In this paper, utilizing Legendre polynomials as the basis functions in both space and time, we present a modified domain decomposition spectral method for 2-dimensional parabolic partial differential equations. For solving the obtained linear/nonlinear algebraic equations, a dimension expanding preconditioner is applied employing the obtained saddle construction of the coefficient matrix. Numerical examples are given to show the performance of the presented method and the efficiency of the preconditioner.
Citation: Wei-Hua Luo, Liang Yin, Jun Guo. A modified domain decomposition spectral collocation method for parabolic partial differential equations[J]. Networks and Heterogeneous Media, 2024, 19(3): 923-939. doi: 10.3934/nhm.2024041
In this paper, utilizing Legendre polynomials as the basis functions in both space and time, we present a modified domain decomposition spectral method for 2-dimensional parabolic partial differential equations. For solving the obtained linear/nonlinear algebraic equations, a dimension expanding preconditioner is applied employing the obtained saddle construction of the coefficient matrix. Numerical examples are given to show the performance of the presented method and the efficiency of the preconditioner.
[1] | W. L. Wood, R. W. Lewis, A comparison of time marching schemes for the transient heat conduction equation, Int. J. Numer. Methods Eng, 9 (2010), 679–689. https://doi.org/10.1002/nme.1620090314 doi: 10.1002/nme.1620090314 |
[2] | P. Tsatsoulis, H. Weber, Exponential loss of memory for the 2-dimensional Allen-Cahn equation with small noise, Probab. Theory Relat. Fields, 177(2019), 257–322. https://doi.org/10.1007/s00440-019-00945-x doi: 10.1007/s00440-019-00945-x |
[3] | B. Y. Guo, T. J. Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an infinite channel, Math. Comp., 78 (2009), 129–151. https://doi.org/10.1090/S0025-5718-08-02152-2 doi: 10.1090/S0025-5718-08-02152-2 |
[4] | R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 110 (1993), 325–342. https://doi.org/10.1016/0045-7825(93)90213-H doi: 10.1016/0045-7825(93)90213-H |
[5] | N. Li, J. Steiner, S. Tang, Convergence and stability analysis of an explicit finite difference method for 2-dimensional reaction-diffusion equations, The ANZIAM Journal, 36 (1994), 234–241. https://doi.org/10.1017/S0334270000010377 doi: 10.1017/S0334270000010377 |
[6] | F. J. Domínguez-Mota, S. M. Armenta, G. Tinoco-Guerrero, J. G. Tinoco-Ruiz, Finite difference schemes satisfying an optimality condition for the unsteady heat equation, Math Comput Simulat, 106 (2014), 76–83. https://doi.org/10.1016/j.matcom.2014.02.007 doi: 10.1016/j.matcom.2014.02.007 |
[7] | N. Riane, C. David, The finite difference method for the heat equation on Sierpinski simplices, Int J Comput Math, 96 (2019), 1477–1501. https://doi.org/10.1080/00207160.2018.1517209 doi: 10.1080/00207160.2018.1517209 |
[8] | X. He, K. Wang, Uniformly convergent novel finite difference methods for singularly perturbed reaction-diffusion equations, Numer. Methods Partial Differ. Equ., 35 (2019), 2120–2148. https://doi.org/10.1002/num.22405 doi: 10.1002/num.22405 |
[9] | C. C. Ji, R. Du, Z. Z. Sun, Stability and convergence of difference schemes for multi-dimensional parabolic equations with variable coefficients and mixed derivatives, Int J Comput Math, 95 (2018), 255–277. https://doi.org/10.1080/00207160.2017.1381336 doi: 10.1080/00207160.2017.1381336 |
[10] | J. Kim, D. Jeong, S. D. Yang, Y. Choi, A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces, J. Comput. Phys., (2017), 170–181. https://doi.org/10.1016/j.jcp.2016.12.060 |
[11] | X. Feng, H. J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput., 24 (2005), 121–146. https://doi.org/10.1007/s10915-004-4610-1 doi: 10.1007/s10915-004-4610-1 |
[12] | C. M. Elliott, D. A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26 (1989), 884–903. https://doi.org/10.1016/j.jcp.2016.12.060 doi: 10.1016/j.jcp.2016.12.060 |
[13] | A. Georgios, B. Li, Error estimates for fully discrete BDF finite element approximations of the Allen-Cahn equation, IMA J. Numer. Anal., 42 (2020), 363–391. https://doi.org/10.1093/imanum/draa065 doi: 10.1093/imanum/draa065 |
[14] | A. Al-Taweel, S. Hussain, X. Wang, A stabilizer free weak Galerkin finite element method for parabolic equation, J. Comput. Appl. Math., 392 (2021), 113373. https://doi.org/10.1016/j.cam.2020.113373 doi: 10.1016/j.cam.2020.113373 |
[15] | J. Shen, T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006. |
[16] | Y. Gu, J. Shen, Accurate and efficient spectral methods for elliptic PDEs in complex domains, J Sci Comput, 83 (2020), 42. https://doi.org/10.1007/s10915-020-01226-9 doi: 10.1007/s10915-020-01226-9 |
[17] | E. Pindza, M. K. Owolabi, K. C. Patidar, Barycentric Jacobi spectral method for numerical solutions of the generalized Burgers-Huxley equation, Int. J. Nonlinear Sci. Numer. Simul., 18 (2017), 67–81. https://doi.org/10.1515/ijnsns-2016-0032 doi: 10.1515/ijnsns-2016-0032 |
[18] | W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl Math Lett, 68 (2017), 13–19. https://doi.org/10.1016/j.aml.2016.12.011 doi: 10.1016/j.aml.2016.12.011 |
[19] | S. H.Lui, S. Nataj, Spectral collocation in space and time for linear PDEs, J. Comput. Phys., 424 (2021), 109843. https://doi.org/10.1016/j.jcp.2020.109843 doi: 10.1016/j.jcp.2020.109843 |
[20] | S. H.Lui, S. Nataj, Chebyshev spectral collocation in space and time for the heat equation, Electron Tran Numer Ana, 52 (2020), 295–319. http://doi.org/10.1553/etna_vol52s295 doi: 10.1553/etna_vol52s295 |
[21] | S. H.Lui, Legendre spectral collocation in space and time for PDEs, Numer. Math., 136 (2017), 75–99. https://doi.org/10.1007/s00211-016-0834-x doi: 10.1007/s00211-016-0834-x |
[22] | E. Pindza, F. Youbi, E. Mare, M. Davison, Barycentric spectral domain decomposition methods for valuing a class of infinite activity L$\acute{e}$vy models, Discrete Cont Dyn-s, 12 (2018), 625–643. http://hdl.handle.net/2263/70151 |
[23] | J. L. Vay, I. Haber, B. B. Godfrey, A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, J. Comput. Phys., 243 (2013), 260–268. https://doi.org/10.1016/j.jcp.2013.03.010 doi: 10.1016/j.jcp.2013.03.010 |
[24] | W. H. Luo, X. M. Gu, B. Carpentieri, A dimension expanded preconditioning technique for saddle point problems, Bit Numer Math, 62 (2022), 1983–2004. https://doi.org/10.1007/s10543-022-00938-8 doi: 10.1007/s10543-022-00938-8 |
[25] | W. H. Luo, B. Carpentieri, J. Guo, A dimension expanded preconditioning technique for block two-by-two linear equations, Demonstr. Math., 56 (2023), 20230260. https://doi.org/10.1515/dema-2023-0260 doi: 10.1515/dema-2023-0260 |
[26] | Y. Saad, Iterative Methods for Sparse Linear Systems (2nd ed.), Society for Industrial and Applied Mathematics, Philadelphia, 2003. |