In this paper, we studied the initial problem of the kinetic Cucker-Smale model with noise, driven by pairwise alignment interactions under the influence of external potential field. Without the general compact support or smallness assumption on the initial datum, we established the global existence of strong solution. The proof was based on weighted energy estimates.
Citation: Linglong Du, Anqi Du, Zhengyan Luo. Global well-posedness of strong solution to the kinetic Cucker-Smale model with external potential field[J]. Networks and Heterogeneous Media, 2025, 20(2): 460-481. doi: 10.3934/nhm.2025021
In this paper, we studied the initial problem of the kinetic Cucker-Smale model with noise, driven by pairwise alignment interactions under the influence of external potential field. Without the general compact support or smallness assumption on the initial datum, we established the global existence of strong solution. The proof was based on weighted energy estimates.
| [1] |
R. Shu, E. Tadmor, Flocking hydrodynamics with external potentials, Arch. Ration. Mech. Anal., 238 (2020), 347–381. https://doi.org/10.1007/s00205-020-01544 doi: 10.1007/s00205-020-01544
|
| [2] |
F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
|
| [3] |
F. Cucker, S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197–227. https://doi.org/10.1007/s11537-007-0647-x doi: 10.1007/s11537-007-0647-x
|
| [4] |
S. Y. Ha, E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415–435. https://doi.org/10.3934/krm.2008.1.415 doi: 10.3934/krm.2008.1.415
|
| [5] | D. Benedetto, E. Caglioti, M. Pulvirenti, A kinetic equation for granular media, RAIRO Model. Math. Anal. Numer., 31 (1997), 615–641. |
| [6] |
G. Russo, P. Smereka, Kinetic theory for bubbly flow I: Collisionless case, SIAM J. Appl. Math., 56 (1996), 327–357. https://doi.org/10.1137/S0036139993260563 doi: 10.1137/S0036139993260563
|
| [7] |
G. Russo, P. Smereka, Kinetic theory for bubbly flow II: Fluid dynamic limit, SIAM J. Appl. Math., 56 (1996), 358–371. https://doi.org/10.1137/S0036139993260575 doi: 10.1137/S0036139993260575
|
| [8] | J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, In: Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Boston: Birkhäuser, 2010,297–336. https://doi.org/10.1007/978-0-8176-4946-3-12 |
| [9] |
S. Y. Ha, J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. http://doi.org/10.4310/CMS.2009.v7.n2.a2 doi: 10.4310/CMS.2009.v7.n2.a2
|
| [10] |
J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218–236. https://doi.org/10.1137/090757290 doi: 10.1137/090757290
|
| [11] |
Y. P. Choi, D. Oh, O. Tse, Controlled pattern formation of stochastic Cucker-Smale systems with network structures, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106474. https://doi.org/10.1016/j.cnsns.2022.106474 doi: 10.1016/j.cnsns.2022.106474
|
| [12] |
H. Dietert, R. Shvydkoy, On Cucker-Smale dynamical systems with degenerate communication, Anal. Appl., 19 (2021), 551–573. https://doi.org/10.1142/S0219530520500050 doi: 10.1142/S0219530520500050
|
| [13] |
M. Bostan, J. A. Carrillo, Reduced fluid models for self-propelled particles interacting through alignment, Math. Models Methods Appl. Sci., 27 (2017), 1255–1299. https://doi.org/10.1142/S0218202517400152 doi: 10.1142/S0218202517400152
|
| [14] |
C. Jin, Global existence of strong solutions to the kinetic Cucker-Smale model coupled with the two dimensional incompressible Navier-Stokes equations, Kinet. Relat. Models, 16 (2023), 69–96. https://doi.org/10.3934/krm.2022023 doi: 10.3934/krm.2022023
|
| [15] |
H. Cho, L. L. Du, S. Y. Ha, Emergence of a periodically rotating one-point cluster in a thermodynamic Cucker-Smale ensemble, Quart. Appl. Math., 80 (2022), 1–22. http://doi.org/10.1090/qam/1602 doi: 10.1090/qam/1602
|
| [16] |
L. L. Du, S. Y. Ha, Convergence toward a periodically rotating one-point cluster in the kinetic thermodynamic Cucker-Smale model, Commun. Math. Anal. Appl., 1 (2022), 72–111. https://doi.org/10.4208/cmaa.2021-0002 doi: 10.4208/cmaa.2021-0002
|
| [17] |
T. K. Karper, A. Mellet, K. Trivisa, Hydrodynamic limit of the kinetic Cucker-Smale flocking model, Math. Models Methods Appl. Sci., 25 (2015), 131–163. https://doi.org/10.1142/S0218202515500050 doi: 10.1142/S0218202515500050
|
| [18] |
D. Poyato, J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Models Methods Appl. Sci., 27 (2017), 1089–1152. https://doi.org/10.1142/S0218202517400103 doi: 10.1142/S0218202517400103
|
| [19] |
A. Figalli, M. J. Kang, A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, Anal. PDE, 12 (2019), 843–866. https://doi.org/10.2140/apde.2019.12.843 doi: 10.2140/apde.2019.12.843
|
| [20] |
M. Fabisiak, J. Peszek, Inevitable monokineticity of strongly singular alignment, Math. Ann., 390 (2024), 589–637. https://doi.org/10.1007/s00208-023-02776-7 doi: 10.1007/s00208-023-02776-7
|
| [21] |
J. A. Cañizo, J. A. Carrillo, J. Rosado, A Well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515–539. https://doi.org/10.1142/S0218202511005131 doi: 10.1142/S0218202511005131
|
| [22] |
Y. P. Choi, S. Y. Ha, J. Jung, J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), 1–34. https://doi.org/10.1007/s00021-019-0466-x doi: 10.1007/s00021-019-0466-x
|
| [23] |
Y. P. Choi, J. Jung, On weak solutions to the kinetic Cucker–Smale model with singular communication weights, Proc. Am. Math. Soc., 152 (2024), 3423–3436. https://doi.org/10.1090/proc/16837 doi: 10.1090/proc/16837
|
| [24] |
C. Jin, Well-posedness of weak and strong solutions to the kinetic Cucker-Smale model, J. Differ. Equations, 264 (2018), 1581–1612. https://doi.org/10.1016/j.jde.2017.10.001 doi: 10.1016/j.jde.2017.10.001
|
| [25] |
B. Chazelle, Q. Jiu, Q. Li, C. Wang, Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics, J. Differ. Equations, 263 (2017), 365–397. https://doi.org/10.1016/j.jde.2017.02.036 doi: 10.1016/j.jde.2017.02.036
|
| [26] |
T. K. Karper, A. Mellet, K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45 (2023), 215–243. https://doi.org/10.1137/120866828 doi: 10.1137/120866828
|
| [27] |
Y. S. Zhou, T. F. Zhang, Q. Ma, Local well-posedness of classical solutions for the kinetic self-organized model of Cucker-Smale type, Math. Methods Appl. Sci., 47 (2024), 7329–7349. https://doi.org/10.1002/mma.9974 doi: 10.1002/mma.9974
|
| [28] | L. Boudin, L. Desvillettes, C. Grandmont, A. Moussa, Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differ. Integr. Equations, 22 (2009), 1247–1271. https://www.sci-hub.ru/10.57262/die/1356019415 |
| [29] |
C. Pinheiro, G. Planas, On the $\alpha$-Navier-Stokes-Vlasov and the $\alpha$-Navier-Stokes-Vlasov-Fokker-Planck equations, J. Math. Phys., 62 (2021), 031507. https://doi.org/10.1063/5.0024394 doi: 10.1063/5.0024394
|