Research article

Numerical simulation of chaotic dynamics in a fractional-order vibration model with Grünwald-Letnikov fractional derivative

  • Published: 03 June 2025
  • This paper investigates the chaotic dynamics in a fractional-order vocal fold vibration (VCV) model based on the Grünwald-Letnikov fractional derivative (GLFD). Studying the characteristics of vocal fold vibration is of great significance for revealing its vibration mechanism, the etiology of abnormal vibrations, and natural speech synthesis. Traditional vocal fold vibration models are based on integer-order systems and are unable to describe the memory effects present in real physical systems. To overcome this limitation, this paper introduces fractional derivatives and develops a high-precision numerical method to simulate the fractional-order VCV model. By incorporating nonlinear elastic and damping forces, the model can more accurately describe the complex dynamic characteristics of vocal fold vibrations, including memory effects and non-locality. The numerical simulation results reveal novel chaotic behaviors in the fractional-order VCV model, which have not been observed in integer-order models. These findings provide new insights into the possible dynamic states of vocal fold vibrations and lay the foundation for further theoretical and experimental studies on the vocal cord vibration mechanism.

    Citation: Jiaxin Zhang, Wei Zhang, Xiaoyu Li. Numerical simulation of chaotic dynamics in a fractional-order vibration model with Grünwald-Letnikov fractional derivative[J]. Networks and Heterogeneous Media, 2025, 20(2): 625-647. doi: 10.3934/nhm.2025027

    Related Papers:

  • This paper investigates the chaotic dynamics in a fractional-order vocal fold vibration (VCV) model based on the Grünwald-Letnikov fractional derivative (GLFD). Studying the characteristics of vocal fold vibration is of great significance for revealing its vibration mechanism, the etiology of abnormal vibrations, and natural speech synthesis. Traditional vocal fold vibration models are based on integer-order systems and are unable to describe the memory effects present in real physical systems. To overcome this limitation, this paper introduces fractional derivatives and develops a high-precision numerical method to simulate the fractional-order VCV model. By incorporating nonlinear elastic and damping forces, the model can more accurately describe the complex dynamic characteristics of vocal fold vibrations, including memory effects and non-locality. The numerical simulation results reveal novel chaotic behaviors in the fractional-order VCV model, which have not been observed in integer-order models. These findings provide new insights into the possible dynamic states of vocal fold vibrations and lay the foundation for further theoretical and experimental studies on the vocal cord vibration mechanism.



    加载中


    [1] Z. J. Qiao, C. L. Zhang, C. L. Zhang, X. Ma, R. H. Zhu, Z. H. Lai, et al., Stochastic resonance array for designing noise-boosted filter banks to enhance weak multi-harmonic fault characteristics of machinery, Appl. Acoust., 236 (2025), 110710. https://doi.org/10.1016/j.apacoust.2025.110710 doi: 10.1016/j.apacoust.2025.110710
    [2] Y. Yu, W. Zhou, Z. Zhang, Q. Bi, Analysis on the motion of nonlinear vibration with fractional order and time variable mass, Appl. Math. Lett., 124 (2022), 107621. https://doi.org/10.1016/j.aml.2021.107621 doi: 10.1016/j.aml.2021.107621
    [3] D. Chen, N. Wang, Z. Chen, Y. Yu, Parametrically excited vibrations in a nonlinear damped triple-well oscillator with resonant frequency, J. Vib. Eng. Technol., 10 (2022), 781–788. https://doi.org/10.1007/s42417-021-00408-5 doi: 10.1007/s42417-021-00408-5
    [4] S. Adachi, J. Yu, Two dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing, J. Acoust. Soc. Am., 117 (2005), 3213–3224. https://doi.org/10.1121/1.1861592 doi: 10.1121/1.1861592
    [5] T. Wurzbacher, R. Schwarz, M. Döllinger, U. Hoppe, U. Eysholdt, J. Lohscheller, Model-based classification of nonstationary vocal fold vibrations, J. Acoust. Soc. Am., 120 (2006), 1012–1027. https://doi.org/10.1121/1.2211550 doi: 10.1121/1.2211550
    [6] D. D. Mehta, D. D. Deliyski, T. F. Quatieri, R. E. Hillman, Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings, J. Speech Lang. Hear. Res., 54 (2011), 47–54. https://doi.org/10.1044/1092-4388(2010/10-0026) doi: 10.1044/1092-4388(2010/10-0026)
    [7] R. Cronjaeger, Die Entstehung des Primaeren Stimmklangs im Menschlichen Kehlkopf-Ein Model, Ph.D thesis, University of Braunschweig, Braunschweig, 1978.
    [8] J. C. Lucero, L. L. Koenig, Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control, J. Acoust. Soc. Am., 117 (2005), 1362–1372. https://doi.org/10.1121/1.1853235 doi: 10.1121/1.1853235
    [9] N. Isshiki, M. Tanabe, K. Ishizaka, D. Broad, Clinical significance of asymmetrical vocal cord tension, Ann. Otology Rhinology Laryngology, 86 (1977), 58–66. https://doi.org/10.1177/000348947708600109 doi: 10.1177/000348947708600109
    [10] I. Steinecke, H. Herzel, Bifurcations in an asymmetric vocal-fold model, J. Acoust. Soc. Am., 97 (1995), 1874–1884. https://doi.org/10.1121/1.412061 doi: 10.1121/1.412061
    [11] T. M. Onerci, Diagnosis in Otorhinolaryngology, Springer, London, 2010.
    [12] Z. J. Qiao, Y. B. He, C. R. Liao, R. H. Zhu, Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis, Chaos, Solitons Fractals, 175 (2023), 113960. https://doi.org/10.1016/j.chaos.2023.113960 doi: 10.1016/j.chaos.2023.113960
    [13] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [14] X. L. Gao, H. L. Zhang, X. Y. Li, Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture, AIMS Math., 9 (2024), 18506–18527. https://doi.org/10.3934/math.2024901 doi: 10.3934/math.2024901
    [15] H. Che, Y. L. Wang, Z. Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [16] Z. Li, Q. Chen, Y. Wang, X. Li, Solving two-sided fractional super-diffusive partial differential equations with variable coefficients in a class of new reproducing kernel spaces, Fractal Fract., 6 (2022), 492. https://doi.org/10.3390/fractalfract6090492 doi: 10.3390/fractalfract6090492
    [17] Q. P. Ji, J. Wang, L. X. Lu, C. F. Ge, Li-He's modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system, J. Low Freq. Noise Vibr. Act. Control, 40 (2021), 675–682. https://doi.org/10.1177/1461348420914457 doi: 10.1177/1461348420914457
    [18] J. H. He, Q. Yang, C. H. He, H. B. Li, E. Buhe, Pull-in stability of a fractal system and its pull-in plateau, Fractals, 30 (2022), 2250185. https://doi.org/10.1142/S0218348X22501857 doi: 10.1142/S0218348X22501857
    [19] J. H. He, C. H. He, A. A. Alsolami, A good initial guess for approximating nonlinear oscillators by the homotopy perturbation method, Facta Universitatis-Series Mech. Eng., 21 (2023), 21–29. https://doi.org/10.22190/FUME230108006H doi: 10.22190/FUME230108006H
    [20] J. H. He, Y. O. El-Dib, The enhanced homotopy perturbation method for axial vibration of strings, Facta Universitatis-Series Mech. Eng., 19 (2021), 735–750. https://doi.org/10.22190/FUME210125033H doi: 10.22190/FUME210125033H
    [21] J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115–123. https://doi.org/10.1016/S0096-3003(99)00104-6 doi: 10.1016/S0096-3003(99)00104-6
    [22] C. P. Li, Z. Q. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation, J. Sci. Comput., 85 (2020), 1–27. https://doi.org/10.1007/s10915-020-01353-3 doi: 10.1007/s10915-020-01353-3
    [23] C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
    [24] C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: mathematical analysis, Appl. Numer. Math., 150 (2020), 587–606. https://doi.org/10.1016/j.apnum.2019.11.007 doi: 10.1016/j.apnum.2019.11.007
    [25] C. P. Li, Z. Wang, Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution, Math. Comput. Simul., 182 (2021), 838–857. https://doi.org/10.1016/j.matcom.2020.12.007 doi: 10.1016/j.matcom.2020.12.007
    [26] C. P. Li, Z. Wang, Numerical methods for the time fractional convection-diffusion-reaction equation, Numer. Funct. Anal. Optim., 42 (2021), 1115–1153. https://doi.org/10.1080/01630563.2021.1936019 doi: 10.1080/01630563.2021.1936019
    [27] X. L. Gao, H. L. Zhang, Y. L. Wang, Z. Y. Li, Research on pattern dynamics behavior of a fractional vegetation-water model in arid flat environment, Fractal Fract., 8 (2024), 264. https://doi.org/10.3390/fractalfract8050264 doi: 10.3390/fractalfract8050264
    [28] X. L. Gao, Z. Y. Li, Y. L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcation Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
    [29] X. Kong, F. Yu, W. Yao, S. Cai, J. Zhang, H. Lin, Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation, Neural Networks, 171 (2024), 85–103. https://doi.org/10.1016/j.neunet.2023.12.008 doi: 10.1016/j.neunet.2023.12.008
    [30] F. Yu, X. Kong, W. Yao, J. Zhang, S. Cai, H. Lin, et al., Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor, Chaos, Solitons Fractals, 179 (2024), 114440. https://doi.org/10.1016/j.chaos.2023.114440 doi: 10.1016/j.chaos.2023.114440
    [31] M. Chinnamuniyandia, S. Chandranb, C. J. Xu, Fractional order uncertain BAM neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313. https://doi.org/10.3233/JIFS-234744 doi: 10.3233/JIFS-234744
    [32] F. Yu, W. Zhang, X. Xiao, W. Yao, S. Cai, J. Zhang, et al., Dynamic analysis and field-programmable gate array implementation of a 5D fractional-order memristive hyperchaotic system with multiple coexisting attractors, Fractal Fract., 8 (2024), 271. https://doi.org/10.3390/fractalfract8050271 doi: 10.3390/fractalfract8050271
    [33] I. Ali, Dynamical analysis of two-dimensional fractional-order-in-time biological population model using chebyshev spectral method, Fractal Fract., 8 (2024), 325. https://doi.org/10.3390/fractalfract8060325 doi: 10.3390/fractalfract8060325
    [34] Y. W. Sha, J. Mou, S. Banerjee, Y. S. Zhang, Exploiting flexible and secure cryptographic technique for multidimensional image based on graph data structure and three-input majority gate, IEEE Trans. Ind. Inf., 20 (2024), 3835–3846. https://doi.org/10.1109/TII.2023.3281659 doi: 10.1109/TII.2023.3281659
    [35] X. H. Wang, H. L. Zhang, Y. L. Wang, Z. Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald-Letnikov differential derivative, Int. J. Bifurcation Chaos, 35 (2025).
    [36] K. Shah, T. Abdeljawad, On complex fractal-fractional order mathematical modeling of CO2 emanations from energy sector, Phys. Scr., 99 (2024), 015226. https://doi.org/10.1088/1402-4896/ad1286 doi: 10.1088/1402-4896/ad1286
    [37] V. Daftardar-Gejji (ed.), Fractional Calculus and Fractional Differential Equations, Springer Singapore, 2019. https://doi.org/10.1007/978-981-13-9227-6
    [38] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [39] I. Petrá$\breve{\rm{s}}$, Fractional-Order Nonlinear Systems, Modeling, Analysis and Simulation, Springer Science & Business Media, Heidelberg, 2011.
    [40] D. Y. Xue, Fractional Calculus and Fractional-Order Control, Science Press, Beijing, China, 2018.
    [41] D. Y. Xue, L. Bai, Numerical algorithms for Caputo fractional-order differential equations, Int. J. Control, 90 (2016), 1201–1211. https://doi.org/10.1080/00207179.2016.1158419 doi: 10.1080/00207179.2016.1158419
    [42] D. Xue, C. Zhao, Y. Chen, A modified approximation method of fractional order system, in 2006 International Conference on Mechatronics and Automation, (2006), 1043–1048. https://doi.org/10.1109/ICMA.2006.257769
    [43] Y. X. Han, J. X. Zhang, Y. L. Wang, Dynamic behavior of a two-mass nonlinear fractional-order vibration system, Front. Phys., 12 (2024), 1452138. https://doi.org/10.3389/fphy.2024.1452138 doi: 10.3389/fphy.2024.1452138
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(917) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog