[1]
|
Disease contagion models coupled to crowd motion and mesh-free simulation. Math. Models Methods Appl. Sci. (2021) 31: 1277-1295.
|
[2]
|
G. Albi, G. Bertaglia, W. Boscheri, G. Dimarco, L. Pareschi, G. Toscani and M. Zanella, Kinetic modelling of epidemic dynamics: Social contacts, control with uncertain data, and multiscale spatial dynamics, in press in Predicting Pandemics in a Globally Connected World, Springer-Nature, (2022).
|
[3]
|
G. Albi, L. Pareschi and M. Zanella, Control with uncertain data of socially structured compartmental epidemic models, J. Math. Biol., 82 (2021), 41pp.
|
[4]
|
Modelling lockdown measures in epidemic outbreaks using selective socio-economic containment with uncertainty. Math. Biosci. Eng. (2021) 18: 7161-7190.
|
[5]
|
E. Barbera, G. Consolo and G. Valenti, Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model, Phys. Rev. E, 88 (2013), 13pp.
|
[6]
|
A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Math. Models Methods Appl. Sci. (2020) 30: 1591-1651.
|
[7]
|
Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty. Math. Biosci. Eng. (2021) 18: 7028-7059.
|
[8]
|
G. Bertaglia, V. Caleffi, L. Pareschi and A. Valiani, Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model, J. Comput. Phys., 430 (2021), 20pp.
|
[9]
|
Hyperbolic compartmental models for epidemic spread on networks with uncertain data: Application to the emergence of COVID-19 in Italy. Math. Models Methods Appl. Sci. (2021) 31: 2495-2531.
|
[10]
|
Hyperbolic models for the spread of epidemics on networks: Kinetic description and numerical methods. ESAIM Math. Model. Numer. Anal. (2021) 55: 381-407.
|
[11]
|
S. Boscarino, L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35 (2013), A22–A51.
|
[12]
|
A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation. SIAM J. Numer. Anal. (2017) 55: 2085-2109.
|
[13]
|
Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations. Math. Models Methods Appl. Sci. (2021) 31: 1059-1097.
|
[14]
|
B. Buonomo and R. Della Marca, Effects of information-induced behavioural changes during the COVID-19 lockdowns: The case of Italy, R. Soc. Open Sci., 7 (2020).
|
[15]
|
A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. (1978) 42: 43-61.
|
[16]
|
R. M. Colombo, M. Garavello, F. Marcellini and E. Rossi, An age and space structured SIR model describing the Covid-19 pandemic, J. Math. Ind., 10 (2020), 20pp.
|
[17]
|
G. Dimarco, L. Liu, L. Pareschi and X. Zhu, Multi-fidelity methods for uncertainty propagation in kinetic equations, preprint, arXiv: 2112.00932.
|
[18]
|
Multi-scale control variate methods for uncertainty quantification in kinetic equations. J. Comput. Phys. (2019) 388: 63-89.
|
[19]
|
Multiscale variance reduction methods based on multiple control variates for kinetic equations with uncertainties. Multiscale Model. Simul. (2020) 18: 351-382.
|
[20]
|
Numerical methods for kinetic equations. Acta Numer. (2014) 23: 369-520.
|
[21]
|
G. Dimarco, B. Perthame, G. Toscani and M. Zanella, Kinetic models for epidemic dynamics with social heterogeneity, J. Math. Biol., 83 (2021), 32pp.
|
[22]
|
E. Franco, A feedback SIR (fSIR) model highlights advantages and limitations of infection-based social distancing, preprint, arXiv: 2004.13216.
|
[23]
|
Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proceed. Nat. Acad. Sci. (2020) 117: 10484-10491.
|
[24]
|
The convergence of numerical transfer schemes in diffusive regimes. I. Discrete-ordinate method. SIAM J. Numer. Anal. (1999) 36: 1333-1369.
|
[25]
|
The mathematics of infectious diseases. SIAM Rev. (2000) 42: 599-653.
|
[26]
|
T. Hillen and A. Swan, The diffusion limit of transport equations in biology, in Mathematical Models and Methods for Living Systems, Lecture Notes in Math., 2167, Fond. CIME/CIME Found. Subser., Springer, Cham, 2016, 73–129.
|
[27]
|
S. Jin, H. Lu and L. Pareschi, Efficient stochastic asymptotic-preserving implicit-explicit methods for transport equations with diffusive scalings and random inputs, SIAM J. Sci. Comput., 40 (2018), A671–A696.
|
[28]
|
Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. (2000) 38: 913-936.
|
[29]
|
Non-linear incidence and stability of infectious disease models. Math. Med. Bio. J. IMA (2005) 22: 113-128.
|
[30]
|
L. Liu, L. Pareschi and X. Zhu, A bi-fidelity stochastic collocation method for transport equations with diffusive scaling and multi-dimensional random inputs, preprint, arXiv: 2107.09250.
|
[31]
|
L. Liu and X. Zhu, A bi-fidelity method for the multiscale Boltzmann equation with random parameters, J. Comput. Phys., 402 (2020), 23pp.
|
[32]
|
A viral load-based model for epidemic spread on spatial networks. Math. Biosci. Eng. (2021) 18: 5635-5663.
|
[33]
|
C. Lu and X. Zhu, Bifidelity data-assisted neural networks in nonintrusive reduced-order modeling, J. Sci. Comput., 87 (2021), 30pp.
|
[34]
|
Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico. Discrete Contin. Dyn. Syst. Ser. B (2020) 25: 2185-2202.
|
[35]
|
A. Narayan, C. Gittelson and D. Xiu, A stochastic collocation algorithm with multifidelity models, SIAM J. Sci. Comput., 36 (2014), A495–A521.
|
[36]
|
M. Peirlinck, K. Linka, F. Sahli Costabal, J. Bhattacharya, E. Bendavid, J. P. A. Ioannidis and E. Kuhl, Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamics of COVID-19, Comput. Methods Appl. Mech. Engrg., 372 (2020), 22pp.
|
[37]
|
A kinetic model for epidemic spread. Math. Mech. Complex Syst. (2020) 8: 249-260.
|
[38]
|
F. Riccardo, M. Ajelli, X. D. Andrianou, A. Bella and M. Del Manso, et al., Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020, Euro Surveill., 25 (2020).
|
[39]
|
L. Roques, O. Bonnefon, V. Baudrot, S. Soubeyrand and H. Berestycki, A parsimonious approach for spatial transmission and heterogeneity in the COVID-19 propagation, R. Soc. Open Sci., 7 (2020).
|
[40]
|
Pattern formation of an epidemic model with diffusion. Nonlinear Dynam. (2012) 69: 1097-1104.
|
[41]
|
B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020).
|
[42]
|
A. Viguerie, G. Lorenzo, F. Auricchio, D. Baroli and T. J. R. Hughes, et al., Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion, Appl. Math. Lett., 111 (2021), 9pp.
|
[43]
|
Diffusion-reaction compartmental models formulated in a continuum mechanics framework: Application to COVID-19, mathematical analysis, and numerical study. Comput. Mech. (2020) 66: 1131-1152.
|
[44]
|
J. Wang, F. Xie and T. Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 20pp.
|
[45]
|
A reaction-diffusion model for a deterministic diffusion epidemic. J. Math. Anal. Appl. (1981) 84: 150-161.
|
[46]
|
(2010) Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton, NJ: Princeton University Press. |
[47]
|
Multi-fidelity stochastic collocation method for computation of statistical moments. J. Comput. Phys. (2017) 341: 386-396.
|
[48]
|
Computational aspects of stochastic collocation with multifidelity models. SIAM/ASA J. Uncertain. Quantif. (2014) 2: 444-463.
|