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1. Introduction

This paper is concerned with the following kinetic Cucker-Smale model with external potential
field: ∂t f + v · ∇x f − ∇xU(x) · ∇v f + ∇v · (L[ f ] f ) = σ∆v f ,

f (t, x, v)|t=0 = f0(x, v).
(1.1)

Here, f = f (t, x, v) is the particle distribution function in space (x, v) ∈ Ω = Rd ×Rd, at time t ⩾ 0. The
function U(x) = 1

2 |x|
2 represents the harmonic potential field. The constant σ > 0 represents the noise

strength. The alignment force L[ f ] is expressed in the form:

L[ f ](t, x, v) =
∫
Ω

φ(|x − y|) f (t, y, v∗)(v∗ − v) dy dv∗.

The interaction kernel function φ(|x − y|) is a positive nonincreasing C2 function. Without loss of
generality, we assume that

max
{
|φ|, |φ

′

|, |φ
′′

|
}
⩽ 1.

http://http://www.aimspress.com/journal/nhm
http://dx.doi.org/10.3934/nhm.2025021


461

The system (1.1) arises as a mean-field kinetic description of the following stochastic Cucker-Smale
model with external potential field:

dxi = vidt,

dvi =
1
N

∑N
j=1 φ(|xi − x j|)(v j − vi)dt − ∇xU(xi)dt + σ dW (i)

t , i = 1, . . . ,N,
(1.2)

where the deterministic system was studied by [1]. Here,
(
xi(t), vi(t)

)
are the position and velocity pair

of ith-particle, W (i)
t denote independent Wiener processes, and σ is the magnitude of the noise. The

communication weight function φ : Rd → R+ satisfies some symmetry conditions.
The particle Cucker-Smale model was originally proposed to understand the flocking phenomena

in bird populations by Cucker and Smale [2, 3]. Under the “molecular chaos” assumption, Ha and
Tadmor [4] derived the kinetic Cucker-Smale model formally from the particle Cucker-Smale model
using the BBGKY hierarchy method, e.g., [5–8]. For large-scale particle systems, Ha and Liu [9]
rigorously justified the mean-field limit from the multi-particle Cucker-Smale model to the kinetic
Cucker-Smale model, utilizing tools such as measure-valued solutions and the Kantorovich-Rubinstein
distance. Furthermore, Carrillo et al. [10] proved that the solutions approached exponentially fast in
velocity to the mean velocity of the initial condition, while in space they converged to a translational
flocking solution.

The Cucker-Smale model has been extended to various complexities, including the presence of
different network structures [11], communication mechanism [12], self-propulsion and friction
forces [13], and external fields such as fluid field [14], temperature field [15, 16], potential
fields [1], etc. These extensions significantly influence the dynamics of the system, leading to
behaviors that are markedly different from the original model. Moreover, the connection between the
kinetic Cucker-Smale model and the Euler-alignment system has been rigorously explored in recent
literature. For the Euler-alignment system with pressure effects, Karper et al. [17] rigorously justified
the hydrodynamic limit of the kinetic Cucker-Smale flocking model. Furthermore, Poyato and
Soler [18] provided detailed analysis of a compressible Euler-type equation with singular
commutator, which is derived from a hyperbolic limit of the kinetic Cucker-Smale model. In the
pressure-less case, the derivation from the kinetic Cucker-Smale model to the nonlocal
Euler-alignment system was established by [19]. Recently, Fabisiak and Peszek [20] rigorously
derived the macroscopic fractional Euler-alignment system from the kinetic Cucker-Smale equation
without performing any hydrodynamic limit.

The well-posedness of solution is a fundamental concept in the theory of partial differential
equations. Previous works [21–23] have established the well-posedness of weak and strong solution
to the kinetic Cucker-Smale model without external potentials. Recently, Jin [24] developed a unified
framework to establish the well-posedness of the model with or without noise. In this paper, the
global well-posedness of the noisy version of kinetic Cucker-Smale model with harmonic potential
field is studied. We prove the global nonnegativity, existence, and uniqueness of the strong solution
for the system (1.1). Our approach is based on a combination of weighted Sobolev spaces and
approximation schemes, which have been shown to be effective in dealing with inherent nonlinear and
nonlocal problems in [25–27].

Notation: We denote the usual Lp norms on Ω by ∥ f (t)∥Lp := ∥ f (t)∥Lp(Ω), and the ith element L[ f ]i
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of the vector L[ f ] by

L[ f ]i =

∫
Ω

φ(|x − y|) f (t, y, v∗i )(v∗i − vi) dy dv∗.

Then, we construct three special weighted Sobolev spaces with power ω(x, v) = (1 + x2 + v2)
1
2 :

L1
ω(Ω) :=

{
f (t, x, v) : ∥ f ∥L1

ω(Ω) < ∞
}
,

H1
ω(Ω) :=

{
f (t, x, v) : ∥ f ∥H1

ω(Ω) < ∞
}
,

X(Ω) :=
{
f (t, x, v) : ∥ f ∥X(Ω) < ∞

}
,

∥ f ∥H1
ω

:= ∥ f ∥L2
ω
+ ∥∇x f ∥L2

ω
+ ∥∇v f ∥L2

ω
,

∥ f ∥X := ∥ω∇v f ∥L2
ω
+ ∥ω∇x f ∥L2

ω
+

∥∥∥ω2 f
∥∥∥

L2
ω
,

where

∥ f ∥L1
ω

:= ∥ f ∥L1
ω(Ω) =

∫
Ω

ω f (t, x, v) dx dv, ∥ f ∥L2
ω

:= ∥ f ∥L2
ω(Ω) =

(∫
Ω

ω2 f 2(t, x, v) dx dv
) 1

2

.

In the rest of the paper, we denote Cd and Cd,σ as positive constants while subscripts are used to indicate
specific dependencies of such constants.

Definition 1.1. Let 0 ⩽ f (t, x, v) ∈ C([0,∞); L1
ω(Ω)). The function f (t, x, v) is a weak solution to

system (1.1) if

∂t f + v · ∇x f − ∇xU(x) · ∇v f + ∇v · (L[ f ] f ) = σ∆v f , inD′([0,+∞) ×Ω).

We say f (t, x, v) is a strong solution if f (t, x, v) is a weak solution and f (t, x, v) ∈ C([0,∞); H1
ω(Ω)).

Now, our main results are stated as follows.

Theorem 1.1. Assume initial datum f0(x, v) ∈ X(Ω) ∩ L1
ω(Ω). Then, the system (1.1) admits a unique

strong solution in sense of Definition 1.1.

Remark 1.1. In this paper, we consider a special potential function U = 1
2 |x|

2. In fact, similar to the
study in [1], the potential U can be extended to a more general case: assume that the potential function
U satisfies the following conditions:

a
2
|x|2 ⩽ U(x) ⩽

A
2
|x|2, a|x| ⩽ |∇U(x)| ⩽ A|x|, ∀x ∈ R3, 0 < a ⩽ A. (1.3)

One can obtain the existence and uniqueness of a strong solution to the system (1.1) with (1.3).

The existence of a strong solution is constructed in the weighted Sobolev space H1
ω(Ω). However, to

find the Cauchy sequences in this space, we need to give extra estimates for terms such as ∥ω∇v fn(t)∥2L2
ω

and ∥ω∇x fn(t)∥2L2
ω
. For this purpose, we construct the weighted Sobolev space X(Ω) and establish the a

priori estimate for the preparation; see Proposition 3.1.
The rest of this paper is organized as follows. In Section 2, we establish a priori estimates of the

system (1.1) by taking advantage of three special weighted Sobolev spaces. In Section 3, we first prove
the local existence and uniqueness of the strong solution to system (1.1) by an iteration scheme and
extend the local existence to the global one.
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2. A priori estimates

This section is devoted to the a priori estimates for the system (1.1). Directly integrating
system (1.1) over [0, t] × Ω gives that any smooth solution of it satisfies the following conservation
law:

∫
Ω

f0(x, v) dx dv =
∫
Ω

f (t, x, v) dx dv =:
∫
Ω

f (t) dx dv. Therefore, w.o.l.g., we assume∫
Ω

f0(x, v) dx dv = 1 in the rest of paper. We first give the following a priori estimates for ∥ f (t)∥L1
ω

and
∥ f (t)∥L2

ω
, which are better integrabilities of f with large v and x.

Lemma 2.1. Assume the function f (t, x, v) is a smooth solution to system (1.1) with initial datum
0 ⩽ f0 ∈ X(Ω) ∩ L1

ω(Ω) and
∫
Ω

f0(x, v) dx dv = 1. Then, for ∀ t ⩾ 0, we have
(1)

∫
Ω

f (t) dx dv = 1, ∥ f (t)∥L1 = 1, and f (t) ⩾ 0;
(2) ∥ f (t)∥L1

ω
⩽ C(t);

(3) ∥ f (t)∥2L2
ω
+ 2σ

∫ t

0
∥∇v f (τ)∥2L2

ω
dτ ⩽ Cexp

(∫ t

0
C(τ) dτ

)
;

where C and C(t) are positive constant and positive continuous functions of t both depending on σ, d
and the weighted norms of the initial datum f0.

Proof. (1) We multiply system (1.1) by sgn( f ) and integrate it over Ω to obtain

d
dt
∥ f (t)∥L1 = 0,

which implies ∥ f (t)∥L1 = ∥ f0∥L1 = 1, ∀t ⩾ 0. Note that∫
Ω

f (t) dx dv =
∫
Ω

f (t)1[ f (t)⩾0] dx dv +
∫
Ω

f (t)1[ f (t)<0] dx dv = 1, (2.1)

∥ f (t)∥L1 =

∫
Ω

f (t)1[ f (t)⩾0] dx dv −
∫
Ω

f (t)1[ f (t)<0] dx dv = 1. (2.2)

We subtract system (2.1) from (2.2) to obtain
∫
Ω

f (t)1[ f (t)<0] dx dv = 0, which gives f (t) ⩾ 0, ∀t ⩾ 0.
(2) Multiplying system (1.1) by ω and integrating by parts over Ω leads to

d
dt
∥ω f (t)∥L1 = −

∫
Ω

ωv · ∇x f (t, x, v) dx dv +
∫
Ω

ωx · ∇v f (t, x, v) dx dv

−

∫
Ω

ω∇v · (L[ f ] f (t, x, v)) dx dv + σ
∫
Ω

ω∆v f (t, x, v) dx dv

=

∫
Ω

f (t, x, v)∇x · (vω) dx dv −
∫
Ω

f (t, x, v)∇v · (xω) dx dv

+

∫
Ω

f (t, x, v)L[ f ] · ∇vω dx dv + σ
∫
Ω

f (t, x, v)∆vω dx dv

=

∫
Ω

f (t, x, v)L[ f ] ·
v
ω

dx dv + σ
∫
Ω

f (t, x, v)∆vω dx dv

⩽Cd,σ ∥ω f (t)∥L1 .

By applying Grönwall’s lemma, we obtain

∥ω f (t)∥L1 ⩽ ∥ω f0∥L1 eCd,σt =: C(t),
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where C(t) is the function of t depending on d, σ, and ∥ f0∥L1
ω
.

(3) We multiply system (1.1) by 2ω2 f to obtain

d
dt

(
ω2 f 2

)
= − ω2v · ∇x( f 2) + ω2x · ∇v( f 2) − 2(∇v · L[ f ])ω2 f 2

− ω2L[ f ] · ∇v( f 2) + 2σω2 f∆v f .
(2.3)

Then, we integrate system (2.3) by parts over Ω to obtain

d
dt
∥ f (t)∥2L2

ω

=

∫
Ω

∇x · (ω2v) f 2(t, x, v) dx dv −
∫
Ω

∇v · (ω2x) f 2(t, x, v) dx dv

− 2
∫
Ω

(∇v · L[ f ])ω2 f 2(t, x, v) dx dv +
∫
Ω

∇v · (ω2L[ f ]) f 2(t, x, v) dx dv

+ 2σ
∫
Ω

ω2 f (t, x, v)∆v f (t, x, v) dx dv

=2
∫
Ω

x · v f 2(t, x, v) dx dv − 2
∫
Ω

x · v f 2(t, x, v) dx dv

− d
∫
Ω

(∫
Ω

φ(|x − y|) f (t, y, v∗) dy dv∗
)
ω2 f 2(t, x, v) dx dv

+ 2
∫
Ω

v · L[ f ] f 2(t, x, v) dx dv−2σ
∫
Ω

∇v f (t, x, v) · ∇v

(
ω2 f (t, x, v)

)
dx dv

⩽Cd,σ
(
1 + ∥ω f (t)∥L1

)
∥ f (t)∥2L2

ω
− 2σ ∥∇v f (t)∥2L2

ω
,

(2.4)

where

− 2σ
∫
Ω

∇v f (t, x, v) · ∇v

(
ω2 f (t, x, v)

)
dx dv

= − 2σ
∫
Ω

∇v f (t, x, v) ·
(
∇vω

2 f (t, x, v)
)

dx dv − 2σ
∫
Ω

∇v f (t, x, v) ·
(
ω2∇v f (t, x, v)

)
dx dv

= − 2σ
∫
Ω

∇v f (t, x, v) ·
(
∇vω

2 f (t, x, v)
)

dx dv − 2σ ∥∇v f (t)∥2L2
ω

= − σ

∫
Ω

∇v| f (t, x, v)|2 · ∇vω
2 dx dv − 2σ ∥∇v f (t)∥2L2

ω

=σ

∫
Ω

| f (t, x, v)|2∆vω
2 dx dv − 2σ ∥∇v f (t)∥2L2

ω
.

Applying Grönwall’s lemma to system (2.4), we obtain

∥ f (t)∥2L2
ω
+ 2σ

∫ t

0
∥∇v f (τ)∥2L2

ω
dτ ⩽ ∥ f0∥

2
L2
ω

exp
(∫ t

0
C(τ) dτ

)
,

where C(t) is the function of t depending on d, σ, and ∥ f0∥L1
ω
.

Now we derive the estimates in the weighted Sobolev spaces. The first weighted space H1
ω(Ω) is

prepared for the strong solution, while the second space X(Ω) is constructed to estimate the
approximate solutions.
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Proposition 2.1. Assume the function f (t, x, v) is a smooth solution to system (1.1) with initial datum
satisfying the condition of Lemma 2.1. Then, for ∀ t ⩾ 0, we have

(1) ∥ f (t)∥2H1
ω
+ ∥ω f (t)∥2L2

ω
⩽ Cexp

(∫ t

0
C(τ) dτ

)
;

(2) ∥ f (t)∥2X + σ
∫ t

0
∥∇v f (τ)∥2X dτ ⩽ Cexp

(∫ t

0
C(τ) dτ

)
;

where C and C(t) are positive constant and positive continuous functions of t both depending on σ, d
and the weighted norms of the initial datum f0.

Proof. (1) Applying ∇v to system (1.1) gives

∂t∇v f = − ∇x f − v · ∇x(∇v f ) + x · ∇v(∇v f ) − ∇v(∇v f ) · L[ f ]

+ (d + 1)
(∫
Ω

φ(|x − y|) f (t, y, v∗) dy dv∗
)
∇v f + σ∆v(∇v f ).

(2.5)

Multiplying system (2.5) by 2ω2∇v f leads to

d
dt

(
ω2|∇v f |2

)
= − 2ω2∇v f · ∇x f − ω2v · ∇x(|∇v f |2)

+ ω2x · ∇v(|∇v f |2) − ω2∇v(|∇v f |2) · L[ f ]

+ 2(d + 1)
(∫
Ω

φ(|x − y|) f (t, y, v∗) dy dv∗
)
ω2|∇v f |2

+ 2σω2∇v(∆v f ) · ∇v f .

(2.6)

Then we integrate system (2.6) by parts over Ω to obtain

d
dt
∥∇v f (t)∥2L2

ω

= − 2
∫
Ω

ω2∇v f (t, x, v) · ∇x f (t, x, v) dx dv

+

∫
Ω

2x · v|∇v f (t, x, v)|2 dx dv −
∫
Ω

2x · v|∇v f (t, x, v)|2 dx dv

+ 2(d + 1)
∫
Ω

(∫
Ω

φ(|x − y|) f (t, y, v∗) dy dv∗
)
ω2|∇v f (t, x, v)|2 dx dv

−

∫
Ω

ω2∇v(|∇v f (t, x, v)|2) · L[ f ] dx dv

+ 2σ
∫
Ω

ω2∇v(∆v f (t, x, v)) · ∇v f (t, x, v) dx dv

⩽ − 2
∫
Ω

ω2∇v f (t, x, v) · ∇x f (t, x, v) dx dv +Cd,σ
(
1 + ∥ω f (t)∥L1

)
∥∇v f (t)∥2L2

ω

− 2σ
∥∥∥∇2

v f (t)
∥∥∥2

L2
ω
.

(2.7)

By applying ∇x to system (1.1), we obtain

∇x ft =∇v f − v · ∇x(∇x f ) + x · ∇v(∇x f ) − ∇x (∇v · L[ f ]) f

− ∇v · L[ f ]∇x f − ∇x (∇v f · L[ f ]) + σ∇x(∆v f ).
(2.8)
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Multiplying system (2.8) by 2ω2∇x f gives
d
dt

(
ω2|∇x f |2

)
=2ω2∇x f · ∇v f − ω2v · ∇x(|∇x f |2)

+ ω2x · ∇v(|∇x f |2) − ω2∇x(∇v · L[ f ]) · ∇x( f 2)
− 2ω2(∇v · L[ f ])|∇x f |2 − ω2∇v(|∇x f |2) · L[ f ]
− 2ω2∇x f · (∇xL[ f ] · ∇v f ) + 2σω2∇x f · ∇x(∆v f ).

(2.9)

Then, we integrate system (2.9) by parts over Ω to obtain
d
dt
∥∇x f (t)∥2L2

ω

=2
∫
Ω

ω2∇v f (t, x, v) · ∇x f (t, x, v) dx dv + 2
∫
Ω

|∇x f (t, x, v)|2∇x · (ω2v) dx dv

− 2
∫
Ω

|∇x f (t, x, v)|2∇v · (ω2x) dx dv +
∫
Ω

f 2(t, x, v)∇x ·
(
ω2∇x(∇v · L[ f ])

)
dx dv

− 2
∫
Ω

ω2(∇v · L[ f ])|∇x f |2 dx dv +
∫
Ω

|∇x f (t, x, v)|2∇v ·
(
ω2L[ f ]

)
dx dv

− 2σ
d∑

i, j=1

∫
Ω

∂vi(ω
2∂x j f )(∂2

vi x j
f ) dx dv − 2

∫
Ω

ω2∇x f (t, x, v) · (∇xL[ f ] · ∇v f (t, x, v)) dx dv

⩽2
∫
Ω

ω2∇x f (t, x, v) · ∇v f (t, x, v) dx dv

+Cd,σ
(
1 + ∥ω f (t)∥L1

)
∥∇x f (t)∥2L2

ω
+Cd ∥ f (t)∥2L2

ω
− 2σ ∥∇v∇x f (t)∥2L2

ω

−2
∫
Ω

ω2∇x f (t, x, v) · (∇xL[ f ] · ∇v f (t, x, v)) dx dv︸                                                           ︷︷                                                           ︸
A

.

(2.10)

Now we estimate the last term A on the right hand side of system (2.10).

A = − 2
d∑

i, j=1

∫
Ω

ω2∂vi f (t, x, v)∂x j f (t, x, v)∂x j L[ f ]i dx dv

=2
d∑

i, j=1

∫
Ω

f (t, x, v)∂vi

(
ω2∂x j f (t, x, v)∂x j L[ f ]i

)
dx dv

=4
d∑

i, j=1

∫
Ω

f (t, x, v)vi∂x j f (t, x, v)∂x j L[ f ]i dx dv

+ 2
d∑

i, j=1

∫
Ω

f (t, x, v)ω2∂2
vi x j

f (t, x, v)∂x j L[ f ]i dx dv

+ 2
d∑

i, j=1

∫
Ω

f (t, x, v)ω2∂x j f (t, x, v)∂2
vi x j

L[ f ]i dx dv

⩽Cd,σ

(
1 + ∥ω f (t)∥L1 + ∥ω f (t)∥2L1

) (
∥ f (t)∥2L2

ω
+ ∥ω f (t)∥2L2

ω

)
+Cd ∥∇x f (t)∥2L2

ω
+ σ ∥∇v∇x f (t)∥2L2

ω
,

(2.11)
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where we have used the σ-Young’s inequality and the following facts:

∂x j L[ f ]i =

∫
Ω

∂x jφ(|x − y|) f (t, y, v∗i )(v∗i − vi) dy dv∗

⩽C(1 + v2)
1
2

∫
Ω

f (t, y, v∗i )(1 + |v∗|2)
1
2 dy dv∗

⩽Cω∥ω f ∥L1

and

∂2
vi x j

L[ f ]i =

∫
Ω

∂x jφ(|x − y|) f (t, y, v∗i )∂vi(v
∗
i − vi) dy dv∗

= −

∫
Ω

∂x jφ(|x − y|) f (t, y, v∗i ) dy dv∗

⩽C.

Combining system (2.11) with (2.10) yields

d
dt
∥∇x f (t)∥2L2

ω

⩽2
∫
Ω

ω2∇v f (t, x, v) · ∇x f (t, x, v) dx dv +Cd,σ
(
1 + ∥ω f (t)∥L1

)
∥∇x f (t)∥2L2

ω

− σ ∥∇v∇x f (t)∥2L2
ω
+Cd,σ

(
1 + ∥ω f (t)∥L1 + ∥ω f (t)∥2L1

) (
∥ f (t)∥2L2

ω
+ ∥ω f (t)∥2L2

ω

)
.

(2.12)

Due to the term ∥ω f (t)∥2L2
ω

which appeared in system (2.12), we need to analyze it in detail to close the
a priori estimate in H1

ω. Similarly to the estimate of system (2.4), we multiply system (1.1) by 2ω4 f
and integrate it over Ω to have

d
dt
∥ω f (t)∥2L2

ω
+ 2σ ∥ω∇v f (t)∥2L2

ω
⩽ Cd,σ

(
1 + ∥ω f (t)∥L1

)
∥ω f (t)∥2L2

ω
. (2.13)

Adding up systems (2.4), (2.7), (2.12), and (2.13), we can get

d
dt

(
∥ f (t)∥2H1

ω
+ ∥ω f (t)∥2L2

ω

)
+ σ

(
∥∇v f (t)∥2H1

ω
+ ∥ω∇v f (t)∥2L2

ω

)
⩽Cd,σ

(
1 + ∥ω f (t)∥L1 + ∥ω f (t)∥2L1

) (
∥ f (t)∥2H1

ω
+ ∥ω f (t)∥2L2

ω

)
.

By Grönwall’s lemma and the estimate in Lemma 2.1, we obtain

∥ f (t)∥2H1
ω
+ ∥ω f (t)∥2L2

ω
+ σ

∫ t

0

(
∥∇v f (τ)∥2H1

ω
+ ∥ω∇v f (τ)∥2L2

ω

)
dτ

⩽
(
∥ f0∥H1

ω
+ ∥ω f0∥

2
L2
ω

)
exp

(∫ t

0
C(τ) dτ

)
,

where C(t) depends on d, σ, and ∥ f0∥L1
ω
.
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(2) We estimate the first term of ∥ f (t)∥2X. Multiplying system (2.5) by 2ω4∇v f gives

d
dt

(
ω4|∇v f |2

)
= − 2ω4∇v f · ∇x f − ω4v · ∇x(|∇v f |2)

+ ω4x · ∇v(|∇v f |2) − ω4∇v(|∇v f |2) · L[ f ]

+ 2(d + 1)
(∫
Ω

φ(|x − y|) f (t, y, v∗) dy dv∗
)
ω4|∇v f |2

+ 2σω4∇v(∆v f ) · ∇v f =:
6∑

k=1

Ik.

Integrating it over Ω, we can get∫
Ω

I1 dx dv = − 2
∫
Ω

ω4∇v f (t, x, v) · ∇x f (t, x, v) dx dv;

∫
Ω

I2 dx dv =
∫
Ω

|∇v f (t, x, v)|2∇x ·
(
ω4v

)
dx dv = 4

∫
Ω

|∇v f (t, x, v)|2ω2x · v dx dv;

∫
Ω

I3 dx dv = −
∫
Ω

|∇v f (t, x, v)|2∇v ·
(
ω4x

)
dx dv = −4

∫
Ω

|∇v f (t, x, v)|2ω2x · v dx dv;

∫
Ω

I4 dx dv =
∫
Ω

|∇v f (t, x, v)|2∇v ·
(
ω4L[ f ]

)
dx dv

=4
∫
Ω

|∇v f (t, x, v)|2ω2v · L[ f ] dx dv +
∫
Ω

|∇v f (t, x, v)|2ω4(∇v · L[ f ]) dx dv

⩽Cd
(
1 + ∥ω f (t)∥L1

)
∥ω∇v f (t)∥2L2

ω
;

∫
Ω

I5 dx dv ⩽ Cd ∥ω∇v f (t)∥2L2
ω

;

∫
Ω

I6 dx dv = −2σ
d∑

i, j=1

∫
Ω

∂2
viv j

f∂vi

(
ω4∂v j f

)
dx dv

= −2σ
d∑

i, j=1

∫
Ω

∂2
viv j

f∂viω
4∂v j f dx dv − 2σ

d∑
i, j=1

∫
Ω

∂2
viv j

fω4∂2
viv j

f dx dv

= −σ

d∑
i, j=1

∫
Ω

∂vi |∂v j f |2∂viω
4 dx dv − 2σ

∥∥∥ω∇2
v f (t)

∥∥∥2

L2
ω

= σ

d∑
i, j=1

∫
Ω

|∂v j f |2
(
∂2

vivi
ω4) dx dv − 2σ

∥∥∥ω∇2
v f (t)

∥∥∥2

L2
ω
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⩽ −2σ
∥∥∥ω∇2

v f (t)
∥∥∥2

L2
ω
+Cd,σ ∥ω∇v f (t)∥2L2

ω
.

Adding up the above estimates leads to

d
dt
∥ω∇v f (t)∥2L2

ω
+ 2σ

∥∥∥ω∇2
v f (t)

∥∥∥2

L2
ω

⩽ − 2
∫
Ω

ω4∇v f (t, x, v) · ∇x f (t, x, v) dx dv +Cd,σ
(
1 + ∥ω f (t)∥L1

)
∥ω∇v f (t)∥2L2

ω
.

(2.14)

Then, we estimate the second term of ∥ f (t)∥2X. Multiplying system (2.8) by 2ω4∇x f leads to

d
dt

(
ω4|∇x f |2

)
=2ω4∇v f · ∇x f − ω4v · ∇x

(
|∇x f |2

)
+ ω4x · ∇v

(
|∇x f |2

)
− ω4∇v

(
|∇x f |2

)
· L[ f ]

− ω4∇x(∇v · L[ f ]) · ∇x( f 2) − 2ω4(∇v · L[ f ])|∇x f |2

+ 2σω4∇x f · ∇x(∆v f ) − 2ω4∇x f · (∇xL[ f ] · ∇v f ) =:
8∑

k=1

Jk.

Similarly, we integrate it over Ω as follows:∫
Ω

J1 dx dv =2
∫
Ω

ω4∇v f (t, x, v) · ∇x f (t, x, v) dx dv;

∫
Ω

J2 dx dv =4
∫
Ω

|∇x f (t, x, v)|2ω2x · v dx dv;

∫
Ω

J3 dx dv = − 4
∫
Ω

|∇x f (t, x, v)|2ω2x · v dx dv;

∫
Ω

J4 dx dv =
∫
Ω

|∇x f (t, x, v)|2∇v ·
(
ω4L[ f ]

)
dx dv

=4
∫
Ω

|∇x f (t, x, v)|2ω2v · L[ f ] dx dv +
∫
Ω

(∇v · L[ f ])|∇x f (t, x, v)|2ω4 dx dv

⩽Cd
(
1 + ∥ω f (t)∥L1

)
∥ω∇x f (t)∥2L2

ω
;

∫
Ω

J5 dx dv =
∫
Ω

f 2(t, x, v)∇x ·
(
ω4∇x(∇v · L[ f ])

)
dx dv

=4
∫
Ω

f 2(t, x, v)ω2x · ∇x(∇v · L[ f ]) dx dv +
∫
Ω

f 2(t, x, v)ω4∆x(∇v · L[ f ]) dx dv

⩽Cd ∥ω f (t)∥2L2
ω
,

where we use the fact max
{
|φ|, |φ

′

|, |φ
′′

|
}
⩽ 1;∫

Ω

J6 dx dv ⩽Cd ∥ω∇x f (t)∥2L2
ω

;
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Ω

J7 dx dv = −2σ
d∑

i, j=1

∫
Ω

∂vi

(
ω4∂x j f

)
(∂2

vi x j
f ) dx dv

= −2σ
d∑

i, j=1

∫
Ω

(
∂viω

4∂x j f
)
(∂2

vi x j
f ) dx dv − 2σ

d∑
i, j=1

∫
Ω

(
ω4∂2

vi x j
f
)
(∂2

vi x j
f ) dx dv

= −σ

d∑
i, j=1

∫
Ω

(
∂viω

4)∂vi |∂x j f |2 dx dv − 2σ ∥ω∇v∇x f (t)∥2L2
ω

= σ

d∑
i, j=1

∫
Ω

(
∂2

vivi
ω4)|∂x j f |2 dx dv − 2σ ∥ω∇v∇x f (t)∥2L2

ω

⩽ −2σ ∥ω∇v∇x f (t)∥2L2
ω
+Cd,σ ∥ω∇x f (t)∥2L2

ω
.

Similar to the way of estimating the term A, we have∫
Ω

J8 dx dv ⩽Cd,σ(1+∥ω f (t)∥L1+∥ω f (t)∥2L1)(
∥∥∥ω2 f (t)

∥∥∥2

L2
ω
+∥ω∇x f (t)∥2L2

ω
)+σ ∥ω∇v∇x f (t)∥2L2

ω
.

Adding up the above estimates for the integrals
∫
Ω

Ji dx dv (i = 1, 2, · · · , 8), we obtain

d
dt
∥ω∇x f (t)∥2L2

ω
+ σ ∥ω∇x∇v f (t)∥2L2

ω

⩽2
∫
Ω

ω4∇v f (t, x, v) · ∇x f (t, x, v) dx dv

+Cd,σ(1 + ∥ω f (t)∥L1 + ∥ω f (t)∥2L1)
(
∥ω∇x f (t)∥2L2

ω
+

∥∥∥ω2 f (t)
∥∥∥2

L2
ω

)
.

(2.15)

Finally, we consider the last term of ∥ f (t)∥2X. Similar to the estimate of system (2.4), we multiply
system (2.5) by 2ω6 f and integrate over Ω to have

d
dt

∥∥∥ω2 f (t)
∥∥∥2

L2
ω
+ 2σ

∥∥∥ω2∇v f (t)
∥∥∥2

L2
ω
⩽ Cd,σ(1 + ∥ω f (t)∥L1)

∥∥∥ω2 f (t)
∥∥∥2

L2
ω
. (2.16)

Adding up systems (2.14)–(2.16), one has

d
dt

∥∥∥ω2 f (t)
∥∥∥2

X
+ σ ∥∇v f (t)∥2X ⩽ Cd,σ(1 + ∥ω f (t)∥L1 + ∥ω f (t)∥2L1)

∥∥∥ω2 f (t)
∥∥∥2

X
.

Applying Grönwall’s lemma and the estimate ∥ f (t)∥L1
ω

in Lemma 2.1, we obtain

∥ f (t)∥2X + σ
∫ t

0
∥∇v f (τ)∥2X dτ ⩽ ∥ f0∥

2
X exp

(∫ t

0
C(τ) dτ

)
,

where C(t) depends on d, σ, and ∥ f0∥L1
ω
. Therefore, we finish the proof.

3. Existence and uniqueness of strong solutions

In this section, we prove the local existence and uniqueness of the strong solution to system (1.1)
by constructing a sequence of approximate solutions and extend the local existence to the global. First,
let us recall a Grönwall-type lemma in [28].
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Lemma 3.1. Let T > 0 and (an)n∈N be the sequence of the nonnegative continuous functions on [0,T ].
Assume that (an) satisfies

an+1(t) ⩽ A + B
∫ t

0
an(s)ds +C

∫ t

0
an+1(s)ds, 0 ⩽ t ⩽ T,

where A, B, and C are nonnegative constants.
If A = 0, there exists a constant K ⩾ 0 depending on B,C such that

an(t) ⩽
Kntn

n!
, 0 ⩽ t ⩽ T, n ∈ N.

If A > 0, there exists a constant K ⩾ 0 depending on A, B,C such that

an(t) ⩽ Kexp(Kt), 0 ⩽ t ⩽ T, n ∈ N.

3.1. Uniform bound on approximate solutions.

To begin with, we construct the following iteration scheme on finite time [0,T ].∂t fn + v · ∇x fn − x · ∇v fn + ∇v · (L[ fn−1] fn) = σ∆v fn, in [0,T ] ×Ω,
fn(t, x, v)|t=0 = f0(x, v), in {t = 0} ×Ω,

(3.1)

for n ⩾ 1. We define a sequence of approximate solutions { fn} as the solution to the above iterative
system (3.1) by induction.
⋄ Initial step (n = 1): we set

f0(t, x, v) := f0(x, v).

With this, we solve the initial value problem for the Cucker-Smale model with external potential field
and noise:

∂t f1 + v · ∇x f1 − x · ∇v f1 + ∇v ·
[
L( f0) f1

]
= σ∆v f1, (x, v) ∈ Ω

subject to
f1(0, x, v) = f0(x, v).

⋄ Inductive step: Suppose we have the sequence of smooth approximate solutions { fk}
n
k=1. Then, we

can solve the following model:

∂t fn+1 + v · ∇x fn+1 − x · ∇v fn+1 + ∇v ·
[
L( fn) fn+1

]
= σ∆v fn+1, in [0,T ] ×Ω, (3.2)

subject to initial datum:
fn+1(0, x, v) = f0(x, v).

Thus, we can construct the smooth function { fn+1} from { fn}. The solvability of system (3.2) is similar
to that in the appendix of reference [29]. Therefore, the sequence { fn} is well-defined.

Paralleling to the a priori estimate for the solution f in Section 2, we can establish the uniform
energy estimates for the approximate sequence fn in the weighted Sobolev spaces.
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Lemma 3.2. Let T1 > 0. Assume the function fn(t, x, v) is a smooth solution to system (3.1) with the
initial datum satisfying f0 ∈ C∞(Ω) ∩ X(Ω) ∩ L1

ω(Ω) and
∫
Ω

f0(x, v) dx dv = 1. Then, for ∀ t ⩽ T1, we
have

(1)
∫
Ω

fn(t) dx dv = 1, ∥ fn(t)∥L1 = 1, and fn(t) ⩾ 0;
(2) ∥ω fn(t)∥L1 ⩽ C;
(3) ∥ fn(t)∥L2

ω
⩽ C;

where C denotes the positive constant only depending on σ, d,T1, and the weighted norms of the initial
datum f0.

Proof. (1) The results are obvious.
(2) We multiply system (3.1) by ω and integrate it over Ω to obtain

d
dt
∥ω fn(t)∥L1

= −

∫
Ω

ωv · ∇x fn(t, x, v) dx dv +
∫
Ω

ωx · ∇v fn(t, x, v) dx dv

−

∫
Ω

ω∇v · (L[ fn−1] fn(t, x, v)) dx dv + σ
∫
Ω

ω∆v fn(t, x, v) dx dv

=

∫
Ω

fn(t, x, v)L[ fn−1] · ∇vω dx dv + σ
∫
Ω

fn(t, x, v)∆vω dx dv

⩽Cd ∥ω fn−1(t)∥L1 +Cd,σ ∥ω fn(t)∥L1 .

(3.3)

Then we integrate system (3.3) over [0, t] to obtain

∥ω fn(t)∥L1 ⩽ ∥ω f0∥L1 +Cd

∫ t

0
∥ω fn−1(τ)∥L1 dτ +Cd,σ

∫ t

0
∥ω fn(τ)∥L1 dτ. (3.4)

Applying Lemma 3.1 to system (3.4), one gets

∥ω fn(t)∥L1 ⩽ Cexp(Ct), n ∈ N,

where the positive constant C depends on ∥ f0∥L1
ω
, d, and σ. Then, for any given T1 > 0, there exists a

positive C depending σ, d,T1, and the weighted norms of the initial datum f0 such that for all n ⩾ 1,

∥ω fn(t)∥L1(Ω) ⩽ C, ∀ 0 ⩽ t ⩽ T1.

(3) Following the way of the computation for equations (2.3) and (2.4), we can conclude that
∥ fn(t)∥L2

ω
⩽ C.

Proposition 3.1. Let T1 > 0. Assume the function fn(t, x, v) is a smooth solution to system (3.1) with
initial datum satisfying the condition of Lemma 3.2. Then, for ∀ t ⩽ T1, we have

(1)
(
∥ fn(t)∥2H1

ω(Ω) + ∥ω fn(t)∥2L2
ω

)
⩽ C;

(2) ∥ fn(t)∥2X ⩽ C;
where C denotes positive constant only depending on σ, d,T1, and the weighted norms of the initial
datum f0.

Proof. Following the similar proof of Proposition 2.1 in Section 2, we can obtain the parallel results.
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3.2. Convergence of approximate solutions.

Next, we show that the approximate solution fn is the Cauchy sequence in C([0,T ]; L1
ω(Ω)∩H1

ω(Ω)),
where 0 < T < 1. Setting hn := fn+1 − fn, it follows from system (3.1) that

∂thn = −v · ∇xhn + x · ∇vhn − ∇v · (L[ fn]hn) − ∇v · (L[hn−1] fn) + σ∆vhn. (3.5)

It is obvious to see that

hn(0, x, v) = fn+1(0, x, v) − fn(0, x, v) = f0(x, v) − f0(x, v) ≡ 0.

Proposition 3.2. Assume that initial datum f0(x, v) ∈ C∞(Ω)∩X(Ω)∩L1
ω(Ω), ∥ f0∥L1(Ω) = 1, and f0 ⩾ 0.

For any given positive small time T < 1, we have

sup
0⩽t⩽T
∥hn(t)∥L1

ω
⩽ CT n,

where C denotes the positive constant only depending on σ, d, and the weighted norms of the initial
datum f0.

Furthermore, there exists a limit function f (t, x, v) ∈ C([0,T ]; L1
ω(Ω)) such that

sup
0⩽t⩽T
∥ fn(t) − f (t)∥L1

ω
→ 0, as n→ ∞.

Proof. For arbitrary T1 > 0 and t ∈ [0,T1], multiplying system (3.5) by ωsgn(hn) and integrating it
over Ω by parts lead to

d
dt
∥ωhn(t)∥L1

= −

∫
Ω

ωsgn(hn)v · ∇xhn dx dv +
∫
Ω

ωsgn(hn)x · ∇vhn dx dv

−

∫
Ω

ωsgn(hn)∇v · (L[ fn]hn) dx dv −
∫
Ω

ωsgn(hn)∇v · (L[hn−1] fn) dx dv

+ σ

∫
Ω

ωsgn(hn)∆vhn dx dv

=

∫
Ω

|hn|L[ fn] ·
v
ω

dx dv +
∫
Ω

sgn(hn) fnL[hn−1] ·
v
ω

dx dv + σ
∫
Ω

∆vωsgn(hn)hn dx dv

⩽C(∥ωhn(t)∥L1 + ∥ωhn−1(t)∥L1),

(3.6)

where C depends on σ, d, and the weighed norms of the initial datum f0 and T1, since we used the
conclusion of Lemma 3.2. Then, we integrate system (3.6) to obtain

∥ωhn(t)∥L1 ⩽ C
∫ t

0
∥ωhn−1(τ)∥L1 dτ +C

∫ t

0
∥ωhn(τ)∥L1 dτ.

Using Lemma 3.1, we can derive that

∥ωhn(t)∥L1 ⩽
Cntn

n!
, n ∈ N.
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Then, for any given small time 0 < T < 1, we have

sup
0⩽t⩽T
∥hn(t)∥L1

ω
⩽ CT n, (3.7)

where C denotes the positive constant only depending on σ, d, and the weighted norms of the initial
datum f0. This means that fn is the Cauchy sequence in C([0,T ], L1

ω(Ω)). Moreover, there exists a limit
function f (t, x, v) ∈ C([0,T ], L1

ω(Ω)) such that

sup
0⩽t⩽T
∥ fn(t) − f (t)∥L1

ω
→ 0, as n→ ∞.

Proposition 3.3. Assume that the initial datum f0(x, v) satisfies the condition of Proposition 3.2. For
any given positive small time T < 1, we have

(1) sup
0⩽t⩽T
∥hn(t)∥2L2

ω
+

∫ T

0
∥∇vhn(τ)∥2L2

ω
dτ ⩽ CT n; (3.8)

(2) sup
0⩽t⩽T
∥ωhn(t)∥2L2

ω
+

∫ T

0
∥ω∇vhn(τ)∥2L2

ω
dτ ⩽ CT n; (3.9)

(3) sup
0⩽t⩽T
∥hn(t)∥2H1

ω
+

∫ T

0
∥∇vhn(τ)∥2H1

ω
dτ ⩽ CT n; (3.10)

where C denotes the positive constant only depending on σ, d, and the weighted norms of the initial
datum f0. Furthermore, there exists a limit function f (t, x, v) ∈ C([0,T ]; H1

ω(Ω)) such that

sup
0⩽t⩽T
∥ fn(t) − f (t)∥H1

ω(Ω) + ∥∇v fn(t) − ∇v f (t)∥L2(0,T ;H1
ω(Ω)) → 0, as n→ ∞.

Proof. (1) Multiplying system (3.5) by 2ω2hn leads to

d
dt

(
ω2h2

n

)
= − ω2v · ∇x(h2

n) + ω2x · ∇v(h2
n)

− ω2∇v(h2
n) · L[ fn] − 2ω2h2

n∇v · L[ fn]
− 2ω2∇v · L[hn−1]hn fn − 2ω2hn∇v fn · L[hn−1]

+ 2σω2hn∆vhn =

7∑
i=1

Ki.

(3.11)

Similar to the way to estimate system (2.3), we only need to estimate two extra terms
∫
Ω

K5 dx dv and∫
Ω

K6 dx dv. Note that

K5 ⩽Cd ∥ωhn−1(t)∥L1

(
∥hn(t)∥2L2

ω
+ ∥ fn(t)∥2L2

ω

)
,
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|K6| ⩽
∣∣∣∣ ∫
Ω×Ω∗
φ(|x − y|)ω∗hn−1(t, y, v∗)ω3hn(t, x, v)∇v fn(t, x, v) dy dv∗ dx dv

∣∣∣∣
⩽∥ωhn−1∥L1

∣∣∣∣ ∫
Ω

ω3hn(t, x, v)∇v fn(t, x, v) dx dv
∣∣∣∣

⩽∥ωhn−1∥L1

∣∣∣∣ ∫
Ω

fn(t, x, v)∇v

(
ω3hn(t, x, v)

)
dx dv

∣∣∣∣
⩽Cd,σ ∥ωhn−1(t)∥L1

(
∥hn(t)∥2L2

ω
+ ∥ fn(t)∥2L2

ω
+ ∥ω fn(t)∥2L2

ω

)
+ σ ∥∇vhn(t)∥2L2

ω
,

where ω∗ = (1 + y2 + v∗2)
1
2 , and we have used the σ-Young’s inequality.

Thus, by integrating system (3.11) over Ω and using the estimate of Lemma 3.2 and Proposition 3.1,
we have

d
dt
∥hn(t)∥2L2

ω
+ σ ∥∇vhn(t)∥2L2

ω

⩽Cd,σ
(
1 + ∥ω fn(t)∥L1

)
∥hn(t)∥2L2

ω
+Cd ∥ωhn−1(t)∥L1

(
∥hn(t)∥2L2

ω
+ ∥ fn(t)∥2L2

ω

)
+Cd,σ ∥ωhn−1(t)∥L1

(
∥hn(t)∥2L2

ω
+ ∥ fn(t)∥2L2

ω
+ ∥ω fn(t)∥2L2

ω
)

⩽C(∥hn(t)∥2L2
ω
+ ∥hn−1(t)∥L1

ω
).

(3.12)

Here, C depends on d, σ, and weighed norms of initial datum.
By applying Grönwall’s lemma to system (3.12) on 0 < t < 1 and using the conclusion of
Proposition 3.2, we obtain

∥hn(t)∥2L2
ω
+ σ

∫ t

0
∥∇vhn(τ)∥2L2

ω
dτ

⩽eCt

(
∥hn(0)∥2L2

ω
+

∫ t

0
C ∥hn−1(τ)∥L1

ω
dτ

)
⩽eCtCtn−1t.

(3.13)

Then for any given small time T < 1, we have

sup
0⩽t⩽T

{
∥hn(t)∥2L2

ω
+ σ

∫ t

0
∥∇vhn(τ)∥2L2

ω
dτ

}
⩽ CT n. (3.14)

Hence, we obtain the estimate system (3.8).
(2) Multiplying system (3.5) by 2ω4hn and integrating it over Ω leads to

d
dt
∥ωhn(t)∥2L2

ω
+ σ ∥ω∇vhn(t)∥2L2

ω
⩽C

(
∥hn−1(t)∥L1

ω
+ ∥ωhn(t)∥2L2

ω

)
,

which is similar in form to the result of system (3.12). Hence, we obtain estimate system (3.9).
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(3) Applying ∇v to system (3.5) gives

∂t∇vhn = − ∇xhn − v · ∇x(∇vhn) + x · ∇v(∇vhn) − ∇v(∇vhn · L[ fn])
− (∇v · L[ fn])∇vhn − (∇v · L[hn−1])∇v fn − ∇v(∇v fn · L[hn−1])
+ σ∆v(∇vhn)
= − ∇xhn − v · ∇x(∇vhn) + x · ∇v(∇vhn) − ∇v(∇vhn) · L[ fn]

+ (d + 1)
(∫
Ω

φ(|x − y|) fn(t, y, v∗) dy dv∗
)
∇vhn + σ∆v(∇vhn)

−∇2
v fn · L[hn−1]︸             ︷︷             ︸

L1

+ (d + 1)
(∫
Ω

φ(|x − y|)hn−1(t, y, v∗) dy dv∗
)
∇v fn︸                                                      ︷︷                                                      ︸

L2

.

(3.15)

We multiply system (3.15) by 2ω2∇vhn and integrate it over Ω. Comparing to system (2.7), we only
need to estimate two extra terms 2

∫
Ω
ω2∇vhn · L1 dx dv and 2

∫
Ω
ω2∇vhn · L2 dx dv. Note that∫

Ω

L1 · (2ω2∇vhn) dx dv

= − 2
d∑

i, j=1

∫
Ω

ω2∂hn(t, x, v)
∂vi

∂2 fn(t, x, v)
∂vi∂v j

L[hn−1] j dx dv

=2
d∑

i, j=1

∫
Ω

∂ fn(t, x, v)
∂vi

∂

∂v j

(
ω2∂hn(t, x, v)

∂vi
L[hn−1] j

)
dx dv

=4
∫
Ω

(v · L[hn−1])∇v fn(t, x, v) · ∇vhn(t, x, v) dx dv

+ 2
∫
Ω

ω2∇v fn(t, x, v) ·
(
∇2

vhn(t, x, v) · L[hn−1]
)

dx dv

+ 2
∫
Ω

ω2(∇v · L[hn−1])∇v fn(t, x, v) · ∇vhn(t, x, v) dx dv

⩽Cd,σ(∥ωhn−1(t)∥L1 + ∥ωhn−1(t)∥2L1)
(
∥∇v fn(t)∥2L2

ω
+ ∥∇vhn(t)∥2L2

ω
+ ∥ω∇v fn(t)∥2L2

ω

)
+
σ

2

∥∥∥∇2
vhn(t)

∥∥∥2

L2
ω
,

(3.16)

where we have used the σ-Young’s inequality.∫
Ω

L2 · (2ω2∇vhn) dx dv ⩽ Cd ∥ωhn−1(t)∥L1

(
∥∇v fn(t)∥2L2

ω
+ ∥∇vhn(t)∥2L2

ω

)
. (3.17)

Thus, similar to system (2.7), we use systems (3.16) and (3.17) to obtain

d
dt
∥∇vhn(t)∥2L2

ω
+
σ

2

∥∥∥∇2
vhn(t)

∥∥∥2

L2
ω

⩽ − 2
∫
Ω

ω2∇xhn(t, x, v) · ∇vhn(t, x, v) dx dv

+Cd,σ

(
1 + ∥ω fn(t)∥L1 + ∥ωhn−1(t)∥L1 + ∥ωhn−1(t)∥2L1

)
∥∇vhn(t)∥2L2

ω

+Cd,σ(∥ωhn−1(t)∥L1 + ∥ωhn−1(t)∥2L1)
(
∥∇v fn(t)∥2L2

ω
+ ∥ω∇v fn(t)∥2L2

ω

)
.

(3.18)
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Applying ∇x to system (3.5) gives

∂t∇xhn =∇vhn − v · ∇x(∇xhn) + x · ∇v(∇xhn) − ∇x(∇v · L[ fn])hn

− (∇v · L[ fn])∇xhn − ∇x(∇vhn · L[ fn]) + σ∆v(∇xhn)
−∇x(∇v · L[hn−1]) fn︸                  ︷︷                  ︸

L3

−(∇v · L[hn−1])∇x fn︸                  ︷︷                  ︸
L4

−∇x(∇v fn · L[hn−1])︸                  ︷︷                  ︸
L5

.
(3.19)

We multiply system (3.19) by 2ω2∇xhn and integrate it over Ω. Comparing to system (2.9), we only
estimate the extra terms 2

∫
Ω
ω2∇xhn · L3 dx dv, 2

∫
Ω
ω2∇xhn · L4 dx dv, and 2

∫
Ω
ω2∇xhn · L5 dx dv.

2
∫
Ω

ω2∇xhn · L3 dx dv ⩽ Cd ∥ωhn−1(t)∥L1

(
∥ fn(t)∥2L2

ω
+ ∥∇xhn(t)∥2L2

ω

)
,

2
∫
Ω

ω2∇xhn · L4 dx dv ⩽ Cd ∥ωhn−1(t)∥L1

(
∥∇x fn(t)∥2L2

ω
+ ∥∇xhn(t)∥2L2

ω

)
,

(3.20)

2
∫
Ω

ω2∇xhn · L5 dx dv

= − 2
∫
Ω

ω2∇xhn · (∇x∇v fn · L[hn−1]) dx dv − 2
∫
Ω

ω2∇xhn · (∇xL[hn−1] · ∇v fn) dx dv

=:Q1 + Q2.

Note that

Q1 = − 2
d∑

i, j=1

∫
Ω

ω2∂hn(t, x, v)
∂xi

∂2 fn(t, x, v)
∂xi∂v j

L[hn−1] j dx dv

=2
d∑

i, j=1

∫
Ω

∂ fn(t, x, v)
∂xi

∂

∂v j

(
ω2∂hn(t, x, v)

∂xi
L[hn−1] j

)
dx dv

=4
∫
Ω

(v · L[hn−1])∇x fn(t, x, v) · ∇xhn(t, x, v) dx dv

+ 2
∫
Ω

ω2∇x fn(t, x, v) · (∇x∇vhn(t, x, v) · L[hn−1]) dx dv

+ 2
∫
Ω

(∇v · L[hn−1])ω2∇x fn(t, x, v) · ∇xhn(t, x, v) dx dv

⩽Cd,σ(∥ωhn−1(t)∥L1+∥ωhn−1(t)∥2L1)
(
∥ω∇x fn(t)∥2L2

ω
+∥∇xhn(t)∥2L2

ω
+∥∇x fn(t)∥2L2

ω

)
+
σ

2
∥∇v∇xhn(t)∥2L2

ω
,

(3.21)

where we have used the σ-Young’s inequality.

Q2 = − 2
d∑

i, j=1

∫
Ω

ω2∂hn(t, x, v)
∂xi

∂ fn(t, x, v)
∂v j

∂L[hn−1] j

∂xi
dx dv

⩽Cd ∥ωhn−1(t)∥L1

(
∥∇xhn(t)∥2L2

ω
+ ∥ω∇v fn(t)∥2L2

ω

)
.

(3.22)
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Thus, similar to system (2.12), we use systems (3.20)–(3.22) to obtain

d
dt
∥∇xhn(t)∥2L2

ω
+
σ

2
∥∇v∇xhn(t)∥2L2

ω

⩽2
∫
Ω

ω2∇xhn(t, x, v) · ∇vhn(t, x, v) dx dv

+Cd,σ
(
(1 + ∥ω fn(t)∥L1)(∥∇xhn(t)∥2L2

ω
+ ∥hn(t)∥2L2

ω
) + ∥ωhn(t)∥2L2

ω

+ ∥ωhn−1(t)∥L1(∥ fn(t)∥2L2
ω
+ ∥∇x fn(t)∥2L2

ω
+ ∥∇v fn(t)∥2L2

ω
+ ∥∇xhn(t)∥2L2

ω
)

+ ∥ωhn−1(t)∥L1(∥ω∇v fn(t)∥2L2
ω
+ ∥ω∇x fn(t)∥2L2

ω
)
)
.

(3.23)

Adding up systems (3.12), (3.18), and (3.23), and applying Lemma 3.2-Proposition 3.2 and
Proposition 3.3(2), we obtain

d
dt
∥hn(t)∥2H1

ω
+
σ

2
∥∇vhn(t)∥2H1

ω
⩽ C ∥hn(t)∥2H1

ω
+Ctn−1.

Similar to systems (3.13) and (3.14), for any given positive small time T < 1, we have

sup
0⩽t⩽T
∥hn(t)∥2H1

ω
+
σ

2

∫ T

0
∥∇vhn(τ)∥2H1

ω
dτ ⩽ CT n, (3.24)

which is system (3.10). This means that the approximate solution fn is the Cauchy sequence in
C([0,T ]; H1

ω(Ω)). Thus, it converges strongly to the limit function f ∈ C([0,T ]; H1
ω(Ω)) as n→ ∞.

With the help of estimates system (3.7) in Proposition 3.2 and (3.24) in Proposition 3.3, we conclude
that there exists a constant C > 0 depending on d, σ, and weighed norms of initial datum, such that for
any given positive small time 0 < T < 1,

sup
0⩽t⩽T

(
∥hn(t)∥L1

ω
+ ∥hn(t)∥2H1

ω

)
⩽ CT n.

Therefore, the limit function f of Cauchy sequence fn ∈ C([0,T ]; L1
ω(Ω) ∩ H1

ω(Ω)) is a local strong
solution to the system (1.1). The uniqueness of the solution can be derived easily. Let f and f̄ be the
two strong solutions above corresponding to the same initial datum f0. Set

E(t) :=
∥∥∥ f (t) − f̄ (t)

∥∥∥
L1
ω(Ω)
+

∥∥∥ f (t) − f̄ (t)
∥∥∥2

H1
ω(Ω)
.

Then, by the same argument as in Lemma 3.2-Proposition 3.3, E(t) satisfies Grönwall’s inequality:

E(t) +
∫ t

0

∥∥∥∇v( f − f̄ )(τ)
∥∥∥2

H1
ω

dτ ⩽ C
∫ t

0
E(τ)dτ, E(0) = 0,

and the standard Grönwall’s lemma implies that

E(t) = 0, i.e., f ≡ f̄ in C([0,T ]; L1
ω(Ω) ∩ H1

ω(Ω)),

which gives the uniqueness of the local solution.
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3.3. Proof of Theorem 1.1.

When initial datum f0 is smooth, the limit function f from Proposition 3.2–Proposition 3.3 is the
unique local smooth solution to system (1.1). Combining with Lemma 2.1 and Proposition 2.1, one can
extend the local smooth solution to be global-in-time. Hence, we obtain the global smooth solution.

When initial datum f0 is not smooth, we first mollify the initial datum by convolution, i.e.,

f ϵ0 (x, v) = f0(x, v) ∗ jϵ(x, v),

where jϵ(x, v) is the standard mollifier. Then, we consider the following modified system∂t f ϵn + v · ∇x f ϵn − x · ∇v f ϵn + ∇v · (L[ f ϵn−1] f ϵn ) = σ∆v f ϵn , in [0,T ] ×Ω,
f ϵn (t, x, v)|t=0 = f ϵ0 (x, v), in {t = 0} ×Ω,

Following the basic idea about the proof of Theorem 3.1 and Theorem 3.2 in [24], we can also prove
that there exists a sequence ϵk, with ϵk → 0, such that

f ϵk → f in C([0,∞); L1
ω(Ω) ∩ H1

ω(Ω))

and f satisfies system (1.1). Hence, the limit function f (t, x, v) is the desired unique strong solution.
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