The effect of interspike interval statistics on the information gainunder the rate coding hypothesis

  • Received: 01 December 2012 Accepted: 29 June 2018 Published: 01 September 2013
  • MSC : Primary: 60G55, 62P10; Secondary: 94A17.

  • The question, how much information can be theoreticallygained from variable neuronal firing rate with respect to constantaverage firing rate is investigated.We employ the statistical concept of information based on the Kullback-Leibler divergence,and assume rate-modulated renewal processes as a model of spike trains.We show thatif the firing rate variation is sufficiently small and slow(with respect to the mean interspike interval), the information gaincan be expressed by the Fisher information.Furthermore, under certain assumptions, the smallestpossible information gain is provided by gamma-distributed interspikeintervals.The methodology is illustrated and discussed on severaldifferent statistical models of neuronal activity.

    Citation: Shinsuke Koyama, Lubomir Kostal. The effect of interspike interval statistics on the information gainunder the rate coding hypothesis[J]. Mathematical Biosciences and Engineering, 2014, 11(1): 63-80. doi: 10.3934/mbe.2014.11.63

    Related Papers:

  • The question, how much information can be theoreticallygained from variable neuronal firing rate with respect to constantaverage firing rate is investigated.We employ the statistical concept of information based on the Kullback-Leibler divergence,and assume rate-modulated renewal processes as a model of spike trains.We show thatif the firing rate variation is sufficiently small and slow(with respect to the mean interspike interval), the information gaincan be expressed by the Fisher information.Furthermore, under certain assumptions, the smallestpossible information gain is provided by gamma-distributed interspikeintervals.The methodology is illustrated and discussed on severaldifferent statistical models of neuronal activity.


    加载中
    [1] Dover Publications, Inc., New York, 1966.
    [2] Br. Med. J., 1 (1954).
    [3] Journal of Neuroscience Methods, 105 (2001), 25-37.
    [4] Biometrika, 68 (1981), 143-152.
    [5] J. Roy. Stat. Soc. B, 41 (1979), 113-147.
    [6] Eur. Phys. J. B, 24 (2001), 409-413.
    [7] J. Neuroendocrinol., 16 (2004), 390-397.
    [8] Brain Res., 1434 (2012), 47-61.
    [9] Nature Neurosci., 2 (1999), 947-958.
    [10] Neural Computation, 10 (1998), 1731-1757.
    [11] Marcel Dekker, New York, 1989.
    [12] IEEE Transactions on Information Theory, 14 (1968), 591-592.
    [13] Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1966.
    [14] Neural Networks, 22 (2009), 1235-1246.
    [15] in "Neural Information Processing Systems" (eds. J. C. Platt, D. Koller, Y. Singer and S. Roweis), Vol. 20, (2008), 329-336.
    [16] Second edition, Probability and its Applications (New York), Springer-Verlag, New York, 2003.
    [17] J. Neurobiology, 65 (2005), 97-114.
    [18] John Wiley & Sons, Inc., New York, 1968.
    [19] Biophys. J., 4 (1964), 41-68.
    [20] Charles Griffin & Co., Ltd., London; Hafner Publishing Co., New York, N. Y., 1950.
    [21] Biometrika, 58 (1971), 255-277.
    [22] Neural Comput., 17 (2005), 2240-2257.
    [23] Biol. Cybern., 92 (2005), 199-205.
    [24] Phys. Rev. Lett., 84 (2000), 4773-4776.
    [25] Brain Res., 1434 (2012), 123-135.
    [26] Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1981.
    [27] Neural Comput., 21 (2009), 1714-1748.
    [28] Biological Cybernetics, 77 (1997), 289-295.
    [29] Lecture Notes in Statistics, 9, Springer-Verlag, New York-Berlin, 1982.
    [30] John Wiley & Sons, New York, 1973.
    [31] Neural Computation, 13 (2001), 1713-1720.
    [32] Prentice Hall, New Jersey, 1993.
    [33] Phys. Rev. E, 82 (2010), 026115.
    [34] Brain Res., 1434 (2012), 136-141.
    [35] PLoS ONE, 6 (2011), e21998.
    [36] Entropy, 14 (2012), 1221-1233.
    [37] in "Neural Information Processing Systems," Vol. 25, The Institute of Statistical Mathematics, 2013.
    [38] Neural Computation, 20 (2008), 1776-1795.
    [39] Dover Publications, Inc., Mineola, New York, 1968.
    [40] Second edition, Springer Texts in Statistics, Springer-Verlag, New York, 1998.
    [41] Biol. Cybern., 65 (1991), 459-467.
    [42] Neural Comput., 20 (2008), 1325-1343.
    [43] Neurosci. Res. Prog. Sum., 3 (1968), 405-527.
    [44] in "Neural Information Processing Systems" (eds. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams and A. Culotta), Vol. 22, (2008), 1473-1481.
    [45] Monographs on Applied Probability and Statistics, Chapman and Hall, London; A Halsted Press Book, John Wiley & Sons, New York, 1979.
    [46] J. Neurosci. Methods, 181 (2009), 119-144.
    [47] Journal of Neuroscience, 18 (1998), 10090-10104.
    [48] Journal of Neurophysiology, 57 (1987), 147-161.
    [49] IEEE Trans. Inf. Theory, 42 (1996), 40-47.
    [50] John Wiley & Sons, Inc., New York; Chapman & Hill, Ltd., London, 1954.
    [51] Proceedings of the National Academy of Sciences of the United States of America, 90 (1993), 10749-10753.
    [52] University of Illinois Press, Urbana, Illinois, 1949.
    [53] Biophys. J., 7 (1967), 797-826.
    [54] J. Comput. Neurosci., 2 (1995), 149-162.
    [55] Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1988.
    [56] Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998.
    [57] Neural Computation, 11 (1999), 75-84.
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2362) PDF downloads(458) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog