A novel Timoshenko beam model enriched to account for dissipation in cement-based materials was presented in this paper. The model introduced a new variable representing the relative sliding inside microcracks within the material. In the paper, the microcrack density was not supposed to increase, assuming a small deformation regime that implied no damage growth. The model utilized an expanded version of the principle of virtual work whose contributions came from external forces, internal elastic forces, and dissipation due to the microcrack's microstructure. The elastic energy included terms related to microcrack sliding and micro-macro interactions, accounting for nonlinearity in the material behavior. Numerical simulations, conducted using the finite element method, evaluated the mechanical properties of cement-based materials under three-point flexural tests and compression tests. These tests enabled the assessment of the material dissipative behavior under cyclic loading. Results showed dissipated energy cycles and mechanical responses influenced by the microcrack mechanics. Additionally, a parametric study, varying the friction force amplitude, revealed its impact on dissipated energy. The study highlighted a non-monotonic relationship between friction force amplitude and dissipated energy, with an optimal value maximizing dissipation. Overall, the model provided insights into the mechanics of cement-based materials, particularly regarding dissipation, which was essential for understanding their behavior in structural applications.
Citation: Giuliano Aretusi, Christian Cardillo, Larry Murcia Terranova, Ewa Bednarczyk. A dissipation model for concrete based on an enhanced Timoshenko beam[J]. Networks and Heterogeneous Media, 2024, 19(2): 700-723. doi: 10.3934/nhm.2024031
[1] | Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308 |
[2] | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . $ q $-Noor integral operator associated with starlike functions and $ q $-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606 |
[3] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[4] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[5] | Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260 |
[6] | Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742 |
[7] | Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of $ q $-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216 |
[8] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[9] | Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083 |
[10] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
A novel Timoshenko beam model enriched to account for dissipation in cement-based materials was presented in this paper. The model introduced a new variable representing the relative sliding inside microcracks within the material. In the paper, the microcrack density was not supposed to increase, assuming a small deformation regime that implied no damage growth. The model utilized an expanded version of the principle of virtual work whose contributions came from external forces, internal elastic forces, and dissipation due to the microcrack's microstructure. The elastic energy included terms related to microcrack sliding and micro-macro interactions, accounting for nonlinearity in the material behavior. Numerical simulations, conducted using the finite element method, evaluated the mechanical properties of cement-based materials under three-point flexural tests and compression tests. These tests enabled the assessment of the material dissipative behavior under cyclic loading. Results showed dissipated energy cycles and mechanical responses influenced by the microcrack mechanics. Additionally, a parametric study, varying the friction force amplitude, revealed its impact on dissipated energy. The study highlighted a non-monotonic relationship between friction force amplitude and dissipated energy, with an optimal value maximizing dissipation. Overall, the model provided insights into the mechanics of cement-based materials, particularly regarding dissipation, which was essential for understanding their behavior in structural applications.
The theory of the basic and the fractional quantum calculus, that is, the basic (or q-) calculus and the fractional basic (or q-) calculus, play important roles in many diverse areas of the mathematical, physical and engineering sciences (see, for example, [10,15,33,45]). Our main objective in this paper is to introduce and study some subclasses of the class of the normalized p-valently analytic functions in the open unit disk:
U={z:z∈Cand|z|<1} |
by applying the q-derivative operator in conjunction with the principle of subordination between analytic functions (see, for details, [8,30]).
We begin by denoting by A(p) the class of functions f(z) of the form:
f(z)=zp+∞∑n=p+1anzn (p∈N:={1,2,3,⋯}), | (1.1) |
which are analytic and p-valent in the open unit disk U. In particular, we write A(1)=:A.
A function f(z)∈A(p) is said to be in the class S∗p(α) of p-valently starlike functions of order α in U if and only if
ℜ(zf′(z)f(z))>α (0≦α<p;z∈U). | (1.2) |
Moreover, a function f(z)∈A(p) is said to be in the class Cp(α) of p-valently convex functions of order α in U if and only if
ℜ(1+zf′′(z)f′(z))>α (0≦α<p;z∈U). | (1.3) |
The p-valent function classes S∗p(α) and Cp(α) were studied by Owa [32], Aouf [2,3] and Aouf et al. [4,5]. From (1.2) and (1.3), it follows that
f(z)∈Cp(α)⟺zf′(z)p∈S∗p(α). | (1.4) |
Let P denote the Carathéodory class of functions p(z), analytic in U, which are normalized by
p(z)=1+∞∑n=1cnzn, | (1.5) |
such that ℜ(p(z))>0.
Recently, Kanas and Wiśniowska [18,19] (see also [17,31]) introduced the conic domain Ωk(k≧0), which we recall here as follows:
Ωk={u+iv:u>k√(u−1)2+v2} |
or, equivalently,
Ωk={w:w∈Candℜ(w)>k|w−1|}. |
By using the conic domain Ωk, Kanas and Wiśniowska [18,19] also introduced and studied the class k-UCV of k-uniformly convex functions in U as well as the corresponding class k-ST of k-starlike functions in U. For fixed k, Ωk represents the conic region bounded successively by the imaginary axis when k=0. For k=1, the domain Ωk represents a parabola. For 1<k<∞, the domain Ωk represents the right branch of a hyperbola. And, for k>1, the domain Ωk represents an ellipse. For these conic regions, the following function plays the role of the extremal function:
pk(z)={1+z1−z(k=0)1+2π2[log(1+√z1−√z)]2(k=1)1+11−k2cos(2iπ(arccosk)log(1+√z1−√z))(0<k<1)1+1k2−1sin(π2K(κ)∫u(z)√κ0dt√1−t2√1−κ2t2)+k2k2−1(1<k<∞) | (1.6) |
with
u(z)=z−√κ1−√κz(0<κ<1;z∈U), |
where κ is so chosen that
k=cosh(πK′(κ)4K(κ)). |
Here K(κ) is Legendre's complete elliptic integral of the first kind and
K′(κ)=K(√1−κ2), |
that is, K′(κ) is the complementary integral of K(κ) (see, for example, [48,p. 326,Eq 9.4 (209)]).
We now recall the definitions and concept details of the basic (or q-) calculus, which are used in this paper (see, for details, [13,14,45]; see also [1,6,7,11,34,38,39,42,54,59]). Throughout the paper, unless otherwise mentioned, we suppose that 0<q<1 and
N={1,2,3⋯}=N0∖{0} (N0:={0,1,2,⋯}). |
Definition 1. The q-number [λ]q is defined by
[λ]q={1−qλ1−q(λ∈C)n−1∑k=0qk=1+q+q2⋯+qn−1(λ=n∈N), | (1.7) |
so that
limq→1−[λ]q=1−qλ1−q=λ. |
.
Definition 2. For functions given by (1.1), the q-derivative (or the q-difference) operator Dq of a function f is defined by
Dqf(z)={f(z)−f(qz)(1−q)z(z≠0)f′(0)(z=0), | (1.8) |
provided that f′(0) exists.
We note from Definition 2 that
limq→1−Dqf(z)=limq→1−f(z)−f(qz)(1−q)z=f′(z) |
for a function f which is differentiable in a given subset of C. It is readily deduced from (1.1) and (1.8) that
Dqf(z)=[p]qzp−1+∞∑n=p+1[n]qanzn−1. | (1.9) |
We remark in passing that, in the above-cited recently-published survey-cum-expository review article, the so-called (p,q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [42,p. 340]).
Making use of the q-derivative operator Dq given by (1.6), we introduce the subclass S∗q,p(α) of p-valently q-starlike functions of order α in U and the subclass Cq,p(α) of p-valently q-convex functions of order α in U as follows (see [54]):
f(z)∈S∗q,p(α)⟺ℜ(1[p]qzDqf(z)f(z))>α | (1.10) |
(0<q<1;0≦α<1;z∈U) |
and
f(z)∈Cq,p(α)⟺ℜ(1[p]qDp,q(zDqf(z))Dqf(z))>α | (1.11) |
(0<q<1;0≦α<1;z∈U), |
respectively. From (1.10) and (1.11), it follows that
f(z)∈Cq,p(α)⟺zDqf(z)[p]q∈S∗q,p(α). | (1.12) |
For the simpler classes S∗q,p and C∗q,p of p-valently q-starlike functions in U and p-valently q-convex functions in U, respectively, we have write
S∗q,p(0)=:S∗q,pandCq,p(0)=:Cq,p. |
Obviously, in the limit when q→1−, the function classes S∗q,p(α) and Cq,p(α) reduce to the familiar function classes S∗p(α) and Cp(α), respectively.
Definition 3. A function f∈A(p) is said to belong to the class S∗q,p of p-valently q-starlike functions in U if
|zDqf(z)[p]qf(z)−11−q|≤11−q(z∈U). | (1.13) |
In the limit when q→1−, the closed disk
|w−11−q|≦11−q(0<q<1) |
becomes the right-half plane and the class S∗q,p of p-valently q-starlike functions in U reduces to the familiar class S∗p of p-valently starlike functions with respect to the origin (z=0). Equivalently, by using the principle of subordination between analytic functions, we can rewrite the condition (1.13) as follows (see [58]):
zDqf(z)[p]qf(z)≺ˆp(z) (ˆp(z)=1+z1−qz). | (1.14) |
We note that S∗q,1=S∗q (see [12,41]).
Definition 4. (see [50]) A function p(z) given by (1.5) is said to be in the class k-Pq if and only if
p(z)≺2pk(z)(1+q)+(1−q)pk(z), |
where pk(z) is given by (1.6).
Geometrically, the function p∈k-Pq takes on all values from the domain Ωk,q (k≧0) which is defined as follows:
Ωk,q={w:ℜ((1+q)w(q−1)w+2)>k|(1+q)w(q−1)w+2−1|}. | (1.15) |
The domain Ωk,q represents a generalized conic region which was introduced and studied earlier by Srivastava et al. (see, for example, [43,50]). It reduces, in the limit when q→1−, to the conic domain Ωk studied by Kanas and Wiśniowska [18]. We note the following simpler cases.
(1) k-Pq⊆P(2k2k+1+q), where P(2k2k+1+q) is the familiar class of functions with real part greater than 2k2k+1+q;
(2) limq→1−{k-Pq}=P(pk(z)), where P(pk(z)) is the known class introduced by Kanas and Wiśniowska [18];
(3) limq→1−{0-Pq}=P, where P is Carathéodory class of analytic functions with positive real part.
Definition 5. A function f∈A(p) is said to be in the class k-STq,p if and only if
ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2)>k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|(z∈U) | (1.16) |
or, equivalently,
zDqf(z)[p]qf(z)∈k-Pq. | (1.17) |
The folowing special cases are worth mentioning here.
(1) k-STq,1=k-STq, where k-STq is the function class introduced and studied by Srivastava et al. [50] and Zhang et al. [60] with γ=1;
(2) 0-STq,p=Sq,p;
(3) limq→1{k-STq,p}=k-STp, where k-STp is the class of p-valently uniformly starlike functions;
(4) limq→1{0-STq,p}=Sp, where S∗p is the class of p-valently starlike functions;
(5) 0-STq,1=S∗q, where S∗q (see [12,41]);
(6) limq→1{k-STq,1}=k-ST, where k-ST is a function class introduced and studied by Kanas and Wiśniowska [19];
(7) limq→1{0-STq,1}=S∗, where S∗ is the familiar class of starlike functions in U.
Definition 6. By using the idea of Alexander's theorem [9], the class k-UCVq,p can be defined in the following way:
f(z)∈k-UCVq,p⟺zDqf(z)[p]q∈k-STq,p. | (1.18) |
In this paper, we investigate a number of useful properties including coefficient estimates and the Fekete-Szegö inequalities for the function classes k-STq,p and k-UCVq,p, which are introduced above. Various corollaries and consequences of most of our results are connected with earlier works related to the field of investigation here.
In order to establish our main results, we need the following lemmas.
Lemma 1. (see [16]) Let 0≦k<∞ be fixed and let pk be defined by (1.6). If
pk(z)=1+Q1z+Q2z2+⋯, |
then
Q1={2A21−k2(0≦k<1)8π2(k=1)π24√t(k2−1)[K(t)]2(1+t)(1<k<∞) | (2.1) |
and
Q2={A2+23Q1(0≦k<1)23Q1(k=1)4[K(t)]2(t2+6t+1)−π224√t[K(t)]2(1+t)Q1(1<k<∞), | (2.2) |
where
A=2arccoskπ, |
and t∈(0,1) is so chosen that
k=cosh(πK′(t)K(t)), |
K(t) being Legendre's complete elliptic integral of the first kind.
Lemma 2. Let 0≦k<∞ be fixed and suppose that
pk,q(z)=2pk(z)(1+q)+(1−q)pk(z), | (2.3) |
where pk(z) be defined by (1.6). Then
pk,q(z)=1+12(1+q)Q1z+12(1+q)[Q2−12(1−q)Q21]z2+⋯ , | (2.4) |
where Q1 and Q2 are given by (2.1) and (2.2), respectively.
Proof. By using (1.6) in (2.3), we can easily derive (2.4).
Lemma 3. (see [26]) Let the function h given by
h(z)=1+∞∑n=1cnzn∈P |
be analytic in U and satisfy ℜ(h(z))>0 for z in U. Then the following sharp estimate holds true:
|c2−vc21|≦2max{1,|2v−1|}(∀v∈C). |
The result is sharp for the functions given by
g(z)=1+z21−z2org(z)=1+z1−z. | (2.5) |
Lemma 4. (see [26]) If the function h is given by
h(z)=1+∞∑n=1cnzn∈P, |
then
|c2−νc21|≦{−4ν+2(ν≦0)2(0≦ν≦1)4ν−2(ν≧1). | (2.6) |
When ν>1, the equality holds true if and only if
h(z)=1+z1−z |
or one of its rotations. If 0<ν<1, then the equality holds true if and only if
h(z)=1+z21−z2 |
or one of its rotations. If ν=0, the equality holds true if and only if
h(z)=(1+λ2)(1+z1−z)+(1−λ2)(1−z1+z)(0≦λ≦1) |
or one of its rotations. If ν=1, the equality holds true if and only if the function h is the reciprocal of one of the functions such that equality holds true in the case when ν=0.
The above upper bound is sharp and it can be improved as follows when 0<ν<1:
|c2−νc21|+ν|c1|2≦2(0≦ν≦12) |
and
|c2−νc21|+(1−ν)|c1|2≦2(12≤ν≦1). |
We assume throughout our discussion that, unless otherwise stated, 0≦k<∞, 0<q<1, p∈N, Q1 is given by (2.1), Q2 is given by (2.2) and z∈U.
Theorem 1. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1{2(k+1)([n]q−[p]q)+qn+2[p]q−1}|an|<(1+q)[p]q, | (3.1) |
then the function f∈k-STq,p.
Proof. Suppose that the inequality (3.1) holds true. Then it suffices to show that
k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|−ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1)<1. |
In fact, we have
k|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|−ℜ((1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1)≦(k+1)|(1+q)zDqf(z)[p]qf(z)(q−1)zDqf(z)[p]qf(z)+2−1|=2(k+1)|zDqf(z)−[p]qf(z)(q−1)zDqf(z)+2[p]qf(z)|=2(k+1)|∞∑n=p+1([n]q−[p]q)anzn−p(1+q)[p]q+∞∑n=p+1((q−1)[n]q+2[p]q)anzn−p|≦2(k+1)∞∑n=p+1([n]q−[p]q)|an|(1+q)[p]q−∞∑n=p+1(qn+2[p]q−1)|an|. |
The last expression is bounded by 1 if (3.1) holds true. This completes the proof of Theorem 1.
Corollary 1. If f(z)∈k-STq,p, then
|an|≦(1+q)[p]q{2(k+1)([n]q−[p]q)+qn+2[p]q−1}(n≧p+1). |
The result is sharp for the function f(z) given by
f(z)=zp+(1+q)[p]q{2(k+1)([n]q−[p]q)+qn+2[p]q−1}zn(n≧p+1). |
Remark 1. Putting p=1 Theorem 1, we obtain the following result which corrects a result of Srivastava et al. [50,Theorem 3.1].
Corollary 2. (see Srivastava et al. [50,Theorem 3.1]) If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2{2(k+1)([n]q−1)+qn+1}|an|<(1+q) |
then the function f∈k-STq.
Letting q→1− in Theorem 1, we obtain the following known result [29,Theorem 1] with
α1=β1=p,αi=1(i=2,⋯,s+1)andβj=1(j=2,⋯,s). |
Corollary 3. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1{(k+1)(n−p)+p}|an|<p, |
then the function f∈k-STp.
Remark 2. Putting p=1 in Corollary 3, we obtain the result obtained by Kanas and Wiśniowska [19,Theorem 2.3].
By using Theorem 1 and (1.18), we obtain the following result.
Theorem 2. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1([n]q[p]q){2(k+1)([n]q−[p]q)+qn+2[p]q−1}|an|<(1+q)[p]q, |
then the function f∈k-UCVq,p.
Remark 3. Putting p=1 Theorem 1, we obtain the following result which corrects the result of Srivastava et al. [50,Theorem 3.3].
Corollary 4. (see Srivastava et al. [50,Theorem 3.3]) If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2[n]q{2(k+1)([n]q−1)+qn+1}|an|<(1+q), |
then the function f∈k-UCVq.
Letting q→1− in Theorem 2, we obtain the following corollary (see [29,Theorem 1]) with
α1=p+1,β1=p,αℓ=1(ℓ=2,⋯,s+1)andβj=1(j=2,⋯,s). |
Corollary 5. If a function f∈A(p) is of the form (1.1) and satisfies the following condition:
∞∑n=p+1(np){(k+1)(n−p)+p}|an|<p, |
then the function f∈k-UCVp.
Remark 4. Putting p=1 in Corollary 5, we obtain the following corollary which corrects the result of Kanas and Wiśniowska [18,Theorem 3.3].
Corollary 6. If a function f∈A is of the form (1.1) (with p=1) and satisfies the following condition:
∞∑n=2n{n(k+1)−k}|an|<1, |
then the function f∈k-UCV.
Theorem 3. If f∈k-STq,p, then
|ap+1|≦(1+q)[p]qQ12qp[1]q | (3.2) |
and, for all n=3,4,5,⋯,
|an+p−1|≦(1+q)[p]qQ12qp[n−1]qn−2∏j=1(1+(1+q)[p]qQ12qp[j]q). | (3.3) |
Proof. Suppose that
zDqf(z)[p]qf(z)=p(z), | (3.4) |
where
p(z)=1+∞∑n=1cnzn∈k-Pq. |
Eq (3.4) can be written as follows:
zDqf(z)=[p]qf(z)p(z), |
which implies that
∞∑n=p+1([n]q−[p]q)anzn=[p]q(zp+∞∑n=p+1anzn)(∞∑n=1cnzn). | (3.5) |
Comparing the coefficients of zn+p−1 on both sides of (3.5), we obtain
([n+p−1]q−[p]q)an+p−1=[p]q{cn−1+ap+1cn−2+⋯+an+p−2c1}. |
By taking the moduli on both sides and then applying the following coefficient estimates (see [50]):
|cn|≦12(1+q)Q1(n∈N), |
we find that
|an+p−1|≦(1+q)[p]qQ12qp[n−1]q{1+|ap+1|+⋯+|an+p−2|}. | (3.6) |
We now apply the principle of mathematical induction on (3.6). Indeed, for n=2, we have
|ap+1|≦(1+q)[p]qQ12qp[1]q, | (3.7) |
which shows that the result is true for n=2. Next, for n=3 in (3.7), we get
|ap+2|≦(1+q)[p]qQ12qp[2]q{1+|ap+1|}. |
By using (3.7), we obtain
|ap+2|≦(1+q)[p]qQ12qp[2]q(1+(1+q)[p]qQ12qp[1]q), |
which is true for n=3. Let us assume that (3.3) is true for n=t(t∈N), that is,
|at+p−1|≦(1+q)[p]qQ12qp[t−1]qt−2∏j=1(1+(1+q)[p]qQ12qp[j]q). |
Let us consider
|at+p|≦(1+q)[p]qQ12qp[t]q{1+|ap+1|+|ap+2|+⋯+|at+p−1|}≦(1+q)[p]qQ12qp[t]q{1+(1+q)[p]qQ12qp[1]q+(1+q)[p]qQ12qp[2]q(1+(1+q)[p]qQ12qp[1]q)+⋯+(1+q)[p]qQ12qp[t−1]qt−2∏j=1(1+(1+q)[p]qQ12qp[j]q)}=(1+q)[p]qQ12qp[t]q{(1+(1+q)[p]qQ12qp[1]q)(1+(1+q)[p]qQ12qp[2]q)⋯(1+(1+q)[p]qQ12qp[t−1]q)}=(1+q)[p]qQ12qp[t]qt−1∏j=1(1+(1+q)[p]qQ12qp[j]q) |
Therefore, the result is true for n=t+1. Consequently, by the principle of mathematical induction, we have proved that the result holds true for all n(n∈N∖{1}). This completes the proof of Theorem 3.
Similarly, we can prove the following result.
Theorem 4. If f∈k-UCVq,p and is of form (1.1), then
|ap+1|≦(1+q)[p]2qQ12qp[p+1]q |
and, for all n=3,4,5,⋯,
|an+p−1|≦(1+q)[p]2qQ12qp[n+p−1]q[n−1]qn−2∏j=1(1+(1+q)[p]qQ12qp[j]q). |
Putting p=1 in Theorems 3 and 4, we obtain the following corollaries.
Corollary 7. If f∈k-STq, then
|a2|≦(1+q)Q12q |
and, for all n=3,4,5,⋯,
|an|≦(1+q)Q12q[n−1]qn−2∏j=1(1+(1+q)Q12q[j]q). |
Corollary 8. If f∈k-UCVq, then
|a2|≦Q12q |
and, for all n=3,4,5,⋯,
|an|≦(1+q)Q12q[n]q[n−1]qn−2∏j=1(1+(1+q)Q12q[j]q). |
Theorem 5. Let f∈k-STq,p. Then f(U) contains an open disk of the radius given by
r=2qp2(p+1)qp+(1+q)[p]qQ1. |
Proof. Let w0≠0 be a complex number such that f(z)≠w0 for z∈U. Then
f1(z)=w0f(z)w0−f(z)=zp+1+(ap+1+1w0)zp+1+⋯. |
Since f1 is univalent, so
|ap+1+1w0|≦p+1. |
Now, using Theorem 3, we have
|1w0|≦p+1+(1+q)[p]qQ12qp=2qp(p+1)+(1+q)[p]qQ12qp. |
Hence
|w0|≧2qp2qp(p+1)+(1+q)[p]qQ1. |
This completes the proof of Theorem 5.
Theorem 6. Let the function f∈k-STq,p be of the form (1.1). Then, for a complex number μ,
|ap+2−μa2p+1|≦[p]qQ12qpmax{1,|Q2Q1+([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))|}. | (3.8) |
The result is sharp.
Proof. If f∈k-STq,p, we have
zDqf(z)[p]qf(z)≺pk,q(z)=2pk(z)(1+q)+(1−q)pk(z). |
From the definition of the differential subordination, we know that
zDqf(z)[p]qf(z)=pk,q(w(z))(z∈U), | (3.9) |
where w(z) is a Schwarz function with w(0)=0 and |w(z)|<1 for z∈U.
Let h∈P be a function defined by
h(z)=1+w(z)1−w(z)=1+c1z+c2z2+⋯(z∈U). |
This gives
w(z)=12c1z+12(c2−c212)z2+⋯ |
and
pk,q(w(z))=1+1+q4c1Q1z+1+q4{Q1c2+12(Q2−Q1−1−q2Q21)c21}z2+⋯. | (3.10) |
Using (3.10) in (3.9), we obtain
ap+1=(1+q)[p]qc1Q14qp |
and
ap+2=[p]qQ14qp[c2−12(1−Q2Q1−[p]q(1+q)−qp(1−q)2qpQ1)c21] |
Now, for any complex number μ, we have
ap+2−μa2p+1=[p]qQ14qp[c2−12(1−Q2Q1−[p]q(1+q)−qp(1−q)2qpQ1)c21]−μ(1+q)2[p]2qQ21c2116q2p. | (3.11) |
Then (3.11) can be written as follows:
ap+2−μa2p+1=[p]qQ14qp{c2−vc21}, | (3.12) |
where
v=12[1−Q2Q1−([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))]. | (3.13) |
Finally, by taking the moduli on both sides and using Lemma 4, we obtain the required result. The sharpness of (3.8) follows from the sharpness of (2.5). Our demonstration of Theorem 6 is thus completed.
Similarly, we can prove the following theorem.
Theorem 7. Let the function f∈k-UCVq,p be of the form (1.1). Then, for a complex number μ,
|ap+2−μa2p+1|≦[p]2qQ12qp[p+2]qmax{1,|Q2Q1+((1+q)[p]q−(1−q)qp)Q12qp⋅(1−μ[p+2]q(1+q)2[p]2q((1+q)[p]q−(1−q)qp)[p+1]2q)|}. |
The result is sharp.
Putting p=1 in Theorems 6 and 7, we obtain the following corollaries.
Corollary 9. Let the function f∈k-STq be of the form (1.1) (with p=1). Then, for a complex number μ,
|a3−μa22|≦Q12qmax{1,|Q2Q1+(1+q2)Q12q(1−μ(1+q)21+q2)|}. |
The result is sharp.
Corollary 10. Let the function f∈k-UCVq be of the form (1.1) (with p=1). Then, for a complex number μ,
|a3−μa22|≦Q12q[3]qmax{1,|Q2Q1+(1+q2)Q12q(1−μ[3]q1+q2)|}. |
The result is sharp.
Theorem 8. Let
σ1=([p]q(1+q)−qp(1−q))Q21+2qp(Q2−Q1)[p]q(1+q)2Q21, |
σ2=([p]q(1+q)−qp(1−q))Q21+2qp(Q2+Q1)[p]q(1+q)2Q21 |
and
σ3=([p]q(1+q)−qp(1−q))Q21+2qpQ2[p]q(1+q)2Q21. |
If the function f given by (1.1) belongs to the class k-STq,p, then
|ap+2−μa2p+1|≦{[p]qQ12qp{Q2Q1+([p]q(1+q)−qp(1−q))Q12qp(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))}(μ≦σ1)[p]qQ12qp(σ1≦μ≦σ2),−[p]qQ12qp{Q2Q1+([p]q(1+q)−qp(1−q))Q12qp(1−μ(1+q)2[p]q[p]q(1+q)−qp(1−q))}(μ≧σ2). |
Furthermore, if σ1≦μ≦σ3, then
|ap+2−μa2p+1|+2qp(1+q)2[p]qQ1{1−Q2Q1−([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q([p]q(1+q)−qp(1−q)))}|ap+1|2≦[p]qQ12qp. |
If σ3≦μ≦σ2, then
|ap+2−μa2p+1|+2qp(1+q)2[p]qQ1{1+Q2Q1+([p]q(1+q)−qp(1−q))Q12qp⋅(1−μ(1+q)2[p]q([p]q(1+q)−qp(1−q)))}|ap+1|2≦[p]qQ12qp. |
Proof. Applying Lemma 4 to (3.12) and (3.13), respectively, we can derive the results asserted by Theorem 8.
Putting p=1 in Theorem 8, we obtain the following result.
Corollary 11. Let
σ4=(1+q2)Q21+2q(Q2−Q1)(1+q)2Q21, |
σ5=(1+q2)Q21+2q(Q2+Q1)(1+q)2Q21 |
and
σ6=(1+q2)Q21+2qQ2(1+q)2Q21. |
If the function f given by (1.1) (with p=1) belongs to the class k-STq, then
|a3−μa22|≦{Q12q{Q2Q1+(1+q2)Q12q(1−μ(1+q)21+q2)}(μ≦σ4)Q12q(σ4≦μ≦σ5)−Q12q{Q2Q1+(1+q2)Q12q(1−μ(1+q)21+q2)}(μ≧σ5). |
Furthermore, if σ4≦μ≦σ6, then
|a3−μa22|+2q(1+q)2Q1{1−Q2Q1−(1+q2)Q12q(1−μ(1+q)21+q2)}|a2|2≦Q12q. |
If σ3≦μ≦σ2, then
|a3−μa22|+2q(1+q)2Q1{1+Q2Q1+(1+q2)Q12q(1−μ(1+q)21+q2)}|a2|2≦Q12q. |
Similarly, we can prove the following result.
Theorem 9. Let
η1=[((1+q)[p]q−(1−q)qp)Q21+2qp(Q2−Q1)][p+1]2q[p]2q[p+2]q(1+q)2Q21, |
η2=[((1+q)[p]q−(1−q)qp)Q21+2qp(Q2+Q1)][p+1]2q[p]2q[p+2]q(1+q)2Q21 |
and
η3=[((1+q)[p]q−(1−q)qp)Q21+2qpQ2][p+1]2q[p]2q[p+2]q(1+q)2Q21. |
If the function f given by (1.1) belongs to the class k-UCVq,p, then
|ap+2−μa2p+1|≦{[p]2qQ12qp[p+2]q{Q2Q1+((1+q)[p]q−(1−q)qp)Q12qp(1−[p+2]q(1+q)2[p]2q μ((1+q)[p]q−(1−q)qp)[p+1]2q)}(μ≦η1)[p]2qQ12qp[p+2]q(η1≦μ≦η2)−[p]2qQ12qp[p+2]q{Q2Q1+((1+q)[p]q−(1−q)qp)Q12qp(1−[p+2]q(1+q)2[p]2q μ((1+q)[p]q−(1−q)qp)[p+1]2q)}(μ≧η2). |
Furthermore, if η1≦μ≦η3, then
|ap+2−μa2p+1|+2qp[p+1]2qQ1[p+2]q(1+q)2[p]2qQ21{1−Q2Q1−((1+q)[p]q−(1−q)qp)Q12qp⋅(1−μ[p+2]q(1+q)2[p]2q((1+q)[p]q−(1−q)qp)[p+1]2q)}|ap+1|2≦[p]2qQ12qp[p+2]q. |
If η3≦μ≦η2, then
|ap+2−μa2p+1|+2qp[p+1]2qQ1[p+2]q(1+q)2[p]2qQ21{1+Q2Q1+((1+q)[p]q−(1−q)qp)Q12qp⋅(1−μ[p+2]q(1+q)2[p]2q((1+q)[p]q−(1−q)qp)[p+1]2q)}|ap+1|2≦[p]2qQ12qp[p+2]q. |
Putting p=1 in Theorem 9, we obtain the following result.
Corollary 12. Let
η4=(1+q2)Q21+2q(Q2−Q1)[3]qQ21, |
η5=(1+q2)Q21+2q(Q2+Q1)[3]qQ21 |
and
η6=(1+q2)Q21+2qQ2[3]qQ21. |
If the function f given by (1.1) (with p=1) belongs to the class k-UCVq, then
|a3−μa22|≦{Q12q[3]q{Q2Q1+(1+q2)Q12q(1−μ[3]q1+q2)}(μ≦η4)Q12q[3]q(η4≦μ≦η5)−Q12q[3]q{Q2Q1+(1+q2)Q12q(1−μ[3]q1+q2)}(μ≧η5). |
Furthermore, if η4≦μ≦η6, then
|a3−μa22|+2q[3]qQ1{1−Q2Q1−(1+q2)Q12q(1−μ[3]q1+q2)}|a2|2≦Q12q[3]q. |
If η3≦μ≦η2, then
|a3−μa22|+2q[3]qQ1{1+Q2Q1+(1+q2)Q12q(1−μ[3]q1+q2)}|a2|2≦Q12q[3]q. |
In our present investigation, we have applied the concept of the basic (or q-) calculus and a generalized conic domain, which was introduced and studied earlier by Srivastava et al. (see, for example, [43,50]). By using this concept, we have defined two subclasses of normalized multivalent functions which map the open unit disk:
U={z:z∈Cand|z|<1} |
onto this generalized conic domain. We have derived a number of useful properties including (for example) the coefficient estimates and the Fekete-Szegö inequalities for each of these multivalent function classes. Our results are connected with those in several earlier works which are related to this field of Geometric Function Theory of Complex Analysis.
Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse areas [see, for example, [48,pp. 350-351]. Moreover, as we remarked in the introductory Section 1 above, in the recently-published survey-cum-expository review article by Srivastava [42], the so-called (p,q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [42,p. 340]). This observation by Srivastava [42] will indeed apply to any attempt to produce the rather straightforward (p,q)-variations of the results which we have presented in this paper.
In conclusion, with a view mainly to encouraging and motivating further researches on applications of the basic (or q-) analysis and the basic (or q-) calculus in Geometric Function Theory of Complex Analysis along the lines of our present investigation, we choose to cite a number of recently-published works (see, for details, [25,47,51,53,56] on the Fekete-Szegö problem; see also [20,21,22,23,24,27,28,35,36,37,40,44,46,49,52,55,57] dealing with various aspects of the usages of the q-derivative operator and some other operators in Geometric Function Theory of Complex Analysis). Indeed, as it is expected, each of these publications contains references to many earlier works which would offer further incentive and motivation for considering some of these worthwhile lines of future researches.
The authors declare no conflicts of interest.
[1] |
A. Misra, Stabilization characteristics of clays using class C fly ash, Transp. Res. Rec., 1611 (1998), 46–54. https://doi.org/10.3141/1611-06 doi: 10.3141/1611-06
![]() |
[2] |
D. A. S. Sclofani, L. Contrafatto, Experimental behaviour of polyvinyl-alcohol modified concrete, Adv. Mater. Res., 687 (2013), 155–160. https://doi.org/10.4028/www.scientific.net/AMR.687.155 doi: 10.4028/www.scientific.net/AMR.687.155
![]() |
[3] | L. Contrafatto, 8-Volcanic ash, in Sustainable Concrete Made with Ashes and Dust from Different Sources, (eds. R. Siddique and R. Belarbi), Elsevier, (2022), 331–418. https://doi.org/10.1016/B978-0-12-824050-2.00011-5 |
[4] |
L. Contrafatto, R. Cosenza, R. Barbagallo, S. Ognibene, Use of recycled aggregates in road sub-base construction and concrete manufacturing, Ann. Geophys., 61 (2018), SE223. https://doi.org/10.4401/ag-7785 doi: 10.4401/ag-7785
![]() |
[5] |
G. Goel, P. Sachdeva, A. K. Chaudhary, Y. Singh, The use of nanomaterials in concrete: A review, Mater. Today Proc., 69 (2022), 365–371. https://doi.org/10.1016/j.matpr.2022.09.051 doi: 10.1016/j.matpr.2022.09.051
![]() |
[6] |
P. Franciosi, M. Spagnuolo, O. U. Salman, Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates, Continuum Mech. Thermodyn., 31 (2019), 101–132. https://doi.org/10.1007/s00161-018-0668-0 doi: 10.1007/s00161-018-0668-0
![]() |
[7] |
M. Spagnuolo, Symmetrization of mechanical response in fibrous metamaterials through micro-shear deformability, Symmetry, 14 (2022), 2660. https://doi.org/10.3390/sym14122660 doi: 10.3390/sym14122660
![]() |
[8] |
M. Spagnuolo, P. Franciosi, F. Dell'Isola, A Green operator-based elastic modeling for two-phase pantographic-inspired bi-continuous materials, Int. J. Solids Struct., 188 (2020), 282–308. https://doi.org/10.1016/j.ijsolstr.2019.10.018 doi: 10.1016/j.ijsolstr.2019.10.018
![]() |
[9] |
I. Giorgio, N. L. Rizzi, E. Turco, Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis, Proc. R. Soc. A, 473 (2017), 1–21. https://doi.org/10.1098/rspa.2017.0636 doi: 10.1098/rspa.2017.0636
![]() |
[10] |
E. Turco, M. Golaszewski, I. Giorgio, F. D'Annibale, Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations, Composites, Part B, 118 (2017), 1–14. https://doi.org/10.1016/j.compositesb.2017.02.039 doi: 10.1016/j.compositesb.2017.02.039
![]() |
[11] |
E. Turco, I. Giorgio, A. Misra, F. Dell'Isola, King post truss as a motif for internal structure of (meta) material with controlled elastic properties, R. Soc. Open Sci., 4 (2017), 171153. https://doi.org/10.1098/rsos.171153 doi: 10.1098/rsos.171153
![]() |
[12] |
P. P. Abhilash, D. K. Nayak, B. Sangoju, R. Kumar, V. Kumar, Effect of nano-silica in concrete; a review, Constr. Build. Mater., 278 (2021), 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347 doi: 10.1016/j.conbuildmat.2021.122347
![]() |
[13] |
N. De Belie, E. Gruyaert, A. Al‐Tabbaa, P. Antonaci, C. Baera, D. Bajare, et al., A review of self-healing concrete for damage management of structures, Adv. Mater. Interfaces, 5 (2018), 1800074. https://doi.org/10.1002/admi.201800074 doi: 10.1002/admi.201800074
![]() |
[14] |
S. Sangadji, E. Schlangen, Mimicking bone healing process to self repair concrete structure novel approach using porous network concrete, Procedia Eng., 54 (2013), 315–326. https://doi.org/10.1016/j.proeng.2013.03.029 doi: 10.1016/j.proeng.2013.03.029
![]() |
[15] |
A. Casalotti, F. D'annibale, G. Rosi, Multi-scale design of an architected composite structure with optimized graded properties, Composite Structures, 252 (2020), 112608. https://doi.org/10.1016/j.compstruct.2020.112608 doi: 10.1016/j.compstruct.2020.112608
![]() |
[16] |
T. Lekszycki, F. Dell'Isola, A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials, ZAMM Z. Angew. Math. Mech., 92 (2012), 426–444. https://doi.org/10.1002/zamm.201100082 doi: 10.1002/zamm.201100082
![]() |
[17] |
E. I. Bednarczyk, T. Lekszycki, W. Glinkowski, Effect of micro-cracks on the angiogenesis and osteophyte development during degenerative joint disease, Comput. Assisted Methods Eng. Sci., 24 (2018), 149–156. http://doi.org/10.24423/cames.191 doi: 10.24423/cames.191
![]() |
[18] |
I. Giorgio, F. Dell'Isola, U. Andreaus, F. Alzahrani, T. Hayat, T. Lekszycki, On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon, Biomech. Model. Mechanobiol., 18 (2019), 1639–1663. https://doi.org/10.1007/s10237-019-01166-w doi: 10.1007/s10237-019-01166-w
![]() |
[19] |
I. Giorgio, F. Dell'Isola, U. Andreaus, A. Misra, An orthotropic continuum model with substructure evolution for describing bone remodeling: an interpretation of the primary mechanism behind Wolff's law, Biomech. Model. Mechanobiol., 22 (2023), 2135–2152. https://doi.org/10.1007/s10237-023-01755-w doi: 10.1007/s10237-023-01755-w
![]() |
[20] |
M. Rajczakowska, K. Habermehl-Cwirzen, H. Hedlund, A. Cwirzen, Autogenous self-healing: A better solution for concrete, J. Mater. Civ. Eng., 31 (2019), 03119001. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002764 doi: 10.1061/(ASCE)MT.1943-5533.0002764
![]() |
[21] |
M. E. Espitia-Nery, D. E. Corredor-Pulido, P. A. Castaño-Oliveros, J. A. Rodríguez-Medina, Q. Y. Ordoñez-Bello, M. S. Pérez-Fuentes, Mechanisms of encapsulation of bacteria in self-healing concrete, Dyna, 86 (2019), 17–22. https://doi.org/10.15446/dyna.v86n210.75343 doi: 10.15446/dyna.v86n210.75343
![]() |
[22] |
J. Xue, B. Briseghella, F. Huang, C. Nuti, H. Tabatabai, B. Chen, Review of ultra-high performance concrete and its application in bridge engineering, Constr. Build. Mater., 260 (2020), 119844. https://doi.org/10.1016/j.conbuildmat.2020.119844 doi: 10.1016/j.conbuildmat.2020.119844
![]() |
[23] |
L. Placidi, F. Dell'Isola, A. Kandalaft, R. Luciano, C. Majorana, A. Misra, A granular micromechanic-based model for Ultra High Performance Fiber-Reinforced Concrete (UHP FRC), Int. J. Solids Struct., 297 (2024), 112844. https://doi.org/10.1016/j.ijsolstr.2024.112844 doi: 10.1016/j.ijsolstr.2024.112844
![]() |
[24] |
V. Nguyen-Van, B. Panda, G. Zhang, H. Nguyen-Xuan, P. Tran, Digital design computing and modelling for 3-D concrete printing, Autom. Constr., 123 (2021), 103529. https://doi.org/10.1016/j.autcon.2020.103529 doi: 10.1016/j.autcon.2020.103529
![]() |
[25] |
A. Kezmane, B. Chiaia, O. Kumpyak, V. Maksimov, L. Placidi, 3D modelling of reinforced concrete slab with yielding supports subject to impact load, Eur. J. Environ. Civ. Eng., 21 (2017), 988–1025. https://doi.org/10.1080/19648189.2016.1194330 doi: 10.1080/19648189.2016.1194330
![]() |
[26] |
A. Casalotti, F. D'Annibale, G. Rosi, Optimization of an architected composite with tailored graded properties, Z. Angew. Math. Phys., 75 (2014), 126. https://doi.org/10.1007/s00033-024-02255-2 doi: 10.1007/s00033-024-02255-2
![]() |
[27] |
I. Giorgio, A. Ciallella, D. Scerrato, A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: Some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials, Int. J. Solids Struct., 203 (2020), 73–83. https://doi.org/10.1016/j.ijsolstr.2020.07.016 doi: 10.1016/j.ijsolstr.2020.07.016
![]() |
[28] |
A. Ciallella, F. D'Annibale, D. Del Vescovo, I. Giorgio, Deformation patterns in a second-gradient lattice annular plate composed of "spira mirabilis" fibers, Continuum Mech. Thermodyn., 35 (2023), 1561–1580. https://doi.org/10.1007/s00161-022-01169-6 doi: 10.1007/s00161-022-01169-6
![]() |
[29] |
T. Wangler, N. Roussel, F. P. Bos, T. A. M. Salet, R. J. Flatt, Digital concrete: A review, Cem. Concr. Res., 123 (2019), 105780. https://doi.org/10.1016/j.cemconres.2019.105780 doi: 10.1016/j.cemconres.2019.105780
![]() |
[30] |
N. Rezaei, E. Barchiesi, D. Timofeev, C. A. Tran, A. Misra, L. Placidi, Solution of a paradox related to the rigid bar pull-out problem in standard elasticity, Mech. Res. Commun., 126 (2022), 104015. https://doi.org/10.1016/j.mechrescom.2022.104015 doi: 10.1016/j.mechrescom.2022.104015
![]() |
[31] |
M. F. Funari, S. Spadea, F. Fabbrocino, R. Luciano, A moving interface finite element formulation to predict dynamic edge debonding in FRP-strengthened concrete beams in service conditions, Fibers, 8 (2020), 42. https://doi.org/10.3390/fib8060042 doi: 10.3390/fib8060042
![]() |
[32] |
W. Pietraszkiewicz, V. A. Eremeyev, On vectorially parameterized natural strain measures of the non-linear Cosserat continuum, Int. J. Solids Struct., 46 (2009), 2477–2480. https://doi.org/10.1016/j.ijsolstr.2009.01.030 doi: 10.1016/j.ijsolstr.2009.01.030
![]() |
[33] |
G. La Valle, A new deformation measure for the nonlinear micropolar continuum, Z. Angew. Math. Phys., 73 (2022), 78. https://doi.org/10.1007/s00033-022-01715-x doi: 10.1007/s00033-022-01715-x
![]() |
[34] | I. Giorgio, A. Misra, L. Placidi, Geometrically nonlinear Cosserat elasticity with chiral effects based upon granular micromechanics, in Sixty Shades of Generalized Continua, (eds. H. Altenbach, A. Berezovski, F. Dell'Isola and A. Porubov), Springer, 170 (2023), 273–292. https://doi.org/10.1007/978-3-031-26186-2_17 |
[35] |
I. Giorgio, M. De Angelo, E. Turco, A. Misra, A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium, Continuum Mech. Thermodyn., 32 (2020), 1357–1369. https://doi.org/10.1007/s00161-019-00848-1 doi: 10.1007/s00161-019-00848-1
![]() |
[36] |
E. Turco, F. Dell'Isola, A. Misra, A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations, Int. J. Numer. Anal. Methods Geomech., 43 (2019), 1051–1079. https://doi.org/10.1002/nag.2915 doi: 10.1002/nag.2915
![]() |
[37] |
E. Turco, Forecasting nonlinear vibrations of patches of granular materials by elastic interactions between spheres, Mech. Res. Commun., 122 (2022), 103879. https://doi.org/10.1016/j.mechrescom.2022.103879 doi: 10.1016/j.mechrescom.2022.103879
![]() |
[38] |
D. Scerrato, I. Giorgio, A. Della Corte, A. Madeo, N. E. Dowling, F. Darve, Towards the design of an enriched concrete with enhanced dissipation performances, Cem. Concr. Res., 84 (2016), 48–61. https://doi.org/10.1016/j.cemconres.2016.03.002 doi: 10.1016/j.cemconres.2016.03.002
![]() |
[39] |
A. Scrofani, E. Barchiesi, B. Chiaia, A. Misra, L. Placidi, Fluid diffusion related aging effect in a concrete dam modeled as a Timoshenko beam, Math. Mech. Complex Syst., 11 (2023), 313–334. https://doi.org/10.2140/memocs.2023.11.313 doi: 10.2140/memocs.2023.11.313
![]() |
[40] |
I. Giorgio, D. Scerrato, Multi-scale concrete model with rate-dependent internal friction, Eur. J. Environ. Civ. Eng., 21 (2017), 821–839. https://doi.org/10.1080/19648189.2016.1144539 doi: 10.1080/19648189.2016.1144539
![]() |
[41] |
G. Jouan, P. Kotronis, F. Collin, Using a second gradient model to simulate the behaviour of concrete structural elements, Finite Elem. Anal. Des., 90 (2014), 50–60. https://doi.org/10.1016/j.finel.2014.06.002 doi: 10.1016/j.finel.2014.06.002
![]() |
[42] |
P. Germain, The method of virtual power in the mechanics of continuous media, Ⅰ: Second-gradient theory, Math. Mech. Complex Syst., 8 (2020), 153–190. https://doi.org/10.2140/memocs.2020.8.153 doi: 10.2140/memocs.2020.8.153
![]() |
[43] |
G. La Valle, B. E. Abali, G. Falsone, C. Soize, Sensitivity of a homogeneous and isotropic second-gradient continuum model for particle-based materials with respect to uncertainties, ZAMM Z. Angew. Math. Mech., 103 (2023), e202300068. https://doi.org/10.1002/zamm.202300068 doi: 10.1002/zamm.202300068
![]() |
[44] |
F. Dell'Isola, S. R. Eugster, R. Fedele, P. Seppecher, Second-gradient continua: From Lagrangian to Eulerian and back, Math. Mech. Solids, 27 (2022), 2715–2750. https://doi.org/10.1177/10812865221078822 doi: 10.1177/10812865221078822
![]() |
[45] |
F. Dell'Isola, U. Andreaus, L. Placidi, At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solids, 20 (2015), 887–928. https://doi.org/10.1177/1081286513509811 doi: 10.1177/1081286513509811
![]() |
[46] |
A. Berezovski, I. Giorgio, A. D. Corte, Interfaces in micromorphic materials: Wave transmission and reflection with numerical simulations, Math. Mech. Solids, 21 (2016), 37–51. https://doi.org/10.1177/1081286515572244 doi: 10.1177/1081286515572244
![]() |
[47] |
M. Golaszewski, R. Grygoruk, I. Giorgio, M. Laudato, F. D. Cosmo, Metamaterials with relative displacements in their microstructure: Technological challenges in 3D printing, experiments and numerical predictions, Continuum Mech. Thermodyn., 31 (2019), 1015–1034. https://doi.org/10.1007/s00161-018-0692-0 doi: 10.1007/s00161-018-0692-0
![]() |
[48] |
A. Ciallella, I. Giorgio, S. R. Eugster, N. L. Rizzi, F. Dell'Isola, Generalized beam model for the analysis of wave propagation with a symmetric pattern of deformation in planar pantographic sheets, Wave Motion, 113 (2022), 102986. https://doi.org/10.1016/j.wavemoti.2022.102986 doi: 10.1016/j.wavemoti.2022.102986
![]() |
[49] |
O. Szlachetka, I. Giorgio, Heat conduction in multi-component step-wise FGMs, Continuum Mech. Thermodyn., (2024), 1–19. https://doi.org/10.1007/s00161-024-01296-2 doi: 10.1007/s00161-024-01296-2
![]() |
[50] |
V. A. Eremeyev, W. Pietraszkiewicz, Material symmetry group and constitutive equations of micropolar anisotropic elastic solids, Math. Mech. Solids, 21 (2016), 210–221. https://doi.org/10.1177/1081286515582862 doi: 10.1177/1081286515582862
![]() |
[51] |
G. La Valle, S. Massoumi, A new deformation measure for micropolar plates subjected to in-plane loads, Continuum Mech. Thermodyn., 34 (2022), 243–257. https://doi.org/10.1007/s00161-021-01055-7 doi: 10.1007/s00161-021-01055-7
![]() |
[52] |
I. Giorgio, F. Dell'Isola, A. Misrav, Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics, Int. J. Solids Struct., 202 (2020), 28–38. https://doi.org/10.1016/j.ijsolstr.2020.06.005 doi: 10.1016/j.ijsolstr.2020.06.005
![]() |
[53] |
I. Giorgio, F. Hild, E. Gerami, F. Dell'Isola, A. Misra, Experimental verification of 2D Cosserat chirality with stretch-micro-rotation coupling in orthotropic metamaterials with granular motif, Mech. Res. Commun., 126 (2022), 104020. https://doi.org/10.1016/j.mechrescom.2022.104020 doi: 10.1016/j.mechrescom.2022.104020
![]() |
[54] |
G. La Valle, C. Soize, A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials, Z. Angew. Math. Phys., 75 (2024). https://doi.org/10.1007/s00033-024-02196-w doi: 10.1007/s00033-024-02196-w
![]() |
[55] |
A. Madeo, F. Dell'Isola, F. Darve, A continuum model for deformable, second gradient porous media partially saturated with compressible fluids, J. Mech. Phys. Solids, 61 (2013), 2196–2211. https://doi.org/10.1016/j.jmps.2013.06.009 doi: 10.1016/j.jmps.2013.06.009
![]() |
[56] |
F. Dell'Isola, A. Madeo, P. Seppecher, Boundary conditions at fluid-permeable interfaces in porous media: A variational approach, Int. J. Solids Struct., 46 (2009), 3150–3164. https://doi.org/10.1016/j.ijsolstr.2009.04.008 doi: 10.1016/j.ijsolstr.2009.04.008
![]() |
[57] |
I. Giorgio, A variational formulation for one-dimensional linear thermoviscoelasticity, Math. Mech. Complex Syst., 9 (2022), 397–412. https://doi.org/10.2140/memocs.2021.9.397 doi: 10.2140/memocs.2021.9.397
![]() |
[58] |
E. Barchiesi, N. Hamila, Maximum mechano-damage power release-based phase-field modeling of mass diffusion in damaging deformable solids, Z. Angew. Math. Phys., 73 (2022). https://doi.org/10.1007/s00033-021-01668-7 doi: 10.1007/s00033-021-01668-7
![]() |
[59] |
A. Ramírez-Torres, R. Penta, A. Grillo, Effective properties of fractional viscoelastic composites via two-scale asymptotic homogenization, Math. Methods Appl. Sci., 46 (2023), 16500–16520. https://doi.org/10.1002/mma.9457 doi: 10.1002/mma.9457
![]() |
[60] |
L. Placidi, E. Barchiesi, Energy approach to brittle fracture in strain-gradient modelling, Proc. R. Soc. A, 474 (2018), 20170878. https://doi.org/10.1098/rspa.2017.0878 doi: 10.1098/rspa.2017.0878
![]() |
[61] |
F. Fabbrocino, M. F. Funari, F. Greco, P. Lonetti, R. Luciano, R. Penna, Dynamic crack growth based on moving mesh method, Composites, Part B, 174 (2019), 107053. https://doi.org/10.1016/j.compositesb.2019.107053 doi: 10.1016/j.compositesb.2019.107053
![]() |
[62] |
C. Comi, R. Fedele, U. Perego, A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction, Mech. Mater., 41 (2009), 210–230. https://doi.org/10.1016/j.mechmat.2008.10.010 doi: 10.1016/j.mechmat.2008.10.010
![]() |
[63] | A. Bilotta, A. Morassi, E. Turco, Simple convolutional neural networks for the damage identification in composite steel-concrete beams, in International Conference on Experimental Vibration Analysis for Civil Engineering Structures, Springer, 433 (2023), 422–431. https://doi.org/10.1007/978-3-031-39117-0_43 |
[64] |
L. Placidi, A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Continuum Mech. Thermodyn., 28 (2016), 119–137. https://doi.org/10.1007/s00161-014-0405-2 doi: 10.1007/s00161-014-0405-2
![]() |
[65] |
L. Placidi, E. Barchiesi, A. Misra, A strain gradient variational approach to damage: A comparison with damage gradient models and numerical results, Math. Mech. Complex Syst., 6 (2018), 77–100. https://doi.org/10.2140/memocs.2018.6.77 doi: 10.2140/memocs.2018.6.77
![]() |
[66] |
L. Placidi, A. Misra, E. Barchiesi, Simulation results for damage with evolving microstructure and growing strain gradient moduli, Continuum Mech. Thermodyn., 31 (2019), 1143–1163. https://doi.org/10.1007/s00161-018-0693-z doi: 10.1007/s00161-018-0693-z
![]() |
[67] |
R. Luciano, A. Caporale, H. Darban, C. Bartolomeo, Variational approaches for bending and buckling of non-local stress-driven Timoshenko nano-beams for smart materials, Mech. Res. Commun., 103 (2020), 103470. https://doi.org/10.1016/j.mechrescom.2019.103470 doi: 10.1016/j.mechrescom.2019.103470
![]() |
[68] | Ciallella, A and Pasquali, D and Gołaszewski, M and D'Annibale, F and Giorgio, I, A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads, Mech. Res. Commun., 116 (2021), 103761. |
[69] |
A. Ciallella, D. Pasquali, M. Gołaszewski, F. D'Annibale, I. Giorgio, Shear rupture mechanism and dissipation phenomena in bias-extension test of pantographic sheets: Numerical modeling and experiments, Math. Mech. Solids, 27 (2022), 2170–2188. https://doi.org/10.1016/j.mechrescom.2021.103761 doi: 10.1016/j.mechrescom.2021.103761
![]() |
[70] |
I. Giorgio, L. Placidi, A variational formulation for three-dimensional linear thermoelasticity with 'thermal inertia', Meccanica, (2024). https://doi.org/10.1007/s11012-024-01796-0 doi: 10.1007/s11012-024-01796-0
![]() |
[71] |
A. Battista, L. Rosa, R. Dell'Erba, L. Greco, Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena, Math. Mech. Solids, 22 (2017), 2120–2134. https://doi.org/10.1177/1081286516657889 doi: 10.1177/1081286516657889
![]() |
[72] |
D. Scerrato, I. Giorgio, A. Madeo, A. Limam, F. Darve, A simple non-linear model for internal friction in modified concrete, Int. J. Eng. Sci., 80 (2014), 136–152. https://doi.org/10.1016/j.ijengsci.2014.02.021 doi: 10.1016/j.ijengsci.2014.02.021
![]() |
[73] |
D. Scerrato, I. Giorgio, A. Della Corte, A. Madeo, A. Limam, A micro-structural model for dissipation phenomena in the concrete, Int. J. Numer. Anal. Methods Geomech., 39 (2015), 2037–2052. https://doi.org/10.1002/nag.2394 doi: 10.1002/nag.2394
![]() |
[74] | I. Giorgio, M. Spagnuolo, L. Greco, F. D'Annibale, A. Cazzani, A variational approach to address the problem of planar nonlinear beams, in Comprehensive Mechanics of Materials, (eds. V. Silberschmidt), Elsevier, 1 (2024), 67–97. https://doi.org/10.1016/B978-0-323-90646-3.00027-7 |
[75] |
V. Pensée, D. Kondo, L. Dormieux, Micromechanical analysis of anisotropic damage in brittle materials, J. Eng. Mech., 128 (2002), 889–897. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(889) doi: 10.1061/(ASCE)0733-9399(2002)128:8(889)
![]() |
[76] | B. R. Raveendra, G. S. Benipal, A. K. Singh, Constitutive modelling of concrete: An overview, Asian J. Civ. Eng., 6 (2005), 211–214. |
[77] |
A. M. Bersani, P. Caressa, F. Dell'Isola, Approximation of dissipative systems by elastic chains: Numerical evidence, Math. Mech. Solids, 28 (2023), 501–520. https://doi.org/10.1177/10812865221081851 doi: 10.1177/10812865221081851
![]() |
[78] |
A. M. Bersani, P. Caressa, A. Ciallella, Numerical evidence for the approximation of dissipative systems by gyroscopically coupled oscillator chains, Math. Mech. Complex Syst., 10 (2022), 265–278. https://doi.org/10.2140/memocs.2022.10.265 doi: 10.2140/memocs.2022.10.265
![]() |
[79] |
A. Ciallella, D. Scerrato, M. Spagnuolo, I. Giorgio, A continuum model based on Rayleigh dissipation functions to describe a Coulomb-type constitutive law for internal friction in woven fabrics, Z. Angew. Math. Phys., 73 (2022). https://doi.org/10.1007/s00033-022-01845-2 doi: 10.1007/s00033-022-01845-2
![]() |
[80] |
L. Greco, M. Cuomo, L. Contrafatto, Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates, Comput. Methods Appl. Mech. Eng., 356 (2019), 354–386. https://doi.org/10.1016/j.cma.2019.07.026 doi: 10.1016/j.cma.2019.07.026
![]() |
[81] |
L. Greco, D. Castello, M. Cuomo, An objective and accurate G1-conforming mixed Bézier FE-formulation for Kirchhoff–Love rods, Math. Mech. Solids, 29 (2024), 645–685. https://doi.org/10.1177/10812865231204972 doi: 10.1177/10812865231204972
![]() |
[82] |
I. Giorgio, A discrete formulation of Kirchhoff rods in large-motion dynamics, Math. Mech. Solids, 25 (2020), 1081–1100. https://doi.org/10.1177/1081286519900902 doi: 10.1177/1081286519900902
![]() |
[83] |
I. Giorgio, D. Del Vescovo, Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators, Math. Mecha. Complex Syst., 7 (2019), 159–174. https://doi.org/10.2140/memocs.2019.7.159 doi: 10.2140/memocs.2019.7.159
![]() |
[84] |
D. Baroudi, I. Giorgio, A. Battista, E. Turco, L. A. Igumnov, Nonlinear dynamics of uniformly loaded elastica: Experimental and numerical evidence of motion around curled stable equilibrium configurations, ZAMM Z. Angew. Math. Mech., 99 (2019), e201800121. https://doi.org/10.1002/zamm.201800121 doi: 10.1002/zamm.201800121
![]() |
[85] |
E. Turco, Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica, Continuum Mech. Thermodyn., 30 (2018), 1039–1057. https://doi.org/10.1007/s00161-018-0656-4 doi: 10.1007/s00161-018-0656-4
![]() |
[86] |
R. Fedele, G. Maier, B. Miller, Identification of elastic stiffness and local stresses in concrete dams by in situ tests and neural networks, Struct. Infrastruct. Eng., 1 (2005), 165–180. https://doi.org/10.1080/15732470500030513 doi: 10.1080/15732470500030513
![]() |
[87] | R. Fedele, G. Maier, B. Miller, Image correlation-based identification of fracture parameters for structural adhesives, Tech. Mech. Eur. J. Eng. Mech., 32 (2012), 195–204. |
[88] |
B. E. Abali, C. C. Wu, W. H. Müller, An energy-based method to determine material constants in nonlinear rheology with applications, Continuum Mech. Thermodyn., 28 (2016), 1221–1246. https://doi.org/10.1007/s00161-015-0472-z doi: 10.1007/s00161-015-0472-z
![]() |
[89] |
M. De Angelo, L. Placidi, N. Nejadsadeghi, A. Misra, Non-standard Timoshenko beam model for chiral metamaterial: Identification of stiffness parameters, Mech. Res. Commun., 103 (2020), 103462. https://doi.org/10.1016/j.mechrescom.2019.103462 doi: 10.1016/j.mechrescom.2019.103462
![]() |
[90] |
A. Ciallella, G. La Valle, A. Vintache, B. Smaniotto, F. Hild, Deformation mode in 3-point flexure on pantographic block, Int. J. Solids Struct., 265 (2023), 112129. https://doi.org/10.1016/j.ijsolstr.2023.112129 doi: 10.1016/j.ijsolstr.2023.112129
![]() |
[91] |
M. De Angelo, E. Barchiesi, I. Giorgio, B. E. Abali, Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: Application to out-of-plane buckling, Arch. Appl. Mech., 89 (2019), 1333–1358. https://doi.org/10.1007/s00419-018-01506-9 doi: 10.1007/s00419-018-01506-9
![]() |
[92] |
N. Shekarchizadeh, B. E. Abali, E. Barchiesi, A. M. Bersani, Inverse analysis of metamaterials and parameter determination by means of an automatized optimization problem, ZAMM Z. Angew. Math. Mech., 101 (2021), e202000277. https://doi.org/10.1002/zamm.202000277 doi: 10.1002/zamm.202000277
![]() |
[93] |
I. Giorgio, P. Harrison, F. Dell'Isola, J. Alsayednoor, E. Turco, Wrinkling in engineering fabrics: A comparison between two different comprehensive modelling approaches, Proc. R. Soc. A, 474 (2018), 20180063. https://doi.org/10.1098/rspa.2018.0063 doi: 10.1098/rspa.2018.0063
![]() |
[94] |
R. Fedele, A. Ciani, L. Galantucci, V. Casalegno, A. Ventrella, M. Ferraris, Characterization of innovative CFC/Cu joints by full-field measurements and finite elements, Mater. Sci. Eng. A, 595 (2014), 306–317. https://doi.org/10.1016/j.msea.2013.12.015 doi: 10.1016/j.msea.2013.12.015
![]() |
[95] |
N. Cefis, R. Fedele, M. G. Beghi, An integrated methodology to estimate the effective elastic parameters of amorphous TiO2 nanostructured films, combining SEM images, finite element simulations and homogenization techniques, Mech. Res. Commun., 131 (2023), 104153. https://doi.org/10.1016/j.mechrescom.2023.104153 doi: 10.1016/j.mechrescom.2023.104153
![]() |
1. | Qiuxia Hu, Hari M. Srivastava, Bakhtiar Ahmad, Nazar Khan, Muhammad Ghaffar Khan, Wali Khan Mashwani, Bilal Khan, A Subclass of Multivalent Janowski Type q-Starlike Functions and Its Consequences, 2021, 13, 2073-8994, 1275, 10.3390/sym13071275 | |
2. | Adel A. Attiya, T. M. Seoudy, M. K. Aouf, Abeer M. Albalahi, Salah Mahmoud Boulaaras, Certain Analytic Functions Defined by Generalized Mittag-Leffler Function Associated with Conic Domain, 2022, 2022, 2314-8888, 1, 10.1155/2022/1688741 | |
3. | Neelam Khan, H. M. Srivastava, Ayesha Rafiq, Muhammad Arif, Sama Arjika, Some applications of q-difference operator involving a family of meromorphic harmonic functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03629-w | |
4. | Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy, Certain subclass of analytic functions with respect to symmetric points associated with conic region, 2021, 6, 2473-6988, 12863, 10.3934/math.2021742 | |
5. | R.M. El-Ashwah, Subordination results for some subclasses of analytic functions using generalized q-Dziok-Srivastava-Catas operator, 2023, 37, 0354-5180, 1855, 10.2298/FIL2306855E | |
6. | Ebrahim Amini, Shrideh Al-Omari, Dayalal Suthar, Inclusion and Neighborhood on a Multivalent q-Symmetric Function with Poisson Distribution Operators, 2024, 2024, 2314-4629, 1, 10.1155/2024/3697215 | |
7. | Khadija Bano, Mohsan Raza, Starlikness associated with limacon, 2023, 37, 0354-5180, 851, 10.2298/FIL2303851B |