A review of non local continuum damage: Modelling of failure?

  • Received: 01 October 2014 Revised: 01 October 2014
  • 74A45, 74R05.

  • Failure of quasi-brittle materials such as concrete needs a proper description of strain softening due to progressive micro-cracking and the introduction of an internal length in the constitutive model in order to achieve non zero energy dissipation. This paper reviews the main results obtained with the non local damage model, which has been among the precursors of such models. In most cases up to now, the internal length has been considered as a constant. There is today a consensus that it should not be the case as models possess severe shortcomings such as incorrect averaging near the boundaries of the solid considered and non local transmission across non convex boundaries. An interaction-based model in which the weight function is constructed from the analysis of interaction has been proposed. It avoids empirical descriptions of the evolution of the internal length. This model is also recalled and further documented. Additional results dealing with spalling failure are discussed. Finally, it is pointed out that this model provides an asymptotic description of complete failure, which is consistent with fracture mechanics.

    Citation: Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?[J]. Networks and Heterogeneous Media, 2014, 9(4): 575-597. doi: 10.3934/nhm.2014.9.575

    Related Papers:

    [1] Gilles Pijaudier-Cabot, David Grégoire . A review of non local continuum damage: Modelling of failure?. Networks and Heterogeneous Media, 2014, 9(4): 575-597. doi: 10.3934/nhm.2014.9.575
    [2] Felisia Angela Chiarello, Paola Goatin . Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015
    [3] F. A. Chiarello, J. Friedrich, S. Göttlich . A non-local traffic flow model for 1-to-1 junctions with buffer. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018
    [4] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [5] Adrian Muntean, Toyohiko Aiki . Preface to ``The Mathematics of Concrete". Networks and Heterogeneous Media, 2014, 9(4): i-ii. doi: 10.3934/nhm.2014.9.4i
    [6] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [7] A. Marigo . Robustness of square networks. Networks and Heterogeneous Media, 2009, 4(3): 537-575. doi: 10.3934/nhm.2009.4.537
    [8] Simone Fagioli, Yahya Jaafra . Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16(3): 377-411. doi: 10.3934/nhm.2021010
    [9] G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3(3): 567-614. doi: 10.3934/nhm.2008.3.567
    [10] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
  • Failure of quasi-brittle materials such as concrete needs a proper description of strain softening due to progressive micro-cracking and the introduction of an internal length in the constitutive model in order to achieve non zero energy dissipation. This paper reviews the main results obtained with the non local damage model, which has been among the precursors of such models. In most cases up to now, the internal length has been considered as a constant. There is today a consensus that it should not be the case as models possess severe shortcomings such as incorrect averaging near the boundaries of the solid considered and non local transmission across non convex boundaries. An interaction-based model in which the weight function is constructed from the analysis of interaction has been proposed. It avoids empirical descriptions of the evolution of the internal length. This model is also recalled and further documented. Additional results dealing with spalling failure are discussed. Finally, it is pointed out that this model provides an asymptotic description of complete failure, which is consistent with fracture mechanics.


    [1] Z. P. Bažant, Instability, ductility, and size effect in strain-softening concrete, Journal of the Engineering Mechanics Division, 102 (1976), 331-344.
    [2] Z. P. Bažant, Nonlocal damage theory based on micromechanics of crack interactions, Journal of Engineering Mechanics, 120 (1994), 593-617. doi: 10.1061/(ASCE)0733-9399(1994)120:3(593)
    [3] Z. P. Bažant and M. Jirasek, Nonlocal integral formulations of plasticity and damage: survey of progress, Journal of Engineering Mechanics, 128 (2002), 1119-1149. doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119)
    [4] Z. P. Bažant and G. Pijaudier-Cabot, Nonlocal continuum damage localization instability and convergence, Journal of Applied Mechanics, 55 (1988), 287-294. doi: 10.1115/1.3173674
    [5] Z. P. Bažant, J.-L. Le and C. G. Hoover, Nonlocal boundary layer (nbl) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials, in Fracture Mechanics of Concrete and Concrete Structures-Recent Advances in Fracture Mechanics of Concrete (ed. B.-H. Oh), Korea Concrete Institute, (2010), 135-143.
    [6] A. Benallal, R. Billardon and G. Geymonat, Bifurcation and localization in rate-independent materials. Some general considerations, in Bifurcation and Stability of Dissipative Systems (ed. Q. S. Nguyen), Springer Vienna, 327 (1993), 1-44. doi: 10.1007/978-3-7091-2712-4_1
    [7] B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, 48 (2000), 797-826. doi: 10.1016/S0022-5096(99)00028-9
    [8] B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, Journal of Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3
    [9] R. De Borst, Simulation of strain localization: A reappraisal of the Cosserat continuum, Engineering computations, 8 (1991), 317-332. doi: 10.1108/eb023842
    [10] R. De Borst and H.-B. Mühlhaus, Gradient-dependent plasticity: Formulation and algorithmic aspects, International Journal for Numerical Methods in Engineering, 35 (1992), 521-539. doi: 10.1002/nme.1620350307
    [11] F. Dufour, G. Legrain, G. Pijaudier-Cabot and A. Huerta, Estimation of crack opening from a two-dimensional continuum-based finite element computation, International Journal for Numerical and Analytical Methods in Geomechanics, 36 (2012), 1813-1830. doi: 10.1002/nag.1097
    [12] F. Dufour, G. Pijaudier-cabot, M. Choinska and A. Huerta, Extraction of a crack opening from a continuous approach using regularized damage models, Computers and Concrete, 5 (2008), 375-388. doi: 10.12989/cac.2008.5.4.375
    [13] M. Geers, R. De Borst, W. Brekelmans and R. Peerlings, Strain-based transient-gradient damage model for failure analyses, Computer Methods in Applied Mechanics and Engineering, 160 (1998), 133-153. doi: 10.1016/S0045-7825(98)80011-X
    [14] C. Giry, F. Dufour and J. Mazars, Stress-based nonlocal damage model, International Journal of Solids and Structures, 48 (2011), 3431-3443. doi: 10.1016/j.ijsolstr.2011.08.012
    [15] P. Grassl, D. Xenos, M. Jirásek and M. Horák, Evaluation of nonlocal approaches for modelling fracture near nonconvex boundaries, International Journal of Solids and Structures, 51 (2014), 3239-3251. doi: 10.1016/j.ijsolstr.2014.05.023
    [16] D. Grégoire, H. Maigre and A. Combescure, New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials, International Journal of Solids and Structures, 46 (2009), 3480-3491. doi: 10.1016/j.ijsolstr.2009.06.003
    [17] D. Grégoire, H. Maigre, J. Réthoré and A. Combescure, Dynamic crack propagation under mixed-mode loading - Comparison between experiments and X-FEM simulations, International Journal of Solids and Structures, 44 (2007), 6517-6534. doi: 10.1016/j.ijsolstr.2007.02.044
    [18] D. Grégoire, L. B. Rojas-Solano, V. Lefort, P. Grassl, J. Saliba, J.-P. Regoin, A. Loukili and G. Pijaudier-Cabot, Mesoscale Analysis of Failure in Quasi-Brittle Materials: Comparison Between Lattice Model and Acoustic Emission Data, {International Journal of Numerical and Analytical Methods in Geomechanics}, in review, 2014.
    [19] D. Grégoire, L. B. Rojas-Solano and G. Pijaudier-cabot, Continuum to discontinuum transition during failure in non-local damage models, International Journal for Multiscale Computational Engineering, 10 (2012), 567-580. doi: 10.1615/IntJMultCompEng.2012003061
    [20] D. Grégoire, L. B. Rojas-Solano and G. Pijaudier-Cabot, Failure and size effect for notched and unnotched concrete beams, International Journal for Numerical and Analytical Methods in Geomechanics, 37 (2013), 1434-1452. doi: 10.1002/nag.2180
    [21] J. Hadamard, Leçons Sur la Propagation des Ondes, (French) [Lectures on wave propagation], Hermann, Paris, 1903.
    [22] M. Hadamard, Les problèmes aux limites dans la théorie des équations aux dérivées partielles, (French) [Boundary value problems in the theory of partial differential equations], Journal de Physique Théorique et Appliquée, 6 (1907), 202-241.
    [23] R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6 (1958), 236-249. doi: 10.1016/0022-5096(58)90029-2
    [24] R. Hill, Some basic principles in the mechanics of solids without a natural time, Journal of the Mechanics and Physics of Solids, 7 (1959), 209-225. doi: 10.1016/0022-5096(59)90007-9
    [25] M. Jirásek and B. Patzák, Consistent tangent stiffness for nonlocal damage models, Computers & structures, 80 (2002), 1279-1293. doi: 10.1016/S0045-7949(02)00078-0
    [26] M. Jirásek, S. Rolshoven and P. Grassl, Size effect on fracture energy induced by non-locality, International Journal for Numerical and Analytical Methods in Geomechanics, 28 (2004), 653-670. doi: 10.1002/nag.364
    [27] D. D. Joseph, M. Renardy and J.-C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluid, in Analysis and Thermomechanics (eds. B. D. Coleman, M. Feinberg and J. Serrin ), Springer Berlin Heidelberg, 87 (1985), 213-251. doi: 10.1007/BF00250725
    [28] H. Kolsky, An investigation of the mechanical properties of material at a very high rate of loading, Proceedings of the Physical Society, B62 (1949), 676-700. doi: 10.1088/0370-1301/62/11/302
    [29] A. Krayani, G. Pijaudier-Cabot and F. Dufour, Boundary effect on weight function in nonlocal damage model, Engineering Fracture Mechanics, 76 (2009), 2217-2231. doi: 10.1016/j.engfracmech.2009.07.007
    [30] J. Mazars, A description of micro-and macroscale damage of concrete structures, Engineering Fracture Mechanics, 25 (1986), 729-737. doi: 10.1016/0013-7944(86)90036-6
    [31] J. Mazars, Application de la Mécanique de L'endommagement au Comportement non Linéaire et à la rupture du Béton de Structure, (French) [Application of mechanical damage to the nonlinear behavior and breakage of the concrete structure], PhD thesis, Université Paris VI, 1984.
    [32] A. Needleman, Material rate dependence and mesh sensitivity in localization problems, Computer Methods in Applied Mechanics and Engineering, 67 (1988), 69-85. doi: 10.1016/0045-7825(88)90069-2
    [33] M. Negri, A non-local approximation of free discontinuity problems in sbv and sbd, Calculus of Variations and Partial Differential Equations, 25 (2006), 33-62. doi: 10.1007/s00526-005-0356-3
    [34] R. Peerlings, R. De Borst, W. Brekelmans, J. De Vree and I. Spee, Some observations on localisation in non-local and gradient damage models, European Journal of Mechanics - A/Solids, 15 (1996), 937-953.
    [35] R. Peerlings, M. Geers, R. de Borst and W. Brekelmans, A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of Solids and Structures, 38 (2001), 7723-7746. doi: 10.1016/S0020-7683(01)00087-7
    [36] K. Pham and J.-J. Marigo, Approche variationnelle de l'endommagement: II. Les modèles à gradient, (French) [The variational approach to damage: II. The gradient damage models], Comptes Rendus Mécanique, 338 (2010), 199-206. doi: 10.1016/j.crme.2010.03.012
    [37] G. Pijaudier-Cabot and Y. Berthaud, Effets des interactions dans l'endommagement d'un milieu fragile. Formulation non locale, (French) [Damage and interactions in a microcracked medium. Non local formulation], Comptes rendus de l'Académie des sciences-Série 2, 310 (1990), 1577-1582.
    [38] G. Pijaudier-Cabot and Z. P. Bažant, Nonlocal Damage Theory, Journal of Engineering Mechanics, 113 (1987), 1512-1533. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
    [39] G. Pijaudier-Cabot and A. Benallal, Strain localization and bifurcation in a nonlocal continuum, International Journal of Solids and Structures, 30 (1993), 1761-1775. doi: 10.1016/0020-7683(93)90232-V
    [40] G. Pijaudier-Cabot and L. Bode, Localization of damage in a nonlocal continuum, Mechanics Research Communications, 19 (1992), 145-153. doi: 10.1016/0093-6413(92)90039-D
    [41] G. Pijaudier-Cabot, L. Bodé and A. Huerta, Arbitrary Lagrangian-Eulerian finite element analysis of strain localization in transient problems, International Journal for Numerical Methods in Engineering, 38 (1995), 4171-4191. doi: 10.1002/nme.1620382406
    [42] G. Pijaudier-Cabot and F. Dufour, Non local damage model. Boundary and evolving boundary effects, European Journal of Environmental and Civil engineering, 14 (2010), 729-749. doi: 10.1080/19648189.2010.9693260
    [43] G. Pijaudier-Cabot, K. Haidar and J.-F. Dubé, Non-local damage model with evolving internal length, International Journal for Numerical and Analytical Methods in Geomechanics, 28 (2004), 633-652. doi: 10.1002/nag.367
    [44] G. Pijaudier-Cabot and A. Huerta, Finite element analysis of bifurcation in nonlocal strain softening solids, Computer methods in applied mechanics and engineering, 90 (1991), 905-919. doi: 10.1016/0045-7825(91)90190-H
    [45] J. R. Rice, The Localization of Plastic Deformation, Division of Engineering, Brown University, 1976.
    [46] L. B. Rojas-Solano, D. Grégoire and G. Pijaudier-cabot, Interaction-based non-local damage model for failure in quasi-brittle materials, Mechanics Research Communications, 54 (2013), 56-62. doi: 10.1016/j.mechrescom.2013.09.011
    [47] A. Simone, H. Askes and L. J. Sluys, Incorrect initiation and propagation of failure in non-local and gradient-enhanced media, International Journal of Solids and Structures, 41 (2004), 351-363. doi: 10.1016/j.ijsolstr.2003.09.020
    [48] L. Sluys and R. De Borst, Wave propagation and localization in a rate-dependent cracked medium-model formulation and one-dimensional examples, International Journal of Solids and Structures, 29 (1992), 2945-2958. doi: 10.1016/0020-7683(92)90151-I
  • This article has been cited by:

    1. Ali Esmaeili, Ali Javili, Paul Steinmann, Coherent energetic interfaces accounting for in-plane degradation, 2016, 202, 0376-9429, 135, 10.1007/s10704-016-0160-4
    2. Estelle Berthier, Ashwij Mayya, Laurent Ponson, Damage spreading in quasi-brittle disordered solids: II. What the statistics of precursors teach us about compressive failure, 2022, 162, 00225096, 104826, 10.1016/j.jmps.2022.104826
    3. T.S. Nguyen, Zhenze Li, Grant Su, M.H.B. Nasseri, R.P. Young, Hydro-mechanical behavior of an argillaceous limestone considered as a potential host formation for radioactive waste disposal, 2018, 10, 16747755, 1063, 10.1016/j.jrmge.2018.03.010
    4. A.D. Jefferson, I.C. Mihai, R. Tenchev, W.F. Alnaas, G. Cole, P. Lyons, A plastic-damage-contact constitutive model for concrete with smoothed evolution functions, 2016, 169, 00457949, 40, 10.1016/j.compstruc.2016.02.008
    5. Estelle Berthier, Vincent Démery, Laurent Ponson, Damage spreading in quasi-brittle disordered solids: I. Localization and failure, 2017, 102, 00225096, 101, 10.1016/j.jmps.2016.08.013
    6. Gilles Pijaudier-Cabot, Fracture and permeability of concrete and rocks, 2021, 21, 1878-1535, 507, 10.5802/crphys.38
    7. Breno Ribeiro Nogueira, Cédric Giry, Giuseppe Rastiello, Fabrice Gatuingt, One-dimensional study of boundary effects and damage diffusion for regularized damage models, 2022, 350, 1873-7234, 507, 10.5802/crmeca.137
    8. Paul Larousse, David Dureisseix, Anthony Gravouil, Gabriel Georges, A thermodynamic motivated RCCM damage interface model in an explicit transient dynamics framework, 2024, 0178-7675, 10.1007/s00466-024-02489-x
    9. Ashwij Mayya, Percolation versus depinning transition: The inherent role of damage hardening during quasibrittle failure, 2024, 110, 2470-0045, 10.1103/PhysRevE.110.035003
    10. Louis Védrine, Flavien Loiseau, Cécile Oliver-Leblond, Rodrigue Desmorat, Calibration of non-local damage models from full-field measurements: Application to discrete element fields, 2025, 112, 09977538, 105611, 10.1016/j.euromechsol.2025.105611
    11. Breno Ribeiro Nogueira, Giuseppe Rastiello, Cédric Giry, Fabrice Gatuingt, Wave dispersion and bifurcation analyses of eikonal gradient-enhanced isotropic damage models, 2025, 09977538, 105643, 10.1016/j.euromechsol.2025.105643
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5195) PDF downloads(342) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog