf1 −

1

τCa

)
mY + αf2m

2
Y .

The latter is a Riccati Equation with constant coefficients, whose general solution
is easily obtained as

mY (t) = αf0
1− e−

√
∆ t

λ2e−
√

∆ t − λ1

, (9)

where λ1 ≤ λ2 < 0 and ∆ represent the eigenvalues and the discriminant of the
associated equation, respectively:

λ1,2 =
1

2

(
αf1 −

1

τCa
∓
√

∆

)
; ∆ =

(
αf1 −

1

τCa

)2

− 4α2f0f2 > 0.
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From Eqs. (7) and (9) we obtain the expression for the instantaneous firing rate
f(t):

f(t) = f0 + f1mY (t) + f2m
2
Y (t). (10)

Since

yss := lim
t→∞

mY (t) = −αf0
1

λ1
, (11)

we find

fss := f0 + f1yss + f2y
2
ss = f0

(
1− αf1

λ1
+
α2f0f2

λ2
1

)
. (12)

So, the resulting degree of adaptation is:

Fadap :=
f0 − fss

f0
≡ 1− fss

f0
=

α

λ1

(
f1 −

αf0f2

λ1

)
. (13)

For the determination of the adaptation time constant τadap it is useful to note
that in the steady state the variation of the calcium is null and thus from Eq. (8)
a straightforward relationship between yss and fss can be obtained

yss = ατCafss;
3 (14)

then, from it and Eqs. (11) it follows:

fss

f0
=
−1/λ1

τCa
.

Finally, by the relation fss/f0 = τadap/τca proved in [22], the adaptation time
constant is:

τadap = − 1

λ1
. (15)

Remark 3. As f2 → 0+ one has λ2 → 0−, λ1 → λ̃1 := αf1−1/τCa and −
√

∆→ λ̃1

so that

m̃Y (t) = −αf0

λ̃1

(
1− eλ̃1t

)
, f̃(t) = f0 −

αf0f1

λ̃1

(
1− eλ̃1t

)
, (16)

and finally we obtain

ỹss = −αf0
1

λ̃1

, f̃ss = f0

(
1− αf1

λ̃1

)
, τ̃adap = − 1

λ̃1

, F̃adap =
αf1

λ̃1

, (17)

as the asymptotic mean calcium concentration, the asymptotic mean firing rate, the
adaptation time constant and the degree of adaptation, respectively.4 /

4. ISIs generation and numerical results. To validate Eqs. (9) and (10) (and
related Eqs. (11)–(17)) we generate N spike trains for a time interval long enough
to yield some dozens of spikes in each one of them. In order to obtain a single
spike train we utilized the hazard rate method, based on a hazard rate function
numerically evaluated.

Specifically, let Y be the calcium concentration at the beginning of a single
ISI (see, also, Remark 2) and let TV,Vth

(Vreset, τ0; ν) be the first passage time of
V (t) through Vth known that (i) V (τ0) = Vreset and (ii) Y = ν. In this specific
context, TV,Vth

(Vreset, τ0; ν) also represents the interspike interval that starts having
ν as initial calcium concentration. We now denote with gV (Vth, τ |Vreset, τ0; ν) and

3Obviously Eq.(14) is directly verified by means of Eqs. (11) and (12).
4Note that these expressions are equivalent to the ones reported in [22], where the firing rate

is directly assumed linearly dependent on the calcium concentration.
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GV (Vth, τ |Vreset, τ0; ν) the probability density function (pdf) and the distribution
function of TV,Vth

(Vreset, τ0; ν), respectively. Then, the following integral equation
holds:

ψV (Vth, τ |Vreset, τ0; ν) =

∫ τ

τ0

ψV (Vth, τ |Vth, s; ν)gV (Vth, s|Vreset, τ0; ν) ds. (18)

The kernel in Eq. (18) is the probability current with removed singularity (see, for in-
stance, [7]and [11]) and efficient quadrature formulas can be used to approximate the
unknown gV (Vth, τ |Vreset, τ0; ν); with a further quadrature we also get the function
GV (Vth, τ |Vreset, τ0; ν). Thereafter, the hazard rate function of TV,Vth

(Vreset, τ0; ν),

λV (τ ; ν) :=
gV (Vth, τ |Vreset, τ0; ν)

1−GV (Vth, τ |Vreset, t0; ν)
(τ ≥ τ0), (19)

can be easily evaluated: directly on the same mesh of the used quadrature formula
and by means of interpolation on other values of its argument.

A sketch of the used algorithm is provided in the framed box below. Note that
Λ is an upper bound for the hazard rate function λV (τ ; ν > 0) since the neuron
during the first ISI of any spike train is not affected by the adaptation mechanism.
The algorithm saves all the values assumed by the random variable Y and all the
generated ISIs from which, by summation, the spike train t1, t2, . . . is obtained.

As shown in [4], this algorithm outperforms the classical methods based on trajec-
tories reconstruction (such as the Euler-Maruyama method) in accuracy; in the case
of low firing rates (subthreshold regime) also its efficiency is considerably higher.
Moreover, in any situation it is not affected by the systematic bias (overestimation
of crossing times) that affects these methods.

HRM-Algorithm for generating a spike train

1. Determine an upper bound Λ of λV (τ ; 0).
2. t← t0 and ν ← 0; set tmax.
3. Numerically evaluated λV (τ ; ν) (τ0 ≤ τ ≤ tmax).
4. τf ← τ0; m← 0; z0 ← 1; u0 ← 1.
5. m← m+ 1.

6. Get a random number zm by Zm with Zm
d
= Exp(Λ) independent from

σ(Z0, . . . , Zm−1).
7. τf ← τf + zm.

8. Get a random number um by Um
d
= U(0, 1) independent from Zm and

σ(U0, . . . , Um−1).

9. if
λV (τf; ν)

Λ
< um return to step 5.

10. I ← τf − τ0; save I; t← t+ I.
11. ν ← Y (t) + α; save ν.
12. if t < tmax return to step 3.

The symbols
d
=, Exp(·), U(·) and σ(·) indicate the equality in distribution, the expo-

nential distribution, the uniform absolutely continue distribution and the generated
σ-algebra, respectively.

By each one of the generated spike trains, a sample path y(t) of the process Y (t),
can be obtained as

yj(t) = α

k∑
i=1

e
−
t− tj,i
τCa (tj,k ≤ t ≤ tj,k+1, and j = 1, 2, . . . , N), (20)
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so that the corresponding sample mean m̂Y (t) is an estimator for mY (t). The
left hand side of Figure 2 compares the plot of the instantaneous mean calcium
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Figure 2. For the considered parametric configuration with µ =
0.8 mV/ms: part (a) shows plots of mY (t) (solid line) evaluated
via Eq. (9) and its estimate m̂Y (t) (dotted line) — time in ms and
calcium concentration in µM—; part (b) shows plots of the mean
firing rate f(t) (solid line) from Eq. (10) and its trial estimated
counterpart (dots) —firing rate in ms−1.

concentration as evaluated by Eq. (9) to m̂Y (t). On the right part of the same
Figure, the plot of the instantaneous mean firing rate as obtained by Eq. (10) is
compared to its trial–averaged estimate (considered time interval subdivided in 2 ms
time bins). The agreement between estimates and function seems quite satisfactory;
the same conclusion holds for several values of µ ∈ (0.4, 0.8) mV/ms (for brevity,
figures not reported here). Quadrature mesh, h = θ/10, and sample size, N =
10000, have been chosen to balance results accuracy and computational times. As
a confirmation of the improvement, Figure 3 compares plots of m̃Y (t) in Remark 3
with m̂Y (t).
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Figure 3. For the considered parametric configuration with µ =
0.8 mV/ms plots of m̃Y (t) (solid line) evaluated via Eq. (16) and
its estimate m̂Y (t) (dotted line) — time in ms and calcium concen-
tration in µM. Note, in particular, the larger error of the stationary
mean calcium concentration ỹss with respect to yss: relative error
about 2.5 · 10−2 versus 5 · 10−3.

In order to devise an approximation of the ISI pdf, we proceed as follows. We
recall that Y denotes the calcium concentration at the beginning of each ISI in the
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current spike train. Let fY(ν), g(τ) denote the pdfs of Y and of the generic ISI,
respectively.5 Then, setting g(τ |ν) ≡ gV (Vth, τ |Vreset, τ0; ν), the function g(τ) can
be obtained by averaging g(τ |ν) with respect to fY(ν):

g(τ) = EfY [g(τ |ν)] = g(τ |0)P(Y = 0) + g(τ |α)P(Y = α)

+

∫ +∞

α

g(τ |ν)fY(ν)dν (τ ≥ τ0).
(21)

With regards to the discrete part of Y distribution we can resort to the values of
ν stored during the N spike trains generation; while the integral in the right–side
of (21) can be evaluated by means of a suitable quadrature rule:6∫ +∞

α

g(τ |ν)fY(ν)dν ≈
r∑
l=1

wl · g(τ |νl)fY(νl). (22)

To evaluate fY(νl), for l = 1, 2, . . . , r, we can proceed at least in two different
ways. First, it is useful to observe that the nodes subdivide the support of Y in
r classes; then, the values of ν saved during the N spike trains generation provide
a sample (ν1, ν2, . . . , νM ) of size M sufficient to employ the relative frequencies of
each class:

f̃Y(νl) =
nl

M · bl
(l = 1, 2, . . . , r). (23)

Here bl represents the width of l-th class and nl the related absolute frequency.
As an alternative (Bayesian) way, we can initially assume that Y is uniformly

distributed after α and then we can update its pdf according to a generated ISI
sample, τ = (τ1, τ2, . . . , τn). For this purpose, we can take n = N and τj a randomly
chosen ISI in the j-th spike train; clearly, the first two ISIs of each spike train
corresponding to ν = 0 and ν = α must be discarded before sampling.7 Therefore,
with obvious meaning of symbols, one has:

f̃Y(νl) ≡ fY(νl|τ ) = C

n∏
j=1

g(τj |νl) (l = 1, 2, . . . , r). (24)

The constant C is the normalizing factor of the absolutely continuous part of Y.
The results obtained by means of Eq. (24) require a higher computational time with
respect to.

Figure 4 shows the agreement between the pdf g(τ), evaluated by means of
Eqs. (21)–(23), and the corresponding frequency polygon.

5. Concluding remarks. In this work we modeled the spike-frequency adapta-
tion phenomenon by a generalization of the LIF model where the evolution of the
membrane potential is affected by the calcium dynamics that activate a potassium
current. Then we fit the relationship between the mean calcium concentration and
the mean firing rate; by a fast-slow variable analysis we were able to solve the slow
calcium dynamics and obtain analytical expressions describing the quantities of in-
terest. Finally, to confirm such analytical results, we suitably modified the hazard
rate method to generate spike trains and so to estimate the interspike intervals

5Indeed the random variable Y has a probability mass concentrated in 0 and α and it is

absolutely continuous after α.
6Here, r denotes the number of nodes of quadrature, {ν1, ν2, . . . , νr} and {w1, w2, . . . , wr} the

related nodes and weights, respectively.
7We stress that the size n of the sample τ loses a unit corresponding to those generated spike

trains with less than two ISIs.
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Figure 4. For the considered parametric configuration with µ =
0.8 mV/ms: on the left hand side plots of g(τ) (solid line) evaluated
via Eqs. (21)–(23) and its estimated counterpart via spike trains
generation (dotted line); on the right hand side plots of the corre-
sponding distribution function G(τ) (solid line) and its estimated
counterpart via spike trains generation (dotted line).

density. These numerical experiments gave results in very good agreement with the
analytical estimates. To obtain such estimates, in particular for the ISIs pdf, we
adopted an integrated approach that combines numerical and simulation techniques
with a theoretical study. Further developments should include the estimation of the
calcium concentration at the beginning of each ISI without resorting to generations
methods; however, in the authors’ opinion, this is a very challenging task due to
the dependence of the calcium level on the entire past history of the process.
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