Wave propagation in fractal trees. Mathematical and numerical issues

  • Received: 01 December 2016 Revised: 01 October 2018
  • Primary: 35J05, 37E25, 65D15; Secondary: 35J20

  • We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. This emphasis is put on the construction and approximation of transparent boundary conditions. The performance of the constructed boundary conditions is then illustrated by numerical experiments.

    Citation: Patrick Joly, Maryna Kachanovska, Adrien Semin. Wave propagation in fractal trees. Mathematical and numerical issues[J]. Networks and Heterogeneous Media, 2019, 14(2): 205-264. doi: 10.3934/nhm.2019010

    Related Papers:

  • We propose and analyze a mathematical model for wave propagation in infinite trees with self-similar structure at infinity. This emphasis is put on the construction and approximation of transparent boundary conditions. The performance of the constructed boundary conditions is then illustrated by numerical experiments.



    加载中


    [1] Hamilton-Jacobi equations constrained on networks. Nonlinear Differential Equations and Applications NoDEA (2013) 20: 413-445.
    [2] Diffusion and propagation problems in some ramified domains with a fractal boundary. ESAIM: Mathematical Modelling and Numerical Analysis (2006) 40: 623-652.
    [3] Transparent boundary conditions for a class of boundary value problems in some ramified domains with a fractal boundary. C. R. Math. Acad. Sci. Paris (2006) 342: 605-610.
    [4] Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2007) 220: 712-739.
    [5] Boundary value problems with nonhomogeneous Neumann conditions on a fractal boundary. C. R. Math. Acad. Sci. Paris (2006) 342: 611-616.
    [6] Neumann conditions on fractal boundaries. Asymptot. Anal. (2007) 53: 61-82.
    [7] Y. Achdou and N. Tchou, Boundary value problems in ramified domains with fractal boundaries, In Domain decomposition methods in science and engineering XVII, volume 60 of Lect. Notes Comput. Sci. Eng., pages 419-426. Springer, Berlin, 2008. doi: 10.1007/978-3-540-75199-1_53
    [8] Nonlinear interaction problems. Nonlinear Anal. (1993) 20: 27-61.
    [9] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, volume 96 of Monographs in Mathematics, Birkhäuser/Springer Basel AG, Basel, second edition, 2011. doi: 10.1007/978-3-0348-0087-7
    [10] Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. (2015) 129: 611-646.
    [11] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, volume 186 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013.
    [12] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
    [13] Homogenization of a model for the propagation of sound in the lungs. Multiscale Model. Simul. (2015) 13: 43-71.
    [14] S. M. Cioabă and M. Ram Murty, A First Course in Graph Theory and Combinatorics, volume 55 of Texts and Readings in Mathematics, Hindustan Book Agency, New Delhi, 2009.
    [15] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. (1977) 31: 629-651.
    [16] A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. K. Wojciechowski, Graphs of finite measure, J. Math. Pures Appl. (9), 103 (2015), 1093-1131. doi: 10.1016/j.matpur.2014.10.006
    [17] On matrix-valued Herglotz functions. Math. Nachr. (2000) 218: 61-138.
    [18] P. Joly and A. Semin, Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots, In ESAIM: Proceedings, volume 25, pages 44-67. EDP Sciences, 2008. doi: 10.1051/proc:082504
    [19] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
    [20] J. L. Kelley, General Topology, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27.
    [21] P. Kuchment, Graph models for waves in thin structures, Waves in Random Media, 12 (2002), R1-R24. doi: 10.1088/0959-7174/12/4/201
    [22] B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, Calif., 1982.
    [23] Trace theorems for trees, application to the human lungs. Network and Heteregeneous Media (2009) 4: 469-500.
    [24] K. Naimark and M. Solomyak, Eigenvalue estimates for the weighted Laplacian on metric trees, Proc. London Math. Soc. (3), 80 (2000), 690-724. doi: 10.1112/S0024611500012272
    [25] Geometry of Sobolev spaces on regular trees and the Hardy inequalities. Russ. J. Math. Phys. (2001) 8: 322-335.
    [26] Elliptic operators on elementary ramified spaces. Integral Equations Operator Theory (1988) 11: 230-257.
    [27] Respiratory sounds: advances beyond the stethoscope. American journal of respiratory and critical care medicine (1997) 156: 974-987.
    [28] N. Pozin, S. Montesantos, I. Katz, M. Pichelin, I. Vignon-Clementel and C. Grandmont, A tree-parenchyma coupled model for lung ventilation simulation, Int. J. Numer. Methods Biomed. Eng., 33 (2017), e2873, 30pp. doi: 10.1002/cnm.2873
    [29] (1978) Methods of Modern Mathematical Physics. New York-London: Academic Press.
    [30] Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum. Arch. Ration. Mech. Anal. (2001) 160: 271-308.
    [31] Variational problems on multiply connected thin strips. â…¡. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. (2001) 160: 309-324.
    [32] Low-frequency ultrasound permeates the human thorax and lung: A novel approach to non-invasive monitoring. Ultraschall in der Medizin-European Journal of Ultrasound (2010) 31: 53-62.
    [33] A. Semin, Propagation d'ondes dans des jonctions de fentes minces, PhD thesis, Université de Paris-Sud 11, 2010.
    [34] M. Solomyak, Laplace and Schrödinger operators on regular metric trees: The discrete spectrum case, In Function Spaces, Differential Operators and Nonlinear Analysis (Teistungen, 2001), pages 161-181. Birkhäuser, Basel, 2003.
    [35] On approximation of functions from Sobolev spaces on metric graphs. J. Approx. Theory (2003) 121: 199-219.
    [36] M. Solomyak, On the spectrum of the laplacian on regular metric trees, Waves in Random Media, 14 (2004), S155-S171. doi: 10.1088/0959-7174/14/1/017
    [37] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Springer, New York, 2008. Finite and boundary elements, Translated from the 2003 German original. doi: 10.1007/978-0-387-68805-3
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3270) PDF downloads(418) Cited by(9)

Article outline

Figures and Tables

Figures(12)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog