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ABsTrRACT. We propose and analyze a mathematical model for wave propaga-
tion in infinite trees with self-similar structure at infinity. This emphasis is put
on the construction and approximation of transparent boundary conditions.
The performance of the constructed boundary conditions is then illustrated by
numerical experiments.

Introduction. In the recent years, there has been a surge of interest in the inves-
tigation of problems defined by partial differential equations along the edges of a
network (or graph), with particular transmission conditions at the nodes (or vertex-
es) of the graph (please see [12, 14] for the usual terminology in graph theory). To
cite only a few representative examples, see [26] for the case of an elliptic operator
in a ramified domain, [30, 31] for the Helmholtz equation in a network seen as a
limit of a two-dimensional thin domain, or [1] for the resolution of the Hamilton-
Jacobi equation. Respective problems are typically referred to as problems posed
on quantum graphs, see [11].

The works that inspired the present article concern the modeling of the respira-
tory system [23]. To a first approximation, the human lung can be seen as a network
of many small tubes (the bronchioli) inside which the air flows. In some models
[23], the tubes are assumed to be thin enough so that the air pressure is constant
in each cross-section: as a consequence, each tube can be represented by a (1D)
edge of a graph. In addition, to take into account that the number of bronchioli is
very large, the bronchioli network is modeled as an infinite tree with some fractal
and self-similarity properties (as defined in the reference monograph [22]). Finally,
one models the air flow by solving the Laplace equation in such a network (which
includes implicitly nodal transmission conditions). The infinite nature of the tree is
indeed the main source of difficulty from both mathematical and numerical points
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of view. In particular, to complete the model, one needs to impose some "boundary
condition at infinity" whose precise meaning requires to work with the weak formu-
lation of the problem and an adequate functional framework, as explained in more
detail later in the paper.

Our motivation was to study the propagation of sound in such a structure. This
is important in applications since sound propagation in the human lung can be used
for the detection of some pathologies of the respiratory system [27, 32]. Therefore,
we have to study the wave equation (in short 9?u + Au = 0, where A is a second
order differential operator along the tree), instead of the Laplace equation. One of
the particularities / difficulties of our model is that we need to consider a weighted
wave equation, in order to account for the fact that the bronchioli have different
thicknesses. This model can be justified by an asymptotic analysis with respect
to the small transverse dimensions of the bronchiolar tubes (see [18, 21]). From
the physical point of view, such a model is somewhat unrealistic in the sense that
it assumes that the boundaries of the bronchioli are rigid, neglecting the interac-
tion with the parenchyma, which is the "elasto-acoustic" domain inside which the
bronchioli network is embedded (see for instance [13] for the modelling of sound
propagation inside the parenchyma, or [28] for the coupling issue, in the context of
the air flow modelling). Thus, from the point of view of this particular application,
studying this model has to be seen as a first step towards a more realistic modelling.
Moreover, as we shall see in this paper, this "simple" model already raises exciting
and challenging questions, from both mathematical and numerical points of view.

In particular, as far as numerical computations are concerned, the main source
of difficulty is the infinite number of edges in the tree. Thus, we need to address the
problem of truncating the computational domain to a finite subtree, which raises
the question of the identification of the boundary condition [15] to be put at the
artificial extremities of the truncated tree. This is the main motivation of this
work. As we are going to see, we are able to give an answer to this question under
the assumption that, after a certain generation, the subtrees are self-similar. It is
worthwhile mentioning that the same type of questions was considered in a series
of papers by Y. Achdou, N. Tchou and their collaborators: in these works, they do
not study fractal trees but (particular) domains with a fractal boundary. In many
papers they treat the Laplace operator [5, 6, 7], but also the time harmonic wave
(Helmholtz) equation [3, 2, 4], for the solution of which they propose a particular
iterative algorithm.

As a matter of fact, applying the Fourier-Laplace transform equation to the
wave equation leads to study a family of Helmholtz equations parametrized by the
frequency. This is the point of view that we shall adhere to for the construction of
transparent boundary conditions. This approach emphasizes the close link between
the properties of the solution of the wave equation and the spectral theory of the
underlying elliptic operator A. Such a theory has been extensively studied in the
literature when A is the Laplace operator (see e.g. [36], [23]). However, those
results concern only a special case of non-weighted Laplacians, and thus cannot be
directly applied to our weighted "operator" A. On the other hand, an eigenvalue
problem for the Laplacian with weights was considered in [24]; nonetheless, the
problem setting is quite different from ours and does not seem easily adaptable to
the problem we consider. For other related problems, in particular, properties of
Sobolev and L? spaces on trees please see [25, 35, 34]. Let us finally remark that
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some properties of weighted spaces on infinite graphs were studied in [16], however,
in the context of the discrete Laplacian and respective energy norms.

The paper is organized as follows. In section 1, we provide a geometrical and
functional framework for studying wave propagation problems defined on infinite
trees. In particular, we define weighted Sobolev spaces on such trees, which allows
to formulate rigorously the Dirichlet and Neumann problem on a tree, and to obtain
the corresponding well-posedness result for the time-domain wave equation. Next,
we discuss the question of the construction of transparent boundary conditions for
truncating the computational domain to a finite tree. Such construction is based on
a use of the Dirichlet-to-Neumann (DtN) operator. Finally, we recall some classical
results about the well-posedness of the Helmholtz equation for complex frequencies,
as well as the representation of the solution to the Helmholtz equation in the case
when the resolvent of the Laplace operator is compact.

In section 2, we define a notion of a self-similar p—adic weighted tree. In this short
section we introduce specific notation, which we will use throughout the paper. Sec-
tion 3 is dedicated to various properties of the Sobolev spaces defined on self-similar
p-adic weighted trees. Sections 3.1, 3.2 are devoted to a particular class of trees, for
which prove the existence and continuity of a trace operator at infinity (section 3.1)
and characterize its image and kernel (section 3.2). This operator is important for
understanding the distinction between the Dirichlet and Neumann problems for this
class of trees. This question is treated in complete detail in section 3.3. For the
convenience of the reader, the summary of the results of sections 3.1-3.3 is given in
section 3.4. Finally, in section 3.5, we study the crucial question of compactness of
the embedding of Sobolev spaces, which governs the nature of the spectrum of the
Laplacian and implies the meromorphicity of its resolvent.

Section 4 is dedicated to the analysis of the properties of the solutions of a family
of Helmholtz equations parametrized by frequency. In particular, in section 4.1 we
introduce the notion of quasi-self-similarity for functions depending on frequency,
and show that on self-similar trees the solutions of the Helmholtz equation are quasi-
self-similar. In section 4.2 we consider a particular case of the Lapace equation, for
which the solutions are self-similar and can be obtained in explicit form.

Section 5 is devoted to various characterizations of transparent boundary con-
ditions (the DtN operator) for the Helmholtz equation on self-similar trees. First
of all, based on the results of the previous sections, we show the meromorphicity
of the symbol of the DtN operator in section 5.1. In section 5.2 we demonstrate
that it satisfies a certain non-linear equation. We prove in particular the uniqueness
of the solution to this equation under appropriate conditions. Next, section 5.3 is
dedicated to certain positivity properties of the symbol of the DtN, related to the
stability of the transparent boundary conditions in the time domain. In section 5.4,
we provide an algorithm for the evaluation of the symbol of the DtN for complex
frequencies. The numerical results obtained with the help of this algorithm are
given in section 5.5.

In section 6 we propose an approximation of the DtN operators that stems from
the truncation of the Taylor series for their symbol. We thus obtain first- and
second-order transparent boundary conditions, for which we prove the stability.
Their efficiency is validated with the help of the numerical experiments.

Finally, section 7 is dedicated to the open questions and possible extensions of
this work.
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1. Description of the problem.

1.1. The wave equation in a graph. In this work we will conciliate the view of
the graph as an algebraic structure with its vision as a geometric object, see [11].
A graph G is defined by a set of vertices V := {M,, v € V}, seen geometrically as
a subset of R?, d = 2,3, and a set of edges € := {¥.,e € £} C VYV x V, with V, &
being countable sets. We consider an oriented graph, i.e. two vertices (M,,, M,) are
connected by at most one edge 3. identified to the segment [M,,, M,/] C R%. This
implies M, # M,,. This edge is given an orientation via an abscissa se € [ae, be]-.
The origin M, corresponds to s, = a. € R, the end point M,  corresponds to
Se = be i=ae + | My — M,|, and also

Ze == {Mv + (be - ae)il(Mv’ - Mv)(se - ae)a Se S [ae; be]}-

By definition, M, is the origin, and M, is the end. This point of view allows to
identify the algebraic object G with the geometric structure

G=J=.

ec&
For any v € V, we denote by &, the subset of £ corresponding to all edges adjacent
to M,:
Eyv={ec &/ M, cX.}. (1)
We assume in the following that &, is a finite set for all v. We use the notation s
for the collection of the s;’s, which can be seen as a generalized coordinate along G.
Let us finally remark that the dimension d does not play any role in the analysis
of the problem considered in this article, but, as we will see in section 1.2, it occurs
when interpreting the model studied in this work as a limit model defined in an
open set in RY.

Definition 1.1 (Weight). A weight is a function p : G — R} such that, on each
edge Y., i is constant and takes the value .

Remark 1.2. Choosing the weight function p constant along each edge is not
essential but simplifies the presentation.

Remark 1.3. We will denote a graph G, to which the weight u is assigned, by
(G, p).

Definition 1.4. [Wave equation] A solution of the weighted wave equation on G,
with weight 4, is a function u(s, t) : G x R* — R satisfying, with u. = uly, ,

Ou, — 0?u, =0, on B, xR, Veck, (2)
and at each node M, of G, which is an intersection of at least two edges, 1i.e.
#E 22,

Ue(My,t) = uer (My,t), ¥ (e,e') €EF (i)

Z Ev,e e asue(Mv, t) = 07 (”) (3)

e€&,
where p. is given by definition 1.1, and ¢, . depends of the orientation of X.:

1

, if v is the origin of e,
Eve = o (4)
—1, if v is the end of e.
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Note that (3)(i) is nothing but the continuity of w at M, while (3)(ii) is a
generalized Kirchhoff condition.

Equations (2) and (3) can be collected in a single equation, using a (very intuitive)
notion of distributional derivative along G, as follows

poiu — 0s(pdsu) =0, on G x R, (5)

where p : G — R is a piecewise constant function that takes the value u, along
Y. This will be made more precise in the next section in the case where G is a
tree.

1.2. A physical justification of the model (3). One of the particularities of the
model (3), at least with respect to more standard cases, is the presence of the weight
function p. As a matter of fact, this weight function occurs when considering the
wave propagation in a ‘thick’ graph G°, which we can define as follows based on a
given finite graph G:

1
==l mi= U fe+nd BOO
ecf €T,
where € is a finite set, and B(0,6) is the open ball of R? of center 0 and radius
0. One sees here that the coefficients p; are characteristic of the geometry of the
“thick graph” G°. Then u, which solves (2), can be seen as the limit of the solution
u® of the d—dimensional acoustic wave equation (with velocity 1) in G° satisfying
Neumann conditions on dG° (see [21, 30, 18] for various justifications):

02’ — Au® =0in G°, 9,u’ =0 on dG°.

In [18], it is explained how the conditions (3) can be improved to get a more accurate
model with respect to d.

FIGURE 1. Left: the limit tree G. Right: the thick tree G°.

1.3. Infinite trees. In the following, we consider a particular case where the graph
G is an infinite rooted oriented tree, as illustrated by figure 2. The notation and
terminology that we use below may deviate from a classical notation/terminology
used in the graph theory, but are better adapted for our purposes.

First of all, let us provide an auxiliary definition.

Definition 1.5. [Child/parent of an edge and of a vertex| Given two oriented edges
Y = [M,, M] and ¥/ = [M,’, M'], we will call ¥ a parent of ¥’ (or, equivalently, >’
is a child of X0) if M = M,’. Accordingly, we shall say that the edge ¥ is a parent
of the vertex M, and ¥’ is a child of the vertex M.
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Definition 1.6. [Rooted graph and a root] We shall say that a graph T is rooted
if it has a unique edge that has no parents. This edge is called root and denoted X.

Definition 1.7. [Tree] We will call a tree a rooted connected graph 7 that has no
cycles (i.e. every two vertices are connected by a single path).

The above definition is equivalent to saying that

e cach edge (apart from the root) has only one parent;

e except from the origin of the root, each vertex has one parent.
Definition 1.8. [Generations of a tree] In a tree, we define a generation G, n € Ny,
as a union of edges of this tree as follows:

e the generation G° = {Z};

o the generation G* is a union of children of the edges belonging to G¥~1, k > 1.
Definition 1.9. [Infinite trees| If for all n > 0, G™ # 0, such a tree is called infinite.

Evidently, an infinite tree, as a geometric object, satisfies
T - U gkv (6)
keNp

and in such trees each vertex M,, v € V belongs to at most two successive genera-
tions. In what follows we will be using the notation G™(7) instead of G", to indicate
that we are looking at the n-th generation of the graph 7. A typical example of
infinite trees in R? is provided in figure 2.
With the above definition, we can introduce the following notation:
- we will denote by J(n) 4+ 1 the number of the edges of the n-th generation
g"(T);

- & has a natural numbering with two indexes e = (n, j), with n € N describing
the numbering of the generation and 0 < j < J(n) with j corresponding to
the edge numbering inside G (T ):

(n)
gy (T) = U Y, ;- In particular, with this notation, ¥y ¢ = X. (7)
=0

- for each n € N, 0 < j < J(n), we shall write ¥, ; = [M}

n,57

My ;-
Let us define the set of children indices of a given vertex M, ;:
Cn,; =1{k€0,J(n)]/ Xpni1 is a child of M, ;}. (8)
According to (8) and to the orientation of the tree, the Kirchhoff condition (3)(ii)
at M, ; can be rewritten, with u, ; = uls, ;, as
fim i Ostin, j(My 5) = > ping 1 Ostin 1 k(Mi j), (9)
k‘ECn,j

where p, ; is the weight associated to the edge X, ;.
For convenience, we denote the value of a continuous function w in a vertex M, ;

by
un’j = u(Mn,j). (10)
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I 4

n— oo

S =N w P~ (S RepRN |

n=>2

n=>0 n=1
FIGURE 2. General tree. We numbered here the edges. We plotted
in red the subtree 73 4 and in blue the truncated tree T

Definition 1.10. [Truncated tree] We denote by 7™ the truncated tree at genera-
tion n, i. e. the union of the m-th generations G™(T), for m < n (see figure 2 for

Th).

Definition 1.11. [Subtree| For any (n,j) € Z, we denote by 7, ; a subtree with
the root ¥, ;, that constitutes the largest connected subgraph of 7 \ T"~1 that
contains M, ; (and none of the M, , for k # j).

For an illustration of the notion of the subtree see figure 2 for 73 4. It is not
difficult to notice that 7'\ 7" is the union of the subtrees 7, ; for 0 < j < J(n).

One of the goals of this work is to study the wave equation on such infinite trees.
Of course, in this case the wave equation needs to be completed by a boundary
condition at the root M, of the tree, for instance the Dirichlet entrance condition
(f(t) represents the source term)

U(M*,t) = f(1), (11)

by the boundary conditions on the leaves of the tree (which we will discuss in a
moment), by initial conditions, for instance homogeneous initial conditions

u(-,0) = du(,0) =0, inT, (12)

but also, in general, by a "boundary condition at infinity", which is trickier to define
and will be made precise in Section 1.5.
In the following we shall very soon restrict our discussion to compact trees.

Definition 1.12. [Compact tree| Let 7 be a tree. A path of 7 is by definition a
connected (possibly infinite) union of edges of 7. By definition, the tree is compact
if there exists a uniform bound for the lengths of all paths of 7. This implies in
particular that 7 is included in a compact set of R?, for some d > 1.

In what follows, we will study only the following subclass of infinite trees.

Assumption 1.13. A tree T is compact and has no leaves.
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1.4. Functional spaces on a weighted tree. Let us first consider a very degen-
erate case of an infinite tree. Given L > 0, p = 1, a € (0,1), let us set g = 0
and

n
Tna1 =L (1 —a) Z (1—-a™), neN,
=0

that form a strictly increasing sequence of real numbers z,, — L, as n — oo (see
figure 3 for a = 0.5). We can construct a corresponding “1D tree”, defined as follows:

J(n) = 07 Mn = Tn+1, Z”n,o - [mn7$n+1]7 V n > 0

In this case, each generation G"(T) is reduced to the segment [z, %,+1], and we

Zo T T2 T3 T4

I
|
0
FIGURE 3. “1D tree” corresponding to the case a = 0.5.

thus have
+oo

T= U [xnaxnle} = [OaL)v (13)
n=0

It is then easy to check that the wave equation (2, 3) on such a tree is nothing
but the 1D wave equation along (0,L). Indeed, we need to equip it with proper
boundary conditions, in the root vertex xg, and at the ’infinite’ boundary of the
tree © = L. The natural space in which, for each ¢ > 0, finite energy solutions u(., t)
of (5) live, is the Sobolev space H'(0,L). Our goal in this paragraph is to define
the equivalent of such a space in a weighted infinite tree, as it was done in similar
situations in [23]. In the following, when not explicitly mentioned, the functions
we consider can be real- or complex-valued, depending on the context.

Definition 1.14. [Functional spaces| Let (T, u) be a weighted tree.

1. Lebesgue space of square-integrable functions. We denote by LZ(T) the set
of functions u : 7 — C having a finite Li(’T)—norm, namely

J(n)

2
Hu”Li(T) = / ‘u|2 Z Z U’m] ||u||L2 w_) < 400 (14)

n>0 =0

2 (T)

2. Sobolev space. We denote by H}L(T) the space made of continuous L

functions u : 7 — C having a finite H}L(T)—semi—norm, namely

J(n)

2
liger = [l = 53 im0l , <o (1)

n>0 j7=0

and the H/i(T)—norm of u is defined by

2 2 2
”uHHt(T) = llulltz () + luli o) - (16)
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All the above spaces are then obviously equipped with a Hilbert space structure
and will provide an adequate framework for studying the wave equation on 7.
Notation. In what follows, for any (u,v) € Li (T) we shall denote

J(n)

/ puv = Z Z Hn,j / Un,j Unj ds,  Unj = U‘En,_7'7vn7j = U|En,j' (17)
T

n>0 j=0 Tin,j

1.5. Dirichlet and Neumann initial boundary value problems. We are now
in position to provide a rigorous definition of the problems that we are interested in.
Let us first explain our approach for the case when T is the degenerate tree (13),
i.e. T =10,L). In this tree z = L would correspond to “the boundary at infinity”
of the tree. As it is well-known, there are two standard homogeneous boundary
conditions at © = L that can be associated with the 1D wave equation along (0, L),
namely

Osu(L,t) =0 (Neumann condition), wu(L,t) =0 (Dirichlet condition).

These conditions are perfectly reflecting: in particular, they are energy preserving
in the absence of the source term. We consider below the generalization of these
boundary conditions for a general infinite tree 7. For this, we shall pass through the
notion of weak solution of the wave equation that reduces the distinction between
Dirichlet and Neumann conditions to the distinction between the functional spaces
in which the solution is searched and the test functions live. Since the Dirichlet
condition is systematically considered at the entrance of the tree, see (11), the
denomination Dirichlet or Neumann only refers to the condition at infinity. We
begin with the Neumann condition.

The Neumann initial boundary value problem (P,). Provided the Hilbert
space

Vo={veH,(T)/v(M,)=0}, (18)
which is a closed subspace of HL(T), the Neumann problem (P,) reads
Find u € C?(0,T;L2(7)) N C (0, T5HL(T)) s t. u(M,,t) = f(¢),

u(.,0) = dyu(.,0) =0 and (Pa)
d2

—/ uu(o7t)v+/ wOsu(,t)0sv =0, Vv e V.

i Jr T

In the case of the degenerate tree (13), Vi, = {u € H'(0,L) / u(0) = 0}. For
the Dirichlet condition, one should replace in the weak formulation V,, by V, =
{u € V4 / u(L) = 0}, which is also characterized as the closure in V;, of compactly
supported in (0, L) functions of V,,. We shall adapt this approach to define the
corresponding problems in the case of an infinite tree. We first define the subspace
of H}L (T), which consists of functions that “vanish at infinity” in the following way.

Definition 1.15. Let (7, 1) be a weighted tree.
1. H}L,C(T) is the subspace of H}L(T) of compactly supported functions, i. e.
H}L’C(’T) ={ve H}L(T) such that INeEN /v=0in T\7TV}. (19)
2. H}MO(T) the closure of Ht’C(T) in Hlll(T):

I H.(T)

H,,0(T) = H,, o(T) (20)
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Remark 1.16. As one can expect, in certain cases, the space H}L,o(T) can be related
to the closed subspace of Hi(’T), whose "trace at infinity" (defined in a certain way)
vanishes. This will be made more precise in the case of a p-adic self-similar tree in
section 3.2.

The Dirichlet initial boundary value problem (P;). Provided the Hilbert
space
Vo ={v € H,,(T) /u(M.) =0}, (21)
which is a closed subspace of HLO(’T), the Dirichlet problem (P;) reads
Find u € C*(0,T;L3(T)) NC* (0, T5H,, o(T)) s. t. w(M,,t) = f(t),
,0) = du(.,0) =0 and
u(.,0) = dyu(.,0) an (P)
d2
—/ ,uu(~,t)v+/ wOsu(-,t) 0sv =0, Yv € V.
dt* Jr T

Let us state, without proof, a classical result about problems (P,) and (P,).

Proposition 1.17. Let T € RS, and let f € C*([0,T)), with f(0) = f(0) = 0.
Then, the problem (Py) (resp. (P»)) admits a unique solution.

When one considers the problem of the numerical approximation of (P,) and
(P»), one immediately faces the question of truncating the tree after a finite number
of generations and constructing corresponding transparent or absorbing boundary
conditions, which is the main objective of the present paper.

1.6. About the construction of transparent boundary conditions. Numer-
ically, a natural objective would be to restrict the computation to the solution
of (Py) or (Py) to a truncated tree 7™ by imposing some (transparent) Dirichlet-
to-Neumann (DtN) condition at each end point M, ; of 7™. This can be made by
combining the Kirchhoff condition (9) with the use of DtN operators A,,11 j associ-
ated to each of the subtrees {7;“,;67 ke Cn,j}. More precisely, ¢(t) — Apt1.x @(t)
is the DtN operator

Anyip () = =05ty 1 (M j, ), (22)

where ﬂiﬂ’k(-,t) : To+1,k — R is defined on the subtree 7,41 as the unique
solution of the Dirichlet (or Neumann) problem (in the sense of section 1.5) of the
wave equation, posed in the subtree 7,41 5, with the Dirichlet condition at the root
vertex of this tree M, ; ), (M j,t) = ¢(t).

The transparent condition at the end point M, ; then relates wu, ;(My, ;,.) to

Bsunyj
(M, j,.) according to
fin,j Ostin,j(My j, ) + Bn,j tin,j(Mnj, ) =0, (23)
where
Bn,j Un,j (Mn,ja ) = Z Hn+1.k An+1,k un,j(Mn,j7 ) (24)
keCn j

Since the wave equation has constant coefficients in time, it is clear that A, 41 j is
a time convolution operator. More precisely, using the Fourier-Laplace transform
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in time
o0
g(w) = (Fg)(w) = / g(t)exp(wt)dt, weC, Imw >0, (25)
0

we get a relation of the form
(FAn1kp) (W) = Antr k(W) Fo(w). (26)
The symbol A, 41 x(w) is given by
Ani1 k(W) i= =0t i1,k (M j,w), (27)

where Upy1 (-, w) is the solution of the (Dirichlet or Neumann, we omit for sim-
plicity the condition at infinity) Helmholtz problem

—pw? Up1 (s w) — Os (U Ostint1,6) (- w) =0, € Tny1 ks k € Cnj,
(Pu)

'Un+1,k(Mn,j; W) =1.

At this point, we have not advanced much, since the computation of the symbol
A, 41,5 requires solution of a subtree problem which is as difficult as the original
problem! However, this problem can be simplified when the tree 7 admits, starting
from the n-th generation, a certain structure. In particular, we shall investigate in
this paper trees with such a structure, namely, fractal trees [22], for which, at least
for n large enough, all subtrees (7, ;, ) are self-similar weighted trees, as defined
in section 2.

We finish this section by some results on the Helmholtz equation in general
trees, in particular, the well-posedness and the meromorphicity of the solution with
respect to the frequency for some particular classes of trees.

1.7. Helmholtz equation in general trees: Basic results. We consider the
following problem on a weighted tree (7, ). Given a complex frequency w € C, we
look for the solution u : 7 — C to the Helmholtz equation with non-homogeneous
Dirichlet data at the entrance of the tree

2 .
—pwu — Os(pOsu) =0 in T,
completed, like the wave equation in section 1.5, by a homogeneous (Dirichlet or
Neumann) condition at infinity. More rigorously, using the functional framework
of section 1.4 and the Hilbert spaces V, and V; introduced in section 1.5 by (18)
and (21), we can define the Dirichlet and Neumann (at infinity) problems as follows

Find u € H}L(T) / w(M,) = 1,such that

Pnw
/uasuasv—wz/uuvzo, Yv € Vq, (Prse)
T T

Find u € Hi,o(T) / u(M,) = 1,such that

Paw
/u@suasv—uﬂ/uuvzo, Yo € V. (o)
T T
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1.7.1. Existence and uniqueness results. For these two problems, we can immedi-
ately state the well-posedness result for non-real frequencies.

Proposition 1.18. For each w € R, (Py.,) (resp. (Pa.)) admits a unique solution

un(-,w)  (resp. up (-, w)). (29)

Proof. 1t is a simple application of the Lax-Milgram theorem left to the reader. [
Since p is real-valued,

fora=1,0, Vw&R, ug(,—w)=1us(-,w), us-,@) =ua(-,w). (30)

A complementary point of view consists in introducing the two unbounded positive
self-adjoint operators in H := Li(T), namely A, and A,, associated to (Ps,)
and (P, ). Namely, given a sesquilinear form

a(u,v) ::/uasu%,
T

we define these operators as follows:

D(Ay) = {u € Vy /3 C > 0 such that |a(u,v)] < C [ollez (), Vv e Va}, a1
Yue D(Ao), (Aau,v)Li(T) = a(u,v), Yove Va; ( )
D(A,) = {u € Vu /3 C > 0 such that |a(u,v)| < C ||UHLﬁ(T)aVU € Vn}, 9
Yu € D(Ay), (Anu,v)Lﬁ(T) =a(u,v), VoveV,. (32)

It is easy to check that, defining

~2
H,(T) = {v € Hi(T) D un; € H3(E,,), 0< 5 <p" —1, n >0, and satisfies (33)}7

oo pt—1

SN [ uleten <o (3)

n=0 j=0 S
the domains of the operators Ay, A, are given by
D(Ay) = {u € Vs Ju € H.(T), and (9) holds}, 1)
D(Ay) ={ueV,/ue ﬁi(TL and (9) holds},

and thus D(Ay) € D(Ay). These operators are positive definite since
VueVy, alu,u)= / wlosul?* and a(u,u) =0=u=0 (u(M,)=0). (35)
T

The solutions to the problems (P, ,,) and (P, ) can be expressed via the resolvents
of the operators defined above as follows. Let u, be a function supported in 3,
u,(M,) =1 and u, € H*(Xg ). With

fr(w) == p ' [0s(nosu,) +w? pu, | € LZ(T), (36)
the functions u, (-, w) and uy(-,w) are given by
un(,w) = up + (.An — W) (W), ol w) =u, + (.Aa — W) fu(w). (37)

From standard properties of the resolvent of self-adjoint operators [19, 29], we de-
duce the
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Proposition 1.19. The functions w — up(-,w) and w — uy(-,w) are analytic
functions in C\ R with values in D(Ay) and D(Ay) (equipped with their graph
norm) respectively.

1.7.2. The compact case : meromorphicity with respect to the frequency. Let us
consider the case when one of the two following assumptions holds true:

(0) The injection V;, C Li(T) is compact.

(n) The injection V,, C Li(T) is compact. (38)

(Compactness) {
Of course, (38)-n is stronger than (38)-0. Both assumptions rely on properties of
the tree and the weight function u. For instance, in the case where p = 1, it is
shown in [36] that the compactness of the tree (cf. definition 1.12) is a sufficient
condition for (38)-n and (38)-0 to hold. We shall investigate this question in more
detail in the case of fractal trees in section 3.5.

The properties (38)-n, (38)-0 play an important role in this article. If (38)-n
(resp. (38)-0) holds, the operator A, (resp. Ap) has a compact resolvent, and
thus its spectrum is a pure point spectrum with strictly positive eigenvalues (here
repeated with their multiplicities):

(B8)n = o(d) = (@)’ >1}, Wi >wp>0,  lim W = oo,
(38)0 = o(A) = {(@p)n>1}, Wp™ >wp>0,  lim wf=toc.

(39)

Remark 1.20. Let us remark that w = 0 is not an eigenvalue of A, and A,. This
can be shown by contradiction. If w = 0 were an eigenvalue and v an associated
eigenfunction, then this would imply, in particular, that a(u,u) = 0, and hence
0su = 0. Since u(M,) = 0, necessarily, u = 0.

The corresponding eigenfunctions, which form a Hilbert basis in Li(T), are
{wwou7%emmLAw%wmy$ @)
{go?,n} 1}7 Qog GD(AD)a AD @g: (wg) (,Og

In particular, under the assumption (38)-n (correspondingly, (38)-0), the zero-
frequency Neumann (Dirichlet) problem is well-posed. This result is classical (hence
we provide no proof here) and relies on the Lax-Milgram theorem combined with
the Poincaré inequality for V4 (V4), the latter valid because of the compactness
assumption and the fact that w = 0 is not an eigenvalue of A, (Ay), see remark
1.20 (see e.g. [37, Theorem 2.6]).

Lemma 1.21 (Poincaré inequality). If (38)-n (resp. (38)-d) holds, then
HUHLi(T) < O|\8su||Lﬁ(7), for allu eV, (resp. u € V3). (41)
The well-posedness result then reads.

Lemma 1.22. If (38)-n (resp. (38)-0) holds, the problem (Py.,) (resp. (Py.w)) for
w =0 admits a unique solution denoted by uy(.,0) (resp. uy(.,0)).

We will use the above lemma and (37) to express the solution to the (Dirichlet
or Neumann) Helmholtz problems in the basis of the corresponding eigenfunctions.
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Proposition 1.23. If (38)-n holds, the function un( w):C>w— H u(T) is an
even meromorphic functwn in C with poles {£wl,n > 1}. It is given by

2

oy n s —
un('? = Un + Z w )2 2 (pnv Cnh = S‘)On(M )(Wn) 2. (42)
n
Similarly, if (38)-0 holds, uy(-, ) Cow— H o(T) is an even meromorphic
function in C with poles {xw¥,n > 1}. It is given by
— WQCD n n n\—2
Uy (W) = ua(-,0) + Z m ©o ¢y = Osipy (M) (wy) = (43)
n=0 2

Proof. We will show the proof for u, (-, w), with the proof for u, (-, w) being verbatim
the same. First, let us consider the function

U= Un (-, w) — un(-,0), u € Vq.
Defining
fo=p7 " (05 (uOsun(., 0)) + w’pun(.,0)) = w?un(.,0) € Li(T),
we deduce that
u=(An — w2)_1 fn, hence un(-,w) = ua(,0) + w? (An —w?) " ua(.,0).  (44)

Next, we expand uy(.,0) into a series of the eigenfunctions of A,. For this we
remark that

(’U/n(.7 O)a (pﬁ)Li(T) = - (w:‘f)_2 (uﬂ('7 0)7 M_18S(M88@:))Li(7—)7

where we use that ¢ is an eigenfunction of A,. Thus, integrating the above by
parts and using the fact that u,(.,0) satisfies (Py ) with w = 0, we obtain

(uﬂ('? 0)7 (Pn)Li(T) = (wn) asSOn (M*)uﬂ<M*7 0) = (wn) Bsgon (M*)
Thus, the desired result follows by inserting the expansion of u,(.,0) into (44). O

-1

Remark 1.24. The series (42) (resp. (43)) converges uniformly in w on any com-
pact subset of C\ {£w{,n > 1} (resp. C\ {£wd,n > 1}), in D(Ay)-norm (resp.
D(Ay)-norm).

2. Self-similar trees. In this section, we introduce a notion of a self-similar
weighted p-adic tree. We start with the definition of a non-weighted p-adic tree.

Definition 2.1. [p-adic tree] A tree T is p-adic if every edge of T has precisely p
children.

Remark 2.2. Any p-adic tree is infinite. The number of edges in the n-th genera-
tion of a p-adic tree is p”, i.e. J(n) =p™ — L.

Later on, we will need to provide a numbering for edges and vertices of a p-
adic tree. For this we will use the p-adic representation of integers Let 7,
{0, 1,...,p—1}. Given (i1, i2,..., in) € I}, one denotes by (i1iz - in), an mteger
(see [20, pp. 22-25])

(irdz - Z ijp"T (45)

The map ® : (i1, i2,..., in) — (i1iz-- n)p deﬁnes (for all n) a bijection from Z'
into {0, 1, ...,p™ — 1}. The role of this notation and its meaning will become clear

later. Now we have the ingredients necessary to define a self-similar p-adic tree.
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Definition 2.3. [Self-similar p-adic tree| Let a root segment be X ¢ = [M,, My o]
(where without loss of generality we assume that M, is the origin). Let {oy,0 <
i<p—1}in R? be affine direct similitudes, defined as

Ji:TiOhiO(")i, 0<Z<p—17
where

e 7; = 7 is the translation (common to all similitudes) by a vector M, M, o;
e h; is a homothety with the center in the origin of the ratio a; (also called a
ratio of the similitude): h;(z) = a;x, x € RY;

e O; is a rotation (all the rotations ©; are assumed to be distinct).
Let additionally these similitudes satisfy the following assumption: for all £,k € N,
il, ey
10y J1y---Jk €4{0,...,p— 1},

031045 -+ .04, (M()’O) =04,04,...0j, (MO’()) if and only if

k=/¢and (i1,...,%) = (J1,-- - Jk)- (46)
Then a tree T, defined as in (6), whose generations are given by
p—1
G ={%00}, G"=Uam@ ", k=1, (47)
i=0

is called a self-similar p-adic tree.

The assumption (46) ensures that the object constructed in the definition 2.3
defines a p-adic tree (in particular, the absence of cycles in such a graph, and the
fact that it is a connected object), see lemma 2.4.

By construction, for a self-similar tree as in definition 2.3, any edge of G" is the
result of the product of n similitudes {o;,,1 < k < n} applied to the root edge
Y0,0- In what follows, we chose to number the edges {%,, ;,0 < j < p” — 1} in the
following order (see also figure 4):

Zn,j = Jn,j(zo,o)a j = Oa s apn - 17 (48)
where
On,j 1= 0j, 04, 05, for j=(jij2-jn)p (49)
Obviously oy, ; is a similitude. Moreover,
Onj = Tn,j ©hnj 0 On; (50)

where 7, ; is a translation by vector [M,, M, ;], O, ; is the rotation ©,,; = O,
0Oj,...0;, and h, ; is the homothety h,, ; = hj, hj, ---h;, . The ratio o, ; of o, ;,
which is also the ratio between the lengths of ¥, ; and ¥¢ g, is thus

n,j = Qjy @y = -, for j = (G1ja- jn)p- (51)
By construction, X, ; = [M ;, My, ;| oriented from M ; = 0, 0j, -+ 0j, (M) to-

wards anj =04, 04,05, (MO,O)~
The fact that definition 2.3 does construct a connected p-adic tree is a conse-
quence of the following lemma.

Lemma 2.4. Let G", n > 0, be defined in (47). Then T = |J G" is a p-adic tree.
neN

Moreover, p edges of the generation G"! that are connected to ¥, ;, namely

{Znt1pj4i 0<i<p—1}
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are numbered in a consecutive way, from pj topj +p— 1.

Proof. This proof is left to the reader. In particular, one can use the assumption
(46) to show that the constructed graph has no loops. In order to show that it is
connected, one can employ the numbering (48). O

For the clarity of some proofs, we will need following notation:

o we shall distinguish an integer j in its p-adic representation j = (j1j2 - jn)p,
and the corresponding sequence of integers jijs - - - j, which we will denote by
the bold letter j = j1jo - - - jn. The value of n in this representation is implicit
and will be clear from the context each time it will be used.

® 3 =X joj, = Xnj, Uj = Ujj...j, = Uy and, similarly, the nodal values,
cf. (10), uj = wj,..j, = Un;.

o with k1, ko,...,kn € {0, 1,..., p— 1}, defining ¢ = (j1j2 - - - jnk1ka - - km)ps
Y kg ko = Bntm,ls Ujky -k = Untm, b5 Wik, -k = Untm, 0

From the definition 1.11 of a subtree, it is clear that, a subtree 7;; of T being
defined by definition 2.3, can be identified with

Ti=0i(T), VO<i<p-—1,
and that, as a consequence,
p—1
T =Yo0U (] o:(T). (52)
i=0
In fact, the above property can be seen as an alternative to definition 2.3.

Definition 2.5. [Reference self-similar p-adic tree| Given a self-similar tree 7T,
constructed with the help of similitude transformations {o;,7=0,...,p— 1} asin
definition 2.3, we will call a reference tree a self-similar tree 7,, whose root X o
is the segment [0,1] with 1 := (0,---,0,1)€ R% and which is constructed as in
definition 2.3 based on the similitude transformations {o;, i =0,...,p — 1}.

For the reference tree, the length of ¥, ; is v, ;. Moreover, any tree obeying
definition 2.3 is obviously obtained from the reference tree 7,. by applying a scaling
of ratio £ (the length of the root edge). This means that the most important
geometric properties of any self-similar tree are encoded in the p—uplet

a = (ag,a2,...,0p_1) € (Rj)p. (53)
When convenient, we shall denote T = 7, to indicate that we consider a self-similar
p-adic tree whose geometry is associated to the p-uplet «.
Compact self-similar trees. The reader will easily remark that

T = Ta is compact (cf. definition 1.12) if and only if |ar|e := JJhax ;< 1.
P~
(54)

Definition 2.6. [Self-similar weighted p-adic tree| Let T be a self-similar p-adic
tree, and let p be a weight function on 7. Then (T, pu) is a self-similar weighted
p-adic tree if there exist p positive numbers {u; }ogi<p such that (with an obvious
abuse of notation defining o;(s) as the abscissa of o;(X) if s is the abscissa of X))

too =1 and p(oi(s)) = pip(s), s€T, 0<i<p. (55)
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In particular, we have
(1(8) = Bng == Hjilgy - Ky, along Bp i j = (g2 jn)p- (56)

A weighted self-similar tree is thus characterized by two p—uplets (o, ) €
(R)? x (RF)P, where pu = (uo,...,Hp—1). When necessary, we will denote the
corresponding tree Tq -

We shall often use in the sequel the following computational trick.

Proposition 2.7. Let (o, ) € (RF)? x (RY)P. For any ¢ € R,

iﬂnjv (Zﬂz ) . (57)

Proof. Taking all possible j in {0,...,p" — 1} is equivalent to taking all possible
n-uples (41,42, ...,Jn) € {0,...,p — 1}™. Then, using (51) and (56), we have

p"—1 p—1 p—1

Z Hon,j n,j Z Z Z Mg, & ]1 :uJ’z 32) "(.anagn)- (58)

71=0j2=0 Jn=0
The formula (57) follows then from the discrete version of Fubini’s theorem. O
Example : Regular and geometric trees. By definition, a self-similar p-adic

tree is called equilibrated or regular (according for instance to the terminology of
Solomyak in [36]) if there exists a € (0,1) such that

a=a, VOLK<i<p-—1.

We illustrate in figure 4 all the notions and notations introduced above in the case
of a symmetric regular dyadic tree, for which

d=2, p=2, a1=ay=1/2

and where ©; and O2 are the plane rotations of respective angles m/4 and —7/4.
A tree is called d-geometric when it is seen as the limit of a thick tree 7° in

FIGURE 4. Example of p-adic tree for p=2. Left: iterative con-
struction. Right: weight repartition.
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RY (constructed as G° in Section 1.2), in which the ratio between the transverse
and longitudinal dimensions of the edges are preserved along all generations. This
corresponds to the relation p; = a?‘l,v 0 < i< p-—1. A good illustration of a
symmetric 3-geometric dyadic tree is the human lung, as modelled e.g. in [23].

3. Sobolev spaces on compact self-similar trees. As discussed before, the
principal goal of this work is to provide a theoretical and numerical basis for ap-
proximating the DtN operator, cf. section 1.6. For this we need to understand the
following:

e whether the solutions to the problems (P,) and (P,) differ;
e whether (38)-0 or (38)-n holds.

The goal of this section is to answer these questions in the case of self-similar
trees. In all the derivations of this section, we will use the following simplifying
assumption.

Assumption 3.1. A tree (T, u) is a self-similar weighted reference compact tree
(and thus |a|e < 1, see (54)), which we denote for brevity by T .

All the results of this section are valid for compact self-similar trees, and some
of them hold for arbitrary, not necessarily compact, self-similar trees. This will be
stated explicitly.

3.1. Trace operator. In this section, we will introduce a notion of the trace at
infinity for functions in the Sobolev space H}L(T) On one hand, this allows to
characterize the solution of the Dirichlet problem, defined in a variational way in
(P»), by the Dirichlet condition at infinity. On the other hand, studying the trace
will help us to answer other questions, e.g. whether the solutions of (P;) and (P,)
differ.
Let us first define the “boundary at infinity” T's of the tree 7 as a segment [0, 1],
ie.
Iy :=10,1]. (59)
Next, we wish to define the trace at infinity of a function v € HL(T) as the limit
of the trace of the same function at the boundary of the truncated tree 7™. It is
constructed from the finite set of the values at each end point M, ;,0 < j < p"—1, as
a piecewise constant function on a very particular partition (mesh) of T's, namely:

—
r, = U [@njsan+1] (ETw), ano=0, anpp =1. (60)
§=0

To define intermediate values a,, ;, let us introduce the following quantity (which,
as we will see later, plays an important role in the analysis):

<g> :p;lg (61)

Then (the reason for the choice of this particular partition will be explained later),

— _ Hn,j / H - s n

Uno =0,  Gnjy1 = anj+ ~) s J=0,...,p" =1 (62)
Qn,, 5 (e

First of all, notice that using (57) with ¢ = —1, we recover a, ,»—1 = 1. Also,

when p;/a; is independent of j, (62) defines a uniform mesh of a stepsize p~". We

choose the partition like in (62), because, first of all, this choice ensures that the
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mesh {an41,;,0 < j < p" Tt —1} at the stage n+ 1 can be seen as a sub-mesh of the
mesh {a, ;,0 < j < p™ — 1} at the stage n. In this case a segment of the coarser
mesh is divided into p segments whose respective lengths are proportional to the
ratio p;/a;. This particular choice of the ratio is motivated by the proof of the
trace theorem 3.2. Moreover, it appears to be consistent with the existing works,
cf. [23]. To see how we obtain the finer mesh from the coarser one, let us introduce

) -1 p_1
i = <ﬁ> , 0<i<p-—1, sothat Z%:L (63)
i N i=0

Then the passage from step n to n + 1 is defined by the following (see also figure
5):
p—1

[an g an 1] = | [ant1piais @nst pjsiv | (64)
1=0
Antlpj = Gnjs  Gntlpjtitl — Onilpj+ri = Vi (Anj+1 = nj),

which leads, after some calculations, to (62).

Qn,j On,j+1
| | T
\ ] n
buj
Yilnj
L I I [ I I |
T T T T T T T 1 Fng1
Qnt1,pj + + At 1,pjtp

An41,pj+i  Ontl,pj+itl

FIGURE 5. Inductive construction of the mesh I',,

Next, for any n > 0, we define the trace map at a generation n, i. e. the end
of the truncated tree 7™. More precisely, we define 1,u € Po(T',,) C L®(T's) (here
Py(T,,) is the space of functions that are piecewise constant with respect to the
mesh T',,), as follows:

Tn(Z) ==y ; = u(My;), foraz€lanj,anjt1], 0<j<p"—1. (65)
Theorem 3.2. Assume that
o)
—)>1 66
(& (66)
Then, for any u in HL(’T), the following limit
Tooll 1= ngrfoo Tou  ezists in L*(Is), (67)

and the application T, defines a continuous trace operator from HL(T) into L?(Ts):
VueH,(T), lmoullrzmra) < Coo lullu:(r). (68)

Moreover,

H}L,o(T) C Kertoo ={u € Hi(T) / Toot = 0}. (69)
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Proof. Let u € HL(T) To prove (67), we will show that 7,11u — T, u, where 7, is
defined by (65), is a convergent series in L?(T's).
The difference 7,14 — T, u is constant along each segment

[@nt1,pjtts Gnt1pjtet), 0 <p" =1, 0<L<p—1,

where it takes the value ;41 pj+¢ — Un j. As a consequence, using (62) (and (64)),

n
—n—lp —1p—
e
Irsiw = reullfaey = (5) 7 2 o Bl (10
o j=0 = i M

Recall that M, ; is connected to each of the p points M, 11 pjte,0 <L <p—1, via
the corresponding edge X, 41 pj4+¢, cf. lemma 2.4. Hence,

W i1 pjre — Unj = / Dsu. (71)
PIREY pj+e

Using the Cauchy-Schwarz inequality, we have

([ ) (L wear) @
Ent1,pjte Ynt1,pj+e

o .

2 n+1,pj+¢ 2

‘unJrl,ijrf —u, * < [ Osul
Hnt1,pj4+L S0 pjte

Wt 1,pj+e — Un,j

that is to say

— Qe 10 |0sul?.
He Mmj Ynt1,pj+t
After multiplication by (g, j/on ;) - (pe/ae) (cf. the right hand side of (70)) and
summation over £ € {0,...,p—1} and j € {0,...,p"™ — 1}, we get (this is where the
coefficients oy, ft¢, 0n ¢, fin,e disappear at the right hand side, justifying the choice
of the mesh T'y,):

ves

He 2
[Wnt1,pjte — Un,j

j=0 ¢=0 ~™J
p —1p 1
S wloar / p10ul?.
j= 0 =0 Ynt1,pjte "

Thus, we deduce from (70) that

—n—1 —n—1
ETE: < <ﬁ> / dul? < <ﬁ> / Bsul?.
[ Tns1u TnuHL?(Fm) S\a gn+lli| sul” < P TM| sul

This proves, since <ﬁ> > 1, that the series || 7,4 1u—T,ul[ 2 ) converges. Finally,
a

+oo W _n+41
2
Irtllzaay < lroullzaay + 32 (57 I0suliz )
n=0

1

1
P\ (/P\2 -1
= lroullizeny +(5) T((5)"=1) Iowlizen.

«

To estimate ||Toul|.2(r..), we apply the usual trace theorem in H'(30,0) = H'(0,1):

OQ)’
[roull2(r) = [w(M)] < Co [|ullzr(s.0) < Co llullug (7)-

For the embedding (69), note that if u is compactly supported in the sense of (19),
for n large enough 7,u = 0 which implies Tocu = 0, in other words Ht}C(T) -
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Ker 7. Taking the closures in HL(’T), since Ker 7 is closed, we get (69) (see
definition 1.15). O

Remark 3.3. It is not difficult to see that (66) is a necessary condition for the
existence of the trace, at least for compact regular trees with regular weights, i.e.

when
a=o, p=u VO<i<p—1, inwhichcase<ﬁ>z%.
a @

Let the length of the root edge be 1 — a. For any complex-valued function defined
on such a tree, its restriction to the generation n can be identified to a collection of
functions
{un](x) I, —C, 0<j<p"— 1} with I, = [z, Zpe1] and 2, =1 — a".
A function v will be called symmetric if
Un,j(2) = up(z), forall 0<j<p" -1
Any symmetric function can be identified to a 1D function defined on an interval:
o1
(x) : I — Cwith I = U I, =[0,1], s.t. 4|5, =un, VneN
j=0

Let us introduce the space
1 _ 1 . .
H, (T) ={u € H,(T) / u is symmetric}.

According to the identification process u = 1, one easily checks that for u € Hi’S(T),
1 is continuous in I, with H'-regularity in each I,, and that
1
iy cr) = | (@F +1a(@)P) wala) d. (73)
where the piecewise constant weight function wy is defined by

wq(z) = wy = (pp)" for x € I, = [T, Tnt1].

log(l—xp)

Noticing that w,, = (pp)~ 'ea it is straightforward to check that the norm (73)
is equivalent to the norm defined by

il = [ (8@ + @R we) do o) = (-0, =SB 7y

Since @ < 1, the condition (66) is not satisfied if and only if 5 > 1. On the other
hand, the trace 7,u for u € Hi)S(T) is a constant function (on I's,) equal to 4(x,).
Thus to prove that the trace operator 7o, is not defined for some u € Ht,S(T) C
H,li(T)7 it suffices to find a function @ : [0,1] — C, such that [|@[]7 , is finite and
|i(x)] = 400 when z — 1.

When 8 > 1, one of such functions is @(z) = log(1 — x). In particular,

1 1
/ o (x)? w(z) do = / (1—2)"2de < oo since § > 1.
0 0
For the limit case 8 = 1, the reader will easily check that

oy | log|log(l—2)] x>1/2,
i(x) = { log log 2, x < 1/2,

has a finite norm ||il]1,., and yet ||[Tooul/z2(r ) = oo.
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In what follows, we will use the notation ||7,ul| := |[Toull 2 ). Moreover, we
will need the explicit expression for ||7,ul/:

n

p
AN Hn,j
I = (B) ST B, . (75)

§=0 n,Jy
Remark 3.4. Theorem 3.2 holds both for compact and non-compact trees.

3.2. Kernel and image of the trace operator. We are now going to prove that,
just like for the usual Sobolev spaces on the interval, the inclusion (69) is in fact
an equality. This provides a useful characterization of Hi,o (T), as well as justifies
the way to look at the solution ug of the Dirichlet problem for the wave equation
as a limit when n goes to infinity of the solution u} to the wave equation in the
truncated tree 7" with homogeneous Dirichlet conditions at each end point M, ;

of T™.

Theorem 3.5. Assume that (66) holds, so that the trace operator T, is well-
defined, then
Hb70(T) = Ker Too. (76)

The proof of this theorem is quite long. It will use the following lemma that provides
a sufficient condition for a function in H}L(T) to belong to H}hO(T). Let us emphasize
the fact that this result is valid independently of whether the trace operator 7, is
well-defined or not, i.e. it does not require (66).

Lemma 3.6. Letu € Hi(T) If
n
n (SN Il =0, 0o o, (77)

then u € HLO(T).

Proof. The proof relies on an approximation process adapted from [33]. Let u €

HIIL(T), for which (77) holds true. Next, let a piecewise-linear function ¢,, be defined

as follows:

(pn|7’n = 1a ¢H|T\T2n = 07
On(Mpyej) =1— £, j=0,...,p" -1, 0< < n.
Notice that the support of ¢/, lies in 72"\ T". Also, for any £ < n
90;1‘2"4_“- = (nan+€7j)_17 J 207"'7pn+£_ L. (78)

Our goal is to prove that u, = p,u € H}L’C(T) converges to u in H}L(T) For this it
suffices to show that, as n — oo, the sequences

up — u and ul, = @hu+ ppu’ — U in L2 (7). (79)
By Lebesgue’s dominated convergence theorem,
Up — U, O’ — ', n— +oo, in Li(T). (80)

Therefore, it remains to show that [|¢jullrz () — 0. Using supp ¢ C T2 A\T"
and (78),

2n pT—1 2n pM—1
lenulltary = > D /u(%)QIU\QZ SN (o) / o lul?.
m=n+1 j=0 Sn g m=n+1 ;=0 Sn g

(81)
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Since we want to bound the above using the traces 7,,,u, we will bound |Ju||?, (=
A

m.,5)
by a quantity involving the value of w in the vertex M, ; (and, eventually, its
derivative dgu).

For this we will use the following 1D Poincaré inequality

L L
4
Vv e HY(0,L) with v(L) =0, /st <= L2/|v’|2ds. (82)
™
0 0
Let us introduce a piecewise-constant interpolant ITu defined by
Hu|zn = 0, ; = the constant function u, j, 0<j<p"—1, n>0. (83)

Then, thanks the the Poincaré inequality, applied to the function v — Ilu,

4
||U — Hu"ii(zm,j) g ﬁ Oé?”yj”asu”ii(zm,j)' (84)

With the above and
||u||iﬁ(zm,j) <2 HHUHiﬁ(sz) +2ju— HUHig(sz)a
we deduce the following upper bound on |u||?, o
L3 (Zm,5)

8
2 afn,j Hasunig(zm,j) + 2 pn, Q5 [ 5 2

T (85)

Plugging in the above bound into (81), we end up with the following expression:

8 2n  p"—1 5 on  pm—1 o

m,

H@;u”%ﬁ('r) S i3 Z Z H88u||ii(2m,j)+ﬁ Z Z Tj_‘um7j|2
m=n+1 j=0 a1 =0 Om.
2n
8 2 p\m
= a0l + o5 3 (G) Il ol (7).
m=n-+1

Obviously, the first term in the above tends to 0 as n — +00. So does the second
term, thanks to the condition (77). Indeed, (77) can be rewritten as

(E) lrmull® =mem, em =0 (m = +o0).
(83

Then the second term in the above bound can be estimated as follows:

2n 2n
2 [N 5 2
3 Z <a> |Tmull® = " Z mem < 4m:r£117a”>.<’2n5m =0, (n—4o00).
m=n-+1 m=n+1
Thus, ¢} u — 0 in Li(T), and with (79, 80), p,u — u in Ht(T) O

To prove theorem 3.5, it remains to show that (77) holds for any v € Ker 7,. This
proof relies on two technical lemmas that aim at connecting the norm of the traces
at generations n and n+ N, namely 7,u and 7,4 yu. Our first result connects each
nodal value u,, ; = u; (recall that j = jij2--- jn, see the discussion after Lemma
2.4) with the values of u at all the end points of G" TN that are connected to M, ;,
namely:

{wje,. .0, 0< b, <p—1,1<k <N} (86)
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Lemma 3.7. Let u € H),(T). Let additionally {q;, 0 < { < p— 1} satisfy

>0, 0<C<p—1, > q=L1

Then the nodal value u,, ; = uj is related to the nodal values (86) via

N
u,; =P — Z D! ., (87)
k=1

p—1 p—1
PTiVJ:Z-ZqZI.qZNuJZIZN’ (88)

€1:0 EN:O
p—1 p—1

Dkg:Z"'Z qel...qek/ dsu. (89)
=0  £,=0 eyt

In the above P, is a convex combination of point values at the end points of "+
that are connected to My j, cf. (86), while each Dfm- is a convex combination of
integrals of Osu along the edges of the generation G"** that are connected to M, ;.

Proof. The proof is done by induction. It consists essentially in playing with the
basic identity (71) and in exploiting, in order to get an optimal result, all the paths
that connect M, ; to the possible end points of the generation Gnti,

Let us first consider the case N = 1. According to (71),

Vogélép, u; = Wjp, — / 8u
jey

To exploit all the possible paths between M; and the Mj,, ’s we make a convex linear
combination of these equalities, using the coefficients g, , to obtain the identity

u; = Z 4o, Uje, — Z qel/ 8 u (90)
jeq

£1=0 £1=0

which is (87) for N = 1. Let us now assume that (87) holds and let us prove it for
N + 1. We use an analogue of (90) for ujg,...¢, instead of uy :

p—1 p—1
Wigy .ty = E Qo Wty b by — E Q(%N+1/ Osu,
ZN+1:0 ZN+1:0 2-7"'/‘1"'1/‘N1/‘N-f-1

which we substitute into (87), using (88) and (89),
T I DS | M—ZDW
£1=0 In=04n41=0 z“J'1’~1"'41\r¢1\r+1
which is the desired result since the central term above is nothing but DN +1. O
Remark 3.8. For the functions of the class H1 <(T), when the tree and its weight

is regular, cf. remark 3.3 for the definition and the notation, the above result is
simply the fundamental theorem of calculus.
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In order to prove theorem 3.5, we first need to relate the traces 7,u and 7, yu in
the norm. For this we will apply lemma 3.7 with g, = 74, where {v,, 0 < £ < p—1}
are defined in (63). Let us introduce a related quantity:

ey, = ﬁ: <g>7k. (91)

k=1

Lemma 3.9. For all u € H}L(T), allm, N > 1,

pA" pA"
(E) Imul® < 205, 10auliZs (7o) +2 (£) 7mssvul (92)
Proof. By definition of 7,u, we have, cf. (75),
pA" ' 2
2 _ n,j

(E) lImaul? = 2 g fenal (93)

Thus, using (87) with gy = ¢, where {7, 0 < ¢ <p— 1} are as in (63),

p"—1
N fn.j Hnyj
(&) Il <23 B |PY 42 z zDz e
=0 n,J n,j
By convexity of x — 22, we deduce from (88) that
p—1 p—1
|P |2 < Z Z Yoyt Ven |u.7'£1“-ZN|2
a=0 vz (95)
/J’> M€1 Hen | 2
= —_ ...71_1-[_“@ |.
<a Elz—:() Nz:: (67X (072% JhiN
After multiplication by p, j/on, ; and summation over 0 < j < p" — 1, we get
i — = fing Pe, M
. i ’
RO R 9D 3 Z$J~M%m
j=0 “m J=0 £1=0 fy=0 ™3 %

or, alternatively, thanks to (93) for n + N instead of n,

" —1

P n
Z — } PP < (EY mnenvul®. (96)
(8%

In the same way, by convexity again, we deduce from (89) that

/E' y 5‘su’2. (97)

Jly- Ly

pA RS Ry e

ko2 L L S e 2

1Dy, <<a> > Zal o
£1=0 L =0 1

Ly

Using the Cauchy-Schwarz inequality (like in (72))
[ -k Hn,j
i () () S S [ o9
™ 6=0  £=0"Fit1y

Next, using the discrete Cauchy-Schwarz inequality and the definition of C’aw we
N

obtain
N b 2 N k
>oohl =[o(5) (8 ol <en (A e o9

k=1 k=1 k=1

(e
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Multiplying the above by Z”—] and using (98) results in the following inequality:
n,j

N N p-1 p—1
Hn,j e
an]_ D Dngl <SCAY DD / 1 |Osul?. (100)
) k=1 k=16,=0  £,=0"Zit1¢

Since the sets {ngl...gk,O <l by < p— 1} form, when 0 < 57 < p" —1, a
partition of the generation G,

p"—1 p—1

ZZ'“S/Z

7j=0 £;=0 =0 =3ty Ly

ploal = [ wlof (101)
gn«#k

Thus, after summation of (100) over 0 < j < p™ — 1, we get

pt—1 N N
Hn,j ‘ DFk 2 <oN / 2 _ AN 2
finj * < 10l = C Dyl (102)
jZ::O n.j kZ:; " o ; grir S Sy
Finally, the inequality (92) is obtained by gathering (94), (96) and (102). O

Now we have all the ingredients necessary to prove theorem 3.5.

Proof of theorem 3.5. By theorem 3.2, see (69), it suffices to prove that Ker 7., C
HL,O(T)~ In particular, we will show that following holds true:

YV u € Ker 7o, <g> | Tnull® — 0, n — 00. (103)

By lemma 3.6 this will imply that Ker 7o, C H}L’O(T).
First, since (66) holds, we can define

o= S (8) = ((8)-0) a0

From lemma 3.9 it follows that for all u € H}L(T), n, N >1,

AN AN
(£) Il < 2Cap 1052z (ryrmy + 2 (£ ) lrnvull®.
Let us assume u € Ker 7. Then, taking N — +o0 in the above, we obtain
l'l’ n
() IImull® < 2CaulldsulZs (7o) (105)

Since u € HL (T), the right-hand side of the above tends to zero as n — oo, from
where (103) follows, and hence u € Hi,o(T) O

It is natural to ask how big the image Im 7., of the map 7, is. The answer to
this question involves another fundamental quantity, namely

p—1
(pa) == ;ui a;, ( (pa) < <g> since || < 1). (106)
Theorem 3.10. Assume that
7
(na) <1< (2). (107)

Then, for any n > 1, Po(T,) C Im Too. In particular, Im 7o is dense in L*(T's).
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Proof. Let 14 be a function that equals identically to 1 on 7. It is easy to verify
that

(pay <1 <« 17 eLi(T). (108)
Let ¢ € Po(I'y,) and ¢,, ; be the value of ¢ in the interval [a, j, an j4+1]. Let us
construct u € H}L(T) as follows

u=0, in the truncated tree 771,
u=¢, ; L7, in each subtree 7, ;,0<j <p" —1,
u is affine, along each edge of the generation G".

Remark that u € LZ(T) is a consequence of (108). By construction, Teou = .
Thus, Py(T',) C Im 7. The density of Im 7., follows from the approximation
property of spaces Po(Ty,). O

Remark 3.11. Theorem 3.5, lemmas 3.6, 3.7, 3.9 and theorem 3.10 hold both for
compact and non-compact trees.

Remark 3.12. The following result proves that 7., in not surjective: the traces
posses some (weak) Sobolev regularity. In [33, Section 5.4], it was proven that

Too € E(Hi(T),H”(FOO)) for any v < v*,

where the critical Sobolev regularity exponent v* is defined as follows (see (63) for
the definition of +;):

. (1 . 1 logtt
V' =min| -, min - — - .
27o<i<p—1\ 2 2logy;

When <ua> > 1, the situation is totally different: the image of 7o, is reduced to 0,

or, equivalently, Hlli’o(T) = Ker 7o, = Hi(T) This will be proven in section 3.3.
Theorem 3.13. Assume that <uo¢> >1. Then
Yue HL(T), Tooh =0 (i.e. Im 7o = {0} or Ker 700 = H}L(T)) (109)
Proof. By theorem 3.18, see section 3.3, HLO(T) = H}L(’T); the result follows from
H}L70(T) = Ker 7.
O

3.3. On the distinction between H}L(’T) and H}L,o(T)- In this section we present

the conditions on a, p that ensure that the spaces Hlllyo(’T) and H}L(T) coincide,
or, in other words, when compactly supported functions (in the sense of (19)) are
dense in H}L(T) Our first result in this direction is the following.

Theorem 3.14. If the condition (107) holds, then HL70(T) C Ht(T)

Proof. The result is an immediate consequence of the trace theorem 3.10, since the

equality HLO(’T) = H}L(TL according to theorem 3.5, implies in particular that

Im 7o = {0}. O

As we are going to see, when (par) > 1 or <ﬁ> < 1, then H}L o(T) = H}L(T)
o :
We shall state this result as two theorems, whose proofs are quite different:

e theorem 3.15 for <ﬁ> < 1 (and, consequently, <ua> <1).
«
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e theorem 3.18 for (par) > 1 (and, consequently, <ﬁ> > 1).
a
7
Theorem 3.15. If <E> < 1, then H}MU(T) = H}L(T)
To prove this result, we shall use the following technical lemma.

Lemma 3.16. Let (z,,), (£,), n € N, be two sequences of non-negative real numbers.
Let one of the following hold true:
(i) Tpy1 < YZp + En, where 0 <y <1 and g, — 0 as n — oo;
o0
(1) Tpi1 < Yo Ty + En, where v, =1 — i1, 0<a<1, and kzogk < 4o00.
Then the sequence x, converges to 0 when n — +oo.

Proof. See appendix A. O
Proof of theorem 5.15. By lemma 3.6, it suffices to prove that (77) holds for any

u € H}A(’T) To do so, we compare the norms of two successive partial traces of u,
cf. (75),

B fin,
Il = () 730 End
= (110)
rpral? = (Y77 g
Tn1 Uil = « £ Q. j O J
7=0 ¢=0

Because

uje = uj + / Osu,
Ejg

we deduce, using the Young’s inequality (with a parameter n, > 0, which we will
choose later) and the Cauchy-Schwarz inequality for the integral, cf. (72),

_1\ Qn,j Oy
fagel? < (L) g+ () 2222 o,
Hn 5
je
Multiplying the above by Hnj Bt and summingover 0 < j < p"—land 0 < /¢ < p—1
Qnp,5 Oy
we obtain, with (110),
u -1 2 /BT 2

tnt1 < (141) p tn+(1+n,") ||3Squn+1, where ¢, = o lrnu|*. (111)
In the above the term ||85uHén+l was obtained like in (101). Let us then consider
separately, for the sake of clarity, the following two cases.
Case 1. <H> < 1. We choose 7, = 1, independent of n, so that

«a

= (1—|—77)<g><1.

Then, by Lemma 3.16, case (i), we prove that ¢, — 0 as n — 4o which implies in
particular (77).

Case 2 . the limit case <B> = 1. Since <ﬁ> = 1, the previous approach will not
o a

work. To explain the choice of 1, let us define t,, := n=1¢,, so that (111) becomes

~ n -~ _ —
tn+1 < (1 + nn) m tn + (1 + N 1) (Tl + 1) 1H8su“én+1a (112)
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We choose 7,, so that
1 1

n
1 =1- — = — >0.
(T4m) oy 2(n+ 1) TS
Then, as e, = (14 2n) (n + 1) |9su|Z. 1 < 2[|0sull3.11 is summable, by Lemma
3.16, case (i) (with a = 1/2), we prove that that ¢, — 0, 1. e. (77). O

Remark 3.17. We have shown that when <g> <1, <g> | Tl = 0 as n — oc.

This does not hold when <ﬁ> = 1, with a counterexample provided by the
identity function. Notice that

Ly € HY(T), o (108), and (&) |jmir)? = |rtr]? =

Q

Nonetheless, in this case 14 € H}L (T) = H}L( T).

Finally, we consider the case when <ua> > 1, and, in particular, (66) holds.
Theorem 3.18. If (pa) > 1, then HL’O(T) =H.(T).

The proof of this result is, in its structure, quite similar to the proof of H}MO(T) =
Ker 7, i.e. theorem 3.5, where we use extensively lemma 3.7 and convexity or the
Cauchy-Schwarz inequality based arguments. However, we need to proceed differ-
ently, because, unlike in theorem 3.5, we do not assume any longer that ||7,+null
converges to 0. This prevents us from exploiting the inequality (92). The key trick
will be to obtain an inequality similar to (92) where the quantity ||7,+nu/| is replaced
by a similar quantity, related to 7,4 xu, which tends to 0 when N — oo and resem-
bles (in a certain sense which will be clear later) Hu||%2(gn+N). Instead of working

directly with the the squared L2?-norm, we shall use the fact that, when n — +oo,
because the size of the edges of T\ T™ decreases drastically, u in HL(’T\’T") can be
accurately approximated by a piecewise-constant function, defined in (83), see the
proof of lemma 3.6. This assertion is quantified by the following technical lemma.

Lemma 3.19. For alln > 1, u € H,(T),

s ey — 222 Aizergn < lfgerrmr O
||U||Lz Ty S 2 ||HUHL2(T\Tn) +3 ® lal2 o, ullZe (- (i)
In particular, for all u € H}L(T), nEIJIrlOQ ||Hu\|iﬁ(7_\7-n) =0.
Proof. The bounds (113) follow from
lullEz (v < 2 IMlEs (e + 2 llu = THulfs (7o),
Ul 7y < 2 lllfa gy +2 llu = TullEz (7o), (114)

and the bound (84) for ||u — HuHiﬁ(T\Tn)v rewritten in the form

4
T2

2 2 2
lu=Tullis s, ,) < Zzlele Oy s, )

The fact that ngrfoo ||Hu||ii(T\Tn) = 0 follows from the bound (114) and |a|sc <
1. O
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The interest of working with Ilu is that, inside G™, Ilu is defined by the same
nodal values as T,u. As a consequence, it is easy to relate 7,u to ITu in G™. This
allows us to formulate an analogue of lemma 3.9, more precisely of the inequality
(92). Let us first introduce

z () 2. (115)
Lemma 3.20. For any u € H}L(T), n, N >1

IJ’ " ~ -N — n
(£) Il < 282, 102l ¢y + 2 (pa) ™ la™ 22 [MMulZy gy (116)

Proof. Let us first remark that

p"—1
2 2
ITTulEa gy = D finjtn [l (117)
§=0
j replaced by fin jou, ;.
Thus, we will use the same idea as in the proof of lemma 3.9; we start with the
inequality (94), however, we define Pé\fj and ij’j differently than in lemma 3.9.

resembles <B> | Tnul|?, cf. (75), with u, ;o

More precisely, we use lemma 3.7 with ¢, = Mag<ua>_1, {=0,...,p—1.

As a consequence, proceeding as in the proof of lemma 3.9, we see that (94) is
still valid but with different P ; and Dk ;- In particular, the estimate (95) has to
be replaced by

PN < (e Z Zuelael'“umam e, e (118)
£1=0 In=

After multiplication by g, ;/ anyj and summation over 0 < j < p™ — 1, we obtain

o1 p } bt
> —N ,
Z a"J | 7J| [,I,Oé Z el Z Z ooy Oy s ey Qo |u.‘i€1"~€1v|2'
j=0 ™I 3 ) =0 fn—0
Since Enid _ Hn,jOn j - CV;LE < Hin,jOn,j |a71 igv
Qp,j
p"—1 PN 1
N
S B PN < a) e B DT e v [ b
j=0 k=0
7N _
= <H'a> |a 1|ig ||Hu||ii(gn+N)7 (119)

where the last equality follows from (117).

To obtain an upper bound for ‘Dﬁ,ﬂz cf. (97), we use the convexity argument:
2

/ agu’ .

P

p—1 p—1
k|2 —k
|Dn7]| <<‘u/(l> Z“'Zﬂelafl'“ﬂéka&c
£1=0 £, =0 ey Ly

Using the Cauchy-Schwarz inequality, like in (72),

D) S S e [ o

“W (=0  £,=0 Sjer-ey
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< {pa) ™" o a””z Z/E 10| Osul? (120)

. €1—0 Zk 0 Ge1-- Ly

_1
Using the discrete Cauchy-Schwartz inequality, introducing v := <ua> 2 |t ooy We
obtain

pr—1 fin i N 9 pt—1 i 5 N 9
Z n;J‘ZDﬁj‘ _ n,JD:@k_V—szj)‘
Ay 4 ? Oy 4 >

j=0 ™I k=1 j=0 ™I k=1

p—1
D DN B

k=1 j=0 £,=0 £, =0 eyt

where we used the bound (120) and the definition (115) of CN With (101),

pt—1 N

Hn,
> o ‘ Z/ 10sul® = CRuOsulEy (rosmyny- (121)
j=0 ™I k=1

The desired result is obtained by substituting (119) and (121) into (94). O
Now we have all the components necessary to prove theorem 3.18.

Proof of theorem 3.18. We will use the characterization of the space Hi,O(T) of
lemma 3.6, namely, we will show that (77) holds for all u € Hi(T) For this we
employ (116).

Since the tree is compact, i.e. |as| < 1 and <ua> > 1, the value (/Z'\évu is bounded
uniformly in N by

~ -1 -1 -
Cap = (ne) ol (1= (o) "lal2)
This allows us to take a limit N — 400 in (116). Together with lemma 3.19
(namely, using the fact that J\}im ([ TTu 22 (gn+~y = 0), we obtain the following
—00 7

inequality, valid for all u € H}L(T ),
AN =
(Yl < 2C 102013 ()
n
This shows that <g> |7nul|? = 0 as n — oo, and, by lemma 3.6, u € H}L,O(T). O

Remark 3.21. Theorem 3.15 holds both for compact and non-compact trees. The
proof of Theorem 3.18, however, uses the compactness of the tree.

3.4. Summary and different regions of parameters. In this section we will
summarize the results of the previous sections about the trace operator and rela-
tionship between the spaces Ht,o(T) and Hi(T) Such a brief outline is provided
in figure 6.

This difference between different values of p, a will be expressed as well in the con-
struction of transparent boundary conditions. Let us thus introduce the following
space of parameters:

P:={(p, a) € (RL)" x (R})": |ale < 1}
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(pa) <1 (no) > 1
T oo €xists T oo exists
<Il> Ker 7o, = Hi,o(T) Ker 7o, = HLO(T)
—)>1
o H,, o(T) € H,(T) H,, o(7) = H,(T)
Im T is dense Im 7., = {0}

T o does not exist

(&)< mym—mm

FIGURE 6. A summary of the results of sections 3.1-3.3.

According to figure 6, we can partition it into the three regions:

Py :={(p, a) € P: <g> <1l

Pyp = {(p, @) €P: <§> > 1, (pa) < 1}, (122)
Pp:={(n, @) eP: <ua> >1}.
Note that (this will be used later)

<g> >1 < (p, @) € PnpUPp, (pa) <1 < (pu, a) € PypUPy. (123)

The choice of the notation with indices N, ND and D will become clear later,

when constructing transparent boundary conditions(cf. corollary 5.6 and remark
5.7).

3.5. Compact embedding of HL(’T) into Li (T). It appears that independently

of p, the embedding HL(T) — LZ(T) is compact. The proof of this result is lengthy,
and, moreover, uses somewhat different approaches depending whether the case
<ua> > 1lor <ua> < 1 is considered. Nonetheless, both approaches are based on
the following characterization of the compactness, which follows from the works of
F. Ali Mehmeti et S. Nicaise [8] and Y. Achdou et N. Tchou [6].

Lemma 3.22. LetV = H}L,O(T) or H}L(’T) The injection of V in Li(’T) is compact
if and only there exists a sequence (Vn)nen, s.t. lim v, =0 and
n—oo

VueV, Alullyz rgmy < v llellay o) - (124)
Proof. See appendix B. O
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Depending on the approach taken to prove the inequality (124), we split the
compactness result into two theorems:
e the compactness of the embedding H}L(T) — LZ(T) when (pa) > 1 (ie. in
Pp) is the statement of theorem 3.23.
e the compactness of the embedding Hlll(T) — Li (T) when (pa) < 1 (ie. in
Py UPynp) is the principal result of theorem 3.24.
We start with the case <ua> > 1, as it uses inequalities used in the proof of lemma
3.9.

Theorem 3.23. If (pa) > 1, the embedding Hi(T) — LZ(T) is compact.

Proof. We use the criterion of lemma 3.22. Because of theorem 3.18, it suffices to
demonstrate that (124) holds for any function from Hi,O(T). By lemma 3.19, in
particular (113)-(ii), we can just show that (124) holds with ||u||Li(7—\7—n) replaced
by HHUHLﬁ(T\T")'

Let us first assume that u € Ht’C(T)7 i e. “|T\TN = 0 for some N. Thus, for
alln < N,

N N pT-1
||HuHii(T\Tn) = Z HHU”ii(gm) = Z Z Oém,jﬂm,j|um,j|2- (125)
m=n+1 m=n+1 j=0

First, we apply lemma 3.7 with g = e, cf. (63), which gives, since Pfl\’rj =0,

2

N—m
s> =D Dk (126)
k=1
Together with (100), the above results in
pM—1 N—m p™—1
S ol <C5m Y Y a2, 55 ullEz 0, 00)
3=0 k=1 j=0 6=0  £,=0

With the bound Cﬁu < Cap, k € N, see (104) (valid because <g> > (pa) > 1),
and the observation (101), the above inequality yields:

p"—1

Y Qmgbtmlnl? < CoplalZ0sullfs (s 7my = CaplalZ10sullEs o my.
j=0

Thus, for any u € Hi,c(T) any n > 1, the above and (125) imply

|a|2n+2
||Hu||L2 (T\T™) S Cap Wlla u||L2 2(T\T™)" (127)

With (113)-(ii) and the density argument, a similar inequality holds for ||u||i2 (T\T™)
.
whenever u € Hi70(7') = Hi(T) We conclude with lemma 3.22. O

The case <;¢a> < 1 is slightly different, since we will show an inequality of the
form

IMWéqu<%w&wégw with lim 7, =0. (128)

Compared with (127), ||0s uHL2 (7w 18 replaced by (|05 u||L2 (T\T")"
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The reason is that when {(pa) < 1, H/L o(T) is not necessarily dense in HL(’T),
cf. theorem 3.14, and thus the 1dent1ty (126) is no longer valid.

Theorem 3.24. If (pa) < 1, the embedding HL(T) — Li(T) is compact.
Proof. Like in the proof of theorem 3.23, it suffices to show that for all u € H}L (7),
(124) holds with ||u‘|Li(T\T7L) replaced by ||Hu||Li(T\Tn).

Without loss of generality, we may assume that u(Mp) = 0. As discussed, we will
show that ||Hu||Li(gn) is controlled by ||8su||Li(Tw,). For this, let us express u,, ; as
an integral of dyu over the path that joins My ¢ and M, ;:

Up,j = “dn E /

Using discrete and continuous (cf. (72)) Cauchy-Schwarz inequalities, we have

Qg v Qg
LT nZ [ o :nz S oy,

jyde

j1-de

After the multiplication by o, jtn ; = @jy...jn iy -5, the above yields:

2
Qn,jHn,j ujl"']w <n E :a_]l ]za]2+l Hjogr = Qg B, ”asu”Lﬁ(Zh,,,jz)

0
sn E |a‘§o Qo1 Mot "'O‘jmujnHasunii(zjlmje)'
/=1

According to (117), by summation of the above over 0 < j < p™ — 1, i. e. over
0<in<p—1,---,0<jn <p—1, we get

n p—1

||Hu||ii(gn nz Z Z ‘a‘oo Wiy Mjers X, [|Os “HL? (Sg1-dg)"

£=17j1=0  jn=0

p—1 p—1
. —£ "
Setting A, ¢ := E e E gy Moy QG g, = <,ua>n and writing

j2+1 =0 jn =0

Jj1=0 jn=0  j1=0 Jje=0  Je+1=0 Jn=0

we get
p—1
1), gy < nZA B30 10:ulliz s, )
Jj1=0 Je=0
20 n—~{ 2
= ”Z|a|oo<ﬂa> ||8sUHLﬁ(gf)
=,
—e
< 0 (D lePipe)" ") Iosuls ).
=1
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A direct computation yields
n
if (po) = lafZ, Y laf (pa)"" = n{pa)",
=1

=~ n
. 5 2 n—~ o 2 M
if (per) # |af3, ;'“|w<“a> =y el

Combining the above two expressions, we thus obtained (128) with
i k
Y =C Zkzmax (<ua>,|a|go) (— 0 when n — 400),
k=n

where C' = C(a, ) > 0 is a constant depending only on (pa) and |afe. Using
(113)-(ii), we deduce that (124) holds for all u € H}L(T) and conclude with lemma
3.22. O

Remark 3.25. The statement of lemma 3.22 is valid both for compact and non-
compact trees. The results of theorems 3.24, 3.23 do not hold for non-compact trees.
It appears that the necessary [33, Theorem 6.1.7] (and, as we have shown, sufficient)
condition for the compactness of the embedding Hlll (T) = Li (T) is |a|oo < 1.

4. Helmholtz equation on compact self-similar trees. As we will see later,
in order to construct transparent boundary conditions, it will be necessary to un-
derstand the structure of the solutions to the Neumann (P, ) and the Dirichlet
(P .) problems for the Helmholtz equation. We address in this section the following
questions:

e self-similarity (in a certain sense) of the solutions to (P, .,) and (Py.);

o the continuity of the solutions to (P; ) and (Py ) in w = 0;

e the difference between the solutions to (P; ) and (Py o).

4.1. Helmholtz equation on compact self-similar trees. Let us introduce a
notion of a quasi-self-similar function, which will play an important role in under-
standing of the structure of the solutions to the Helmholtz equation on self-similar
trees.

Definition 4.1. [Quasi-self-similarity] A function v : 7 x (C\R) — C is called
quasi-self-similar if there exists a complex-valued function r : C\R — C (quasi-self-
similarity ratio) such that, for any 0 <7 < p—1 and for any w € C\ R,

u(oi(s),w) = r(w) u(s, w), seT. (129)
The above notion reduces to a classical notion of self-similarity in w = 0, namely
u(oi(s),0) = r(0) u(s,0), seT. (130)

For any quasi-self-similar function u, any j = (j1 - jn)p,

n—1
u(an,j(s)vw) =r(w) [H T(ajl T O‘jkw)‘| u(s, an,jw)7 (131)
k=1
where o, ;, v, ; are defined as in (49) and (51). It appears that solutions to the
Dirichlet (Neumann) problems for the Helmholtz equation are quasi-self-similar.

Theorem 4.2. The function uy(s,w) (resp. un(s,w)), which solves (Py.,) (resp.
(Pn)), is quasi-self-similar.
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Proof. We provide the proof for u = uy(s,w), the one for u,(x,w) being verbatim
the same. Let

r(w) == u(Mo,,w), weC\R. (132)
Our goal is to show that u is quasi-self-similar of ratio r(w).

It is not difficult to notice that r(w) # 0 in C \ R. Otherwise, by uniqueness of
the solution of the Dirichlet Helmholtz problem in each subtree 7y ;, u(-,w) would
have vanished identically in each 7;;, or, in other words u(-,w) would have been
supported in X . Using the Kirchhoff condition at the node My o, we would have
Osu(Mo,p,w) = 0. And, since u is solution of the Helmholtz equation along 3 ¢
and satisfies u(Mo,0,w) = r(w) = 0, this would imply that uly, =~ = 0 (hence a
contradiction to the boundary condition u(M,,w) = 1).

Let us define the following quantity:

ui(s,w) == r(w) " u(o(s),w). (133)
Notice that u;(My,w) = 1. Also,
Dsui(s,w) = r(w) ™t a; Osu o 0;. (134)

Choosing v; € Vo, = {v € V4 / supp v C T1,;} in the weak formulation of (P, ),
we get (where s; is the abscissa on 7y ;)

J;

Performing in the above integrals the change of variables s; = 0;(s), where s is an
abscissa on T, we obtain

/ (oi(s)) Os,u(0oi(s)) Os,vi(0i(s)) — wg/ p(oi(s)) u(oi(s)) vi(oi(s)) =0, (136)
T T

for all v; € V,;. Notice that the above holds with v;(c;(s)) € V4, replaced by
v(s) € Vi (since for any v; € V44, there exists v € V4, s.t. v; 0 0; = v). Using (55),
(134), the variational formulation (136) becomes

1(s;) Os,u Os,v; — wz/ w(si) u(s;) vi(s;) =0, Yo € Vo (135)
Ti,i

i

a;z/ 1Oty Ogv — wg/ puv=0, Yvel. (137)
T T

Since u;(M,,w) = 1, u; is nothing but the solution of the Dirichlet Helmholtz
problem associated to the frequency a; w. Thus, with (133),

u(oi(s),w) = r(w) u(s, a;w),
which concludes the proof. O

4.2. Zero-frequency limit of the Helmholtz equation on compact self-
similar trees. In this section we address the question of the well-posedness of
the problems (P, ) and (Py,) when w = 0 (i.e. Laplace equation), as well as pro-
vide explicit solutions to these problems. With this analysis we aim at two goals.
First, we would like to show that in the region of the parameters Pyp, cf. (122),
the solutions of the problems (P ,,) and (Py.), in general, differ. And second, we
will use the knowledge of the explicit solution to the Laplace equation to distinguish
between these problems when constructing transparent boundary conditions.

Let us now find explicitly the solutions to the Dirichlet/Neumann problem for
the Laplace equation. This problem is well-posed, according to Lemma 1.22, in
particular, because the compactness assumptions (38)-n and (38)-9 hold true. First
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of all, let us formulate the following corollary of theorem 4.2 about the structure fo
the solutions to the Laplace equation on a self-similar tree.

Theorem 4.3. The function u = uy(.,0), (u=un(.,0)), which solves (Py.,) (cor-
resp. (Paw)) with w = 0, is self-similar, i.e. it satisfies for some rg € C and all
0<i<p-1,

u(oi(s)) =rou(s),  seT. (138)
Proof. The statement follows by extending the proof of theorem 4.2 to w = 0 (notice

that the theorem is formulated for w € C\ R) and the definition of the quasi-self-
similarity, cf. also (130) with rq := r(0). O

In the following theorem we calculate explicitly the solutions to (P; ) and (Py )
for w = 0. In particular, we show that in the region Py p, the functions that solve
(Po.w) and (Py ) for w = 0 are distinct.

Theorem 4.4. The solutions to (Ps.,) and (P ) with w = 0 satisfy:

o if (1, @) € Py, then uy(.,0) = up(.,0) = L.
o if (u, &) € Pyp, then uy(.,0) = 17, and uy(.,0) is a piecewise-linear func-
tion, which satisfies (138) with

ro = <g>_1. (139)

o if (u, a) € Pp, then uy(.,0) = uy(.,0) is a piecewise-linear function, which
satisfies (138) with ro defined in (139).

Proof. Let us find a general form of the solution to (Py ), (Pu.w). First, the use of
(132) results in the following identity:

—1
Osuoo0; =7rga; Osu.

Then the Kirchhoff condition (9) at the node My o = o;(M,) reads:

p—1 )
Osuo,0(Mo,0) = ZO 70 (% Osu0,0(M,). (140)
Since 9?u = 0 along g0, dsu(M,) = dsu(Mp o). There are two possible solutions:

o cither Osu(M,) = 0, which, with w(M,) = 1, implies that u = 17.

e or J;u(M,) # 0, then (140) implies that rq is as in (139). As 0%u = 0, u is
linear on g . Due to self-similarity, u(Mo o) = 70, and therefore

UO)()(S) =14+ (’I“o — 1)8. (141)

To summarize, u is a piecewise-linear and satisfies (132) with ro from (138).
We will denote such a function by L, .

Case 1. (u, @) € Py. The function 1+ € H}L(’T) = HLO(T), see (108) and
theorem 3.15. Also, 17 satisfies (Py ) and (Py..,). Thus, by the uniqueness of the
solution, cf. lemma 1.22; uy(.,0) = uy(.,0) = 1.

Case 2. (u, a) € Pyp. Notice that the function 1+ € H;(T)7 see (108), and it
solves (Pn ) with w = 0. By uniqueness, uq(.,0) = 1.
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The function 1 ¢ H}L’O(T), because 7,17 = 1, while H}J.,O(T) = Ker 7, see
theorem 3.5. Hence, 17 does not satisfy (P, ), and thus uy = L,,.

Case 3. (u, a) € Pp. In this case, H}L,O(T) = H}L(’T) (theorem 3.18), hence
Up = Un.
Since in this case 1+ ¢ Li (T) (see (108)), we deduce that u, = uyg = L,,. O

Thus, we see that in the region Pyp, zero-frequency solutions to the Dirichlet
and Neumann problems do not coincide. This result can be extended to w € C\ R,
except, possibly, some isolated points. To see this, first notice that there exists
R > 0, such that for any sequence (wi)ren C B(0, R), s.t. wi — 0 as k — oo,

Uy (- wi) = up (., 0), Un (o wg) = un(.,0), strongly in H}L(T) (142)

This is an immediate corollary of proposition 1.23 (notice that (38)-0 and (38)-n
hold) combined with remark 1.20. This implies the following result.

Corollary 4.5. The following holds true for the solutions of (Pa.) and (P ):
o if (u,a) € Py UPp, then up(.,w) = un(.,w) for allw € C\R;

o if (m,a) € Pyp, up(.,w) # un(.,w) except, possibly, in isolated points w of
C\R.

Proof. The result in Py UPp follows from H}L,O(T) = H}L(’T)7 cf. theorems 3.15,
3.18.

When (u, @) € Pyp, we proceed by contradiction. First of all, remark that (38)
holds, cf. theorem 3.24, and thus us(.,w) and u,(.,w) are analytic H}L(T)—Valued
functions of w € C\ R, see proposition 1.23. Let us now assume that there exists
we € C\R, s.t.

U (., we) = un (., wy), Zli}n(;lowgzwe(C\R.

Then, by the uniqueness continuation theorem for holomorphic vector-valued func-
tions, see [9, Proposition A.2, p.462|, uy(.,w) = uy(.,w) in C\R. However, by (142),
for w — 0, the functions uy(.,w), uy(.,w) converge correspondingly to uy(.,0) and
un(-,0), and as uy(.,0) # un(.,0), see theorem 4.4, we arrive at the contradic-
tion. O

The above property shows that the transparent boundary conditions, which we
aim to construct, should take into account the fact that the solutions of the Dirichlet
and of the Neumann problem differ when (u, a) € Pyp.

5. Construction of transparent boundary conditions for the Helmholtz
equation. In this section, we investigate some properties of the DtN operator, as
it was introduced in section 1.6, and more precisely the computation of its symbol
as a function of the frequency w € C\R. We consider the case of the reference p-adic
self-similar compact weighted tree with the weight p(s) =1 on ¥¢ o, cf. assumption
3.1.

5.1. DtN operator for the Dirichlet and Neumann Helmholtz problems.

Before entering into the details, let us remind that depending on the value (u, o),

o if (u, &) € Py UPp, the solutions of the Neumann and the Dirichlet problem
for the Helmholtz equation coincide.
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e otherwise, if (u, &) € Pyp, the solutions of the Neumann and the Dirichlet
problem do not coincide, except, possibly, for isolated frequencies, cf. corol-
lary 4.5.

Let us define the two Dirichlet and Neumann symbols as
Ay (w) == — Osup(My,w), Ap(w) = — Osun(My,w). (143)

According to proposition 1.23, the functions w — Aj(w) and w — A, (w) are mero-
morphic in C and analytic in the neighborhood of the origin, since w = 0 is not an
eigenvalue of the operators Ay, Ay, cf. lemma 1.22. Moreover, using (42) and (43),

“+o0 n, 2 n 2
afw n 05y (M,
Ap(w) = Ay(0) = W; —, oy = <“”jji )) ,
n=0 ° ) (144)
apw? n 5P (M)
An(W) = An(O) — Z m7 Otn = T .

n=0

The convergence of the above series is uniform on the compact subsets of C that do
not contain { + wg} (resp. { :I:wﬁ} ); this follows from Remark 1.24 and continuity
of the trace u — dsu(M,) for functions from D(Ay) (resp. D(Ay)).

Remark 5.1. The formulas (144) show that the set of poles of Ay(w) (resp. Ay (w))
is a subset of { & wy} (resp. { £ wl'} ). We conjecture that these sets coincide.

Another property of the symbol of the DtN operator follows naturally from the
explicit form of the zero-frequency solutions for the Helmholtz equation. It is for-
mulated below.

Lemma 5.2. The symbols Ay(w), An(w) satisfy the following:

e in Py,
Ay (w) = An(w), and Ay(0) = An(0) = 0.
e in PND;
Ao(w) # An(w), Ag(0)=1— <§>_1 and An(0) = 0.
® in PD,
Ao(w) = An(w) and Ay(0) = An(0) =1 — <g>_1.

Proof. Let us consider <ua> > 1, the proof for the rest of the cases being almost
identical. If (par) > 1, H}, ;(7) = H,(T), hence Ay (w) = Ay (w).
By theorem 4.4, and more precisely (141), u = uy(.,0) satisfies

uo0(s) =14 (ro—1)s, ro= <g>_1.

Thus, Ay(0) = Ay(0) = — tigo(0) =1 — <g>_1. O
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5.2. A functional equation for A;(w) and A, (w). In this section we will demon-
strate how one can compute the symbols Ap(w) and Ay (w).

Lemma 5.3. Fach function A(w) = Ay(w) or An(w) satisfies the following qua-
dratic functional equation

Find A(w) : C\R — C such that
(145)

. p—1
: sinw 1
A :( “A )§ Hi A (a00).
wsinw + A(w) cosw cos w (w) o )2 (aw)
Proof. Let u(-,w) = up(-,w) or uy(-,w) and A(w) = —0su(M,,w). Along Xgp
parametrized by s € [0,1], u(.,w)|s, , = uo,0(.,w) is the solution to the following

0

Cauchy problem:
(952,UQ70 + w2u070 =0, ’LLQQ(O,LU) =1, 8su0,0(0,w) = —A(w),

which leads to ugo(s,w) = cosws — A(w) Smws

. In particular,

0s0,0(Mpo,w) = —wsinw — A(w) cosw. (146)

Along %1 = 0i(X0,0) , ul(-,w)|y, . = u1,(.,w). Thus, by quasi-self-similarity (129),
and the definition of A(w), we get

Dsu1i( Mo o,w) = a; ' r(w) Bsug o (M, iw) = —a; F r(w) Alw), (147)
where the self-similarity ratio r(w) is given by, cf. (132),
A
r(w) = u9,0(Mo 0, w) = cosw — ((Uw) sin w. (148)

One gets (145) by substituting (146), (147), (148) into the Kirchhoft equation (9)
at M()’O:
p—1
Dyuu0,0(Mo,0,w) =Y i Osur (Mo 0, w)- [
=0

Remark 5.4. Depending on the values of p and «, the equation (145) encodes all
the symbols of the DtN operators for all the self-similar trees (even non-compact).
In particular, e.g., one can verify that the DtN symbol for the Helmholtz equation
on the half-line (p =1, p = @ = 1), namely, +iw, solves (145).

Since this equation (145) is quadratic, one expects that it admits several (naively
at least two) solutions. However, as we know, when (u, ) € Py UPp, the symbols
Ay(w) and Ap(w) coincide, and hence only one of these solutions corresponds to
the symbol of the DtN operator. We will show the following properties:

e when (p,) € Py UPp, (145) admits a single even meromorphic solution
that takes the value at the origin prescribed by lemma 5.2. This will allow us
to select a physical solution (145) in the cases the symbols Ay(w) and Ay (w)
coincide;

e when (p, ) € Pyp, (145) admits two even meromorphic solutions, which
take the values at the origin prescribed by lemma 5.2. They correspond to
Ay (w) and Ay (w).
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First of all, notice that because the symbol of the DtN operator satisfies (145) and is
an even function, analytic in the origin, a priori one of the solutions of the equation
(145) is even and analytic in the origin. Moreover, in the origin this solution satisfies
lemma 5.2. A priori it is not obvious that such a solution is unique. However, the
uniqueness can be shown, and the corresponding result is formulated in the following
lemma.

Let us draw the attention of the reader to the fact that in the lemma below, we use
N or D as indices instead of n or 0 because we refer to solutions of the characteristic
equation (145) and not to the DtN symbols. However, the connection between
Ap(w), An(w) and Ay(w), Ay(w) will be immediately clarified with corollary 5.6.

Lemma 5.5. Any solution of (1/5), continuous in the origin, satisfies

p -1
A(0)=0  or Am)=1—<a>.

If (u, ) € Py UPNpD, the equation (145) admits a unique even solution A(w) =

AN (w) analytic in the origin that satisfies An(0) = 0. Moreover, as w — 0,

Ay(w)=—-(1- <ua>)71 w? 4+ O(w?).

If (b, ) € Pp UPNp, the equation (145) admits a unique even solution A(w) =
Ap(w) analytic in the origin that satisfies

Ap(0)=1- <g>71.

Moreover, its Taylor expansion at the origin is given, as w — 0, by

1 2 2 -1
o= Aot 3 (297 () +1) (2"~ ) " 00
Proof. Please see the appendix C. Let us remark that it is possible to obtain a
higher-order expansion of Ap(w) and A (w), and the corresponding formulas, since
they are somewhat cumbersome, are omitted here; however, they can be found in
appendix C, see, in particular, (188, 189). O

Combining the above with lemma 5.2, we arrive at the following conclusion.

Corollary 5.6. Let Ay(w) and Ap(w) be defined in lemma 5.5. Then the following
holds:

o if (u, ) € Py, then Ay(w) = Ay(w) = An(w).

o if (u, ) € Pyp, then Ap(w) = An(w) and Ay(w) = Ap(w).

o if (u, ) € Pp, then Ap(w) = Ay(w) = Ap(w).

Remark 5.7. The corollary clarifies the notation by explaining why, when (u, «) €
PpUPy, even though Dirichlet and Neumann problems coincide, we have chosen to
consider that we solve the Dirichlet problem when (@, &) € Pp and that we solve
the Neumann problem when (pu, o) € Py.

Remark 5.8. The uniqueness results of lemma 5.5 fail to be true if one looks for
not necessarily smooth solutions A(w). Let us give a counter-example in the case
where all the «;’s are rational numbers. Then the function A(w) defined in C\ R
by

A(w) =Ap(w), if |w]€Q,

Alw) =Ax(w), if [w| ¢ Q,



246 PATRICK JOLY, MARYNA KACHANOVSKA AND ADRIEN SEMIN

is a solution of (145), different from Ap(w) and satisfying A(0) = Ap(0). In the
same way, the function A(w) defined in C\ R by

Alw) = An(w), ifjw|€Q,

Alw) = Ap(w), if |w| ¢Q,
is a solution of (145), different from Ap(w) and satisfying A(0) = An(0).
5.3. Positivity properties of the DtN Operator. An important property of
the DtN operator is its positivity, which is related to the energy conservation. This

property will be crucial for obtaining an approximation of symbols Ay, A, that
would lead to stable transparent boundary conditions. Let us introduce

Ct={z€C: Imz > 0}.
Theorem 5.9. The symbol A(w) = Ay(w) (A(w) = An(w)) satisfies the following:
Im (w™'A(w)) <0, for all we C™. (149)
In other words, f(w) = —w™1A(w) is a Herglotz function [17].

Proof. This property can be shown directly, by examining the expressions (144);
however, we provide a more general proof, which relies only on the properties of
the underlying sesquilinear form. We show the result for A(w) = Ay(w), with the
proof for A,(w) being verbatim the same. For this we test the Helmholtz equation
with up(.,w) and use the Green’s formula (cf. also (9) for the Kirchoff conditions),
which gives

_/,M ia ()2 + /M 100110 (o )[2 + Butto (Mo, ) = 0.
T T
Dividing the above by w # 0, and using (143), we obtain the following identity:

w AL (W) :w_l/,u|85ua|2 - |w|2w/u|ua\2.
T T

It remains to notice that up # 0 and thus the imaginary part of the above is strictly
negative whenever w € CT. O

Remark 5.10. The above property will be employed to prove that the algorithm
for the evaluation of the symbol of the DtN operator, which we present in the
next section, is well-defined (i.e. no division by zero occurs in the course of this
algorithm). But the meaning of this positivity property is much more important
than this: it is fundamental for the stability of the boundary-value problems. This
is implicitly used, in particular, in theorem 6.2.

Let us state the following two trivial properties of the Herglotz functions, useful
further.

Lemma 5.11. Let f(w) : C — C be an even function analytic in the vicinity of
the origin, which admits the expansion f(w) = fo + fow? + O(w?*) as w — 0, with
fo, f2 €R, and fo # 0 or fo # 0. Assume additionally that, for any w € C*

Im(w™ ! f(w)) < 0. (150)
Then if fo # 0, then fo > 0, while, if fo =0, then fo <O.
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Proof. For w € C* sufficiently small,
sign Im (wilf(w)) = signIm (f() wl+ fy w) .
It is easy to conclude with (150). O

Remark 5.12. The solutions A, (w) and A, (w) defined in corollary 5.6 via solutions
AN (w) and Ap(w) of (145) , cf. lemma 5.5, satisfy (150). From the proof of lemma
5.5, it follows that under additional conditions on the parameters p and «, it is
possible to extend the definitions of

Ay(w) for {pa)>1 and Ap(w) for <B> <1
o
as solutions of the equation (145). However, as already seen by verifying the con-
ditions of lemma 5.11 for their expansions in the origin (cf. lemma 5.5), these

functions no longer satisfy (150) in these regions (with an exception of a special

case () = 1, when Ap(w) = Any(w)). Thus, they cannot be the symbols of a

a
DtN operator. This is consistent with corollary 5.6.

5.4. Numerical approximation of the symbols A,(w), Ay(w). Let us now
provide an algorithm for the numerical approximation of Aq(w) by A%(w), a =0
or n. The function A%(w) will be constructed progressively inside an increasing
sequence of balls B,, that fill the whole complex plane as n — oco. For this, we
rewrite (145) in the form

wsinw — coswfq,,(w)

Alw) = —w BN OESY %A(aiw). (151)
i=0 "

wcosw + sinw fa,, (w)

This expression defines the values of the function A(w) via the values of the same
function in w; = a;w, |w;| < |w|, ¢ =0,...,p — 1. This property serves as the basis
for an algorithm for evaluating the function A4(w).

First of all, let us consider

B, ={weC\R st. |w|<ry:=]|a| ro} (152)

where 9 > 0, the radius of By, is such that By does not contain any pole of A4(w),
i.e.
0<ry<wl

Then, at the continuous level, the iterative algorithm proceeds as follows.

e Initialization: given a truncation parameter N € N, one approximates A, (w)
inside By by its truncated Taylor expansion (recall that A4(w) is even), i. e.

N
Af(w) = Aagn ™, we By, (153)
n=0

where the (real) coefficients \q ,, are computed based on the formulas of ap-
pendix C. This is the step for which the cases a =0 and a = n may differ.

e Induction: Supposing that A§(w) has been computed inside B, one com-
putes A¢(w) inside B, 11 \ B, based on (151), i.e.

wsinw — coswfy ,(w)

p—1
fou) =Y EAs(aw).  (154)

i=0

At(w) = —
a(@) ¥ weosw - sinwfg (W)’
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Note that the above expression completely defines A%(w) inside By41 \ By
since, by construction of B,

forwe B,y \B,, awebB,, V0<i<p-—L
One could ask whether the above algorithm is well-defined, in the sense that a

division by zero never occurs in (154). This is the case, provided a certain condition
on (153); this fact is a corollary of the following two lemmas.

Lemma 5.13. Let f(w): Q C CT — C satisfy (150). Then
1. weosw + sinwf(w) # 0 in Q;

wsinw — f(w) cosw

wceosw + f(w)sinw
Im (w™'F(w)) <0, w e Q.

Proof. Let us prove the first assertion. Notice that h(w) defined by

2. the function F(w) = —w satisfies

h(w) = wcosw + sinw f(w) = wsinw g(w), g(w) = cotw +w fw),
vanishes for some w € CT if and only if g(w) = 0. However, Imcotw < 0 in C*, cf.
[17, p.64], and thus, due to (150),

Img(w) < 0in C*. (155)
1 —w f(w)cotw

To prove 2. , we compute Im(w ' F(w)) = — cotw T o1 (@)
w+w w

, which yields

signIm(w™'F(w)) = —signIm ((1 —w ™! f(w) cotw)(cotw + w1 f(w)))
= —signIm ( g(w) —w™ f(w)|cot w|? — [w™ f(w)|* cotw ).
The above is negative, for the same reasons as (155), and because Imz = —Imz. O

The above result shows that if f3 ,(w) defined in (154) satisfies (150), then no
division by zero occurs in the expression (154). On the other hand, since for small
|w| the value f3 ,(w) is computed via the truncated Taylor expansion (153), it is
natural to ask under which conditions this Taylor expansion will produce a function
satisfying (150).

n
Lemma 5.14. Let f(w) : C — C be an even polynomial f(w) = 5. foow?’, for € R,
(=0

0g<l<n.
If f satisfies (150), then, necessarily,
fo=0, f2 <0, fae =0, for all € > 1.
Otherwise, if either fo > 0 or fo = 0 and fo < 0, then (150) holds for |w| small

enough.

Proof. The first part of the statement follows by contradiction, by taking w € C*
large enough. The second part of the statement mimics the proof of lemma 5.11. [

To formulate the principal result about the feasibility of the algorithm (153, 154),
let us introduce an auxiliary quantity r.(V), which satisfies
it N >1, Im (w_lA‘;(w)) <0 for all w € B(0,7.(N))NCT,

156
itN =1, r«(N) = +o0. (156)
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Then we can formulate the following lemma about the properties of the algorithm.

Lemma 5.15. Let N € N\ {0} and ro < r.(N). Then the algorithm based on (153,
154) is well-defined. Moreover, the function computed by this algorithm satisfies

Im (w™ 'A% (w)) <0, for all we CT. (157)

Proof. 1t is easy to see that it is sufficient to check that the stated result holds for
the first step of the algorithm (i.e. the construction of A%(w) in By). Then one
proceeds by induction, by employing lemma 5.13.

First of all, thanks to lemma 5.14 (in the case N = 1) or (156) (for N > 1), the
function computed by (153) satisfies

Im (w™'A%(w)) <0,  VYwe B(0,r.(N)).
Next, using the definition of the function f, ,, see (151), and the one of B, see
(152),
VweBNCY, Im (w fau(w)) <0.
Then applying lemma 5.13, item 1, with
Q:=BNCY and [f(w)= foulw),
we deduce that
Vwe B NCT, wcosw+sinw fy ,(w) # 0.

Thus, there is no problem to extend the function A%(w) to B \ Bp N CT using the
formula (154). Moreover, by the item 2 of lemma 5.13, the function A%(w) satisfies

Im (w™ ' Ad(w)) <0 in By NCT.
O

Remark 5.16. We did not investigate the (expected) convergence of our algorithm
when N — +o00 and / or rg — 0 but verified it numerically. Note that by construc-

tion, A%(w) is polynomial in By, rational in each B, \ B,, and discontinuous across
each 0B,,.

In practice, we compute a discrete approximation of A%(w) along the rays on
the complex plane Argw = const. First notice that if suffices to compute A% (w)
in the quarter plane Argw € ]0,7/2] since, once this is done, one completes the
construction of Ag(w) using A%(w) = A%(—w) = A%(w), which follows from (30).

Next, we consider the following polar mesh of the quarter plane Argw € |0, 7/2]:
let Ny € N be the number of the discretization points in the polar angle and Ny € N
that defines the number of the discretization points in the ball By. Let us define

w;l:nAreijAe, n>=1 1<7j< Ny,

where Ar = 1’\’,—‘; and Af = ﬁ, cf. figure 7. The value Ny is chosen so that
No > (lalz! = 1), (158)
Then, for each fixed j one computes the {w},n > 1} in the following way:

e Aslong as n < No, A§ (w;l) is computed via the initialization step.
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e As soon as n > Ny, Ag(wgl) is computed using the induction step, with an
additional approximation induced by a linear interpolation procedure. More
precisely, thanks to (158), which appears as a necessary condition for the
explicit nature of our algorithm, we deduce (the verification is left to the
reader) that, for each 0 < ¢ < p—1, there exists £ < n and n € [0,1] such that

a;wf =nwj+ (1—n)w "

; with £ < n.

Remark that the condition (158) ensures that a;w} < w;’_l for all n > Np.
Then, in formula (154) applied to w = wf', one makes the substitution

Ag(aiwy) — nA§(w)) + (1= 1) A§(w; ™).

Rew

FIGURE 7. Polar mesh of the quarter plane

5.5. Numerical results for A,(w) and A,(w). We consider a dyadic symmetric
tree (cf. figure 4) characterized by p = 2, a3 = ag = a and p1 = pg = u, and
compute the symbols of the DtN operators A, and A, for different values of (u, ).

The approximation of A,(w) and A,(w). First of all, let us take & = u = 0.6.
In this case (u, ) € Pyp, and thus Ay(w) # An(w), see corollary 5.6. The plots
of |Ay(w)| and |A,(w)| are shown in figure 8 (for w € C). These results indicate
that the algorithm based on (153, 154) detects the location of the poles of the
meromorphic functions Ay(w) and A, (w), and allows to define the values of these

functions for w ¢ R.
&
7
&
5
4
3
2
1
o
8

FIGURE 8. Plots of |Ay(w)| (left) and |A,(w)| (right), for |w| < 2,
a=u=0.06
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The property (149) of Ay(w) and A,(w). As shown in lemma 5.15, the
property (149) is preserved by the algorithm (153, 154) (provided certain conditions
on N and rg in (153)). In figure 9 we illustrate this fact.

6+ 0 6 0

0.5 0.5
4 4

-1 1
2 ol

1.5 1.5
R PG PN NG PG PN, NN NG L) T T L

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

FIGURE 9. Plots of Im (w™'Ay(w)) (left) and Im (w™ Ay (w))
(right), for |w| < 27, a = p = 0.6. Remark that w™'A,(w) has a
pole in w = 0, unlike w1 Ay, (w).

Meromorphic solutions of (145) Ap(w) and Ay(w), which are not sym-
bols of the DtN operator. Finally, let us demonstrate what happens to the
functions Ap(w) and Ay (w) in the regions where they fail to be the symbols of
the DtN operators, see corollary 5.6 and remark 5.12. For this we set a = 0.6 and
@ = 0.2 (so that (u,) € Py), and compute Ap(w), and next set & = 0.6 and
w = 2 (so that (p, ) € Pp) and evaluate Ax(w). The absolute values of these
functions are shown in figure 10. As one can see, the function Ap(w) has a zero

I
~

[}

S}
o

IS

.@‘o 5.0 o.@.

FIGURE 10. Plots of [Ap(w)| (left) for & = 0.6, 4 = 0.2 and of
|[AN(w)| (right) for o = 0.6, p = 2.

on the imaginary axis (two dark blue spots on the imaginary axis in the left plot
in figure 10), and the function Ay (w) has a pole in ¢{R. These two behaviors are
incompatible with (149).

6. Local approximate transparent boundary conditions for a fractal tree.
In this section, we present a stable low-order local approximation of the DtN oper-
ator, based on the expansions provided in lemma 5.5, see corollary 5.6.
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6.1. Construction of conditions of order 1 and 2. First of all, in practice we
are interested in arbitrary p-adic self-similar trees rather than just reference ones;
the corresponding DtN operators, however, can be easily expressed via the DtN
operators of the reference trees by a simple scaling argument. Given a reference
p-adic self-similar tree 7 and a corresponding p-adic self-similar tree whose root
edge has length ¢, i.e. Ty := £T (with (i, ) remaining the same for both trees),
the symbol of the (Neumann or Dirichet) DtN operator A, ¢ for 7Ty is related to the
corresponding DtN operator for the reference tree Aq(w) via

Ao (W) =01 Ag(w). (159)

Let us come back to the transparent conditions (23) of section 1.6. For simplicity,
but without any loss of generality, let us consider the case where the tree is the self-
similar tree 7 (¢) associated to (g, @) and that we want to solve the wave equation
with a non-homogeneous Dirichlet condition at the entrance of the tree. Suppose
that we wish to truncate the computational domain after the n*" generation, by
prescribing the DtN condition at each of the end points M, ;,0 < j < p" —1, which
is thus nothing but (23) and (24), rewritten as

Hn,j Osu = — Z M1,k M1k at the point M,, ;, (160)
keCn j

where we recall that C, ; is given in (8) and that A,41j is the DtN operator
associated to the subtree 7,41, see (22). Because of the self-similarity properties
and lemma 2.4

Cnj={pi+4,0<i<p—1}, pniipjri = tilinj

Moreover, as the length of the root edge of the tree of T,41 pjti is o ly,; with
ln.; = an ; £, we have

Ant1pjti = Najaie,

where we have used (159) for notation, with a = 9 or n. Thus the transparent
boundary condition at the point M, ; rewrites

p—1
Osu = — Z i Naae, ; u  at the point M, ;. (161)
i=0
From the compactness property of the tree, one expects that, since ¢, ; decays
exponentially fast to 0 with n, to get a good approximation of A a,e, ;, it suffices,
according to the formula (159), to have a good approximation of A4(w) for small
values of |w|. In this perspective, truncated Taylor expansions around the origin
offer an attractive solution since they lead to local boundary conditions. Then, the
only theoretical question is to know if the truncation process preserves the stability
of the new boundary value problem. In what follows, we shall investigate this
question by looking at second order Taylor expansions. More precisely, we propose
the approximations

Aa(w) ~ AP (W) = Aao + Aaow?, (162)

where according to lemma 5.5, we have for the Dirichlet problem (and <E> > 1)
o

boo= 1027 doa= ] (1 (5 () () o)
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while for the Neumann case (which means that (pa) < 1)

Ano = 0, Az = — (1= (pa)) ™", (164)

Remark 6.1. We will refer to these approximations as to the second-order con-
ditions, because they are constructed using the first three terms of the expansion
of the symbol of the DtN in w (as A1 = 0). We could have taken only the first
two terms in the expansion, and in this case these conditions will be referred to as
having the order one.

Note that one has the following sign properties:
/\a,O = O, >\u,2 < 0, a=709,n. (165)

Then, (162) combined with (159), suggests the following approximation of the op-
erators Aq ¢, , appearing in (161) by second order differential operators:

Aot ; ~ A®@

a,aily

—)\aoa 1€ —)\ag (67 fw«(’)f. (166)

This leads to the following boundary value problem on the truncated tree 7": find
uy o : T x RY — R (the approximate solution) such that

pOfug y — Os(pdsug 5) =0, on T x RY,

—
Ostiy o + Z:/“‘i ()‘u,O O‘i_l E;; Ug2 = Aa2 @i Ln j 831&272) =0, (167)
at M, ;, 0<j<J(n),

g2 (- 0) = dhug (., 0) = 0,

completed by initial conditions and the Dirichlet condition at the entrance of the
tree. The weak formulation of the above problem reads

Find uf 5(-t) : [0,T] = H,(T") / ug o (M, t) = f(t) and

d2
dtQ/T MUZvQ("t)U+/ 05 Uq 2(-, 1) Osv

o J(n)
N <Ma> )\a’zﬁ Z Hn,j gn;j UQ,Q(Mn,jﬂf) U(Mn,j),
" (Paun)
J(n)

<7> 00 Z“w Ll (Mg, 1) v(Ma ) = 0,

VoeV(T") ={veH,(T")/v(M,) =0},
ug'72(.,0) = 8tug”2(., 0)=0.

Remark that, contrary to the case of the exact problems, where the distinction
between Neumann and Dirichlet problems occurred in the variational spaces, for
the approximate problems, the difference appears in the bilinear forms, via the
coefficients (Aq,0, Aa2)-

Our main theoretical result is the following stability result.
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Theorem 6.2. Let a =n (resp. a =0) and let uq be the solution of problem (Pq )

for a = n (resp. a = 0) with the source term f. Moreover, let f be compactly
supported in (0,Ty), with To < T. Then, the energy EF 5(t) defined by

1 n
;2“) = 7/ M{|atuu72('7t>|2 + |atuﬂ('7t)|2}

2
1 J(n)
B §<“a>)‘072 Z b j bin,j |8tug,2(Mn,jat)|2
j=0
5BV da0 D2 0] i lup (Mo, 1)
7=0

is constant for t > Ty. As a consequence, the approximate boundary conditions are
uniformly stable in the sense that the approximate solution is bounded in energy
norm by a constant which is independent of the truncation order n.

Proof. Again the existence and uniqueness result is a classical exercise on the theory
of second order linear hyperbolic problems. The result about the energy is obtained
in the usual way after multiplying the first equation of (167) by 9; and integrating
the result over 7. Finally, the stability result, i.e. that £7,(t) defines an energy
(is non-negative), follows from (165). O

6.2. Numerical validation of conditions of order 1 and 2. In this section we
validate the performance of our approximate conditions numerically on the example
of the dyadic symmetric tree (cf. figure 4). Our goal is to check the influence of
the order (1 or 2) of the absorbing boundary condition together with the influence
of the truncation order n of the tree. For each experiment, this evaluation will
be made by by comparing the corresponding approximate solution to a reference
solution computed with a large tree 77 made of the N first generations with N
large (and the second order absorbing boundary condition).

6.2.1. Discretization. We shall not discuss in detail the method that we used for
the discretization of the truncated problem since it is quite classical.

The spatial discretization is done on a uniform spatial mesh with step size h
whose nodes include, in particular, the vertices of the tree. To eliminate the effect
of the spatial discretization on the accuracy of experiments, we use very small values
of h, so that it is compatible with the large reference tree 7V: each edge of the
last generation is divided into K segments. All computations are done on the same
mesh: more precisely, for the computations made on 7" with n < N, we use the
restriction to 7™ of the mesh of 7%. We use standard mass-lumped 1D-Lagrange
finite elements (with a trivial adaptation for the basis functions to ensure their
continuity at the vertices of the tree). For brevity we will use the same notation for
the semidiscretized in space and the continuous solution.

For the time discretization, we use an explicit scheme coupled with an implicit
discretization of the boundary terms. In particular, given a time step At, and
t*F = kAt, we denote by uZ§ ~ ul o(-,tF). Then in (P, ,), all the second-derivatives
(related to volumic and boundary terms) are discretized by
) S e L R
Bt ’U,u’g(-,t ) ~ AtQ s
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the volumic term in the stiffness bilinear form of (P, ,,) is discretized explicitly, i.e.

[ nocuaatiyon ~ [ pouzbon,

and, finally, the boundary 0O-order term is discretized implicitly:
J(n)

© 1 on
<E> Aa,0 E > finj 5w o (M 5, %) 0(My, ;)
=

J(n) n,k n,k n,k
© © S1 (Ya2 T 2Ug> + UGk
- <E> Ao Z) <E> il ( ; )(Mn,j)v(Mn,j).
=

As a consequence, the resulting numerical scheme is stable under the classical CFL
condition CFL = % < 1. Moreover, the resolution of the problem remains fully
explicit.

6.2.2. Numerical Experiments. We present the numerical simulations for the scat-
tering problem with the Dirichlet condition at infinity

poZu(s,t) — 05 (pdsu) (s, t) =0, (s,t) € T x RT,
u(s,0) = f(s), seT,

dru(s,0) = g(s), seT,
Ou(M,,t) + dsu(M,,t) =0, teRT,

on the dyadic tree with the parameters

(168)

ap =01 =a=py = p =00,

with the length of the first branch ¢ = 2. The source terms f(s), g(s) are supported
and centered on the first branch and are given by

f(s) =exp (=30(s —=1)%), g(s) =~ f(s).
According to figure 8, the smallest positive pole of Ay(w) is
Wy ~1.37,

Thus we cannot expect a good approximation of Ay(w) by the truncated Taylor
expansion for |w| > w.

Due to the choice of the source term, for time ¢ small enough u(s,t) is given on
the first branch by f(s —t). Let us then consider the Fourier transform of f, given

by
R 2
F(w) = exp (—;‘;O) .

We observe in particular that for
lw| = weut =30, |f(w)] <e ™5 <6.107%

We perform the simulations with this source. To truncate the tree (find n), we
need to examine how well A,(fa™tw) is approximated for |w| < |weut|, cf. (161).
In particular, n should satisfy |€a"+1wcut| < w). This estimate provides a lower
bound for the truncation order n to expect a reasonable accuracy of the absorbing
boundary condition (162):

Inwy — In (Weutt)

0" eyt < wg = n> i —1, which givesn > 7. (169)
no
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In what follows, we compare the reference solution, computed on the tree TV,
N = 22 (the solution of (P, ) with a =2), to

e the solution ug  defined as the solution of (167) where the the absorbing con-
dition is replaced by the Dirichlet condition, hereafter referred to as the 0
order condition,

e the solution uy ; defined as the solution of (167) with Aq o = o0 and Aq2 =0,
hereafter referred to as the first order condition,

e the solution ug , defined as the solution of (167) with Aqo = Ag 0 and g2 =
Av,2, hereafter referred to as the second order condition.

0.5K
ow

reference solution
--- 9 generations, Dirichlet condition

reference solution

--- 7 generations, Dirichlet condition

YA /\
e~

0.5

!

1
5

10 15

reference solution

--- 7 generations, 1st order condition

.

0.5

reference solution

--- 9 generations, 1st order DtN condition

U |
I I ] —05[ I ‘ I I l
10 15 20 0 5 10 15 20

0.5 — reference solution H 0.5 |l — reference solution M
- -- 7 generations, 2nd order condition - -- 9 generations, 2nd order DtN condition

0
I I ] —05 I 1 I I l
10 15 20 0 5 10 15 20

FIGURE 11. Left row: the dependence of w(M,t) on time for the
exact (red solid line) and the truncated tree on 7 generations (blue
dashed line). Top: Dirichlet condition. Middle: the first order DtN
condition. Bottom: the second order DtN condition.

Right row: the dependence of u(M, t) on time for the exact (red sol-
id line) and the truncated tree on 9 generations (blue dashed line).
Top: Dirichlet condition. Middle: the first order DtN condition.
Bottom: the second order DtN condition.

In figure 11 we plot these computed solutions at the middle of the root branch
of the tree M as functions of time t € [0,T], T = 20, for n = 7 and n = 9 (which is
compatible with (169)). The reference solution is in red, the approximate solution
is in blue. As we can observe, the solution obtained on the truncated tree becomes
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closer and closer to the reference solution as the number of generations or the order
of the truncating operator increases.

These qualitative results are quantified by table 1 and figure 12 where we com-
puted the L? in time error between the reference and the approximate solutions
(both computed at the point M). In table 1, we demonstrate in particular the
improved accuracy of the absorbing boundary conditions (162) compared to taking
n = 7 and the Dirichlet (0-order) condition.

Number of Dirichlet | First order | Second order | Gain with | Gain with
generationsn + 1 | condition | condition condition first order | second order
5 0.429 0.320 123 x 1071 1.34 3.05
6 0.370 0.205 5.01 x 1077 1.80 7.35
7 0.217 0.075 1.37x 102 2.89 15.83
8 0.083 0.018 2.72x 1073 4.53 30.5
9 0.023 0.0031 3.84 x 1077 7.47 59.9

TaBLE 1. L%-error between the exact and approximate solutions,
with respect to the number of generations and the order of the
approximate boundary condition.

In figure 12 we demonstrate that the convergence of the absorbing boundary
conditions with respect to n is close to exponential, and, as expected, the error
decreases with the order of the absorbing boundary condition. Let us remark that
in this work we do not address the error analysis of these conditions, postponing
this question to future works.

7. Conclusions and Prospectives. The contributions of this work are of both
theoretical and numerical nature. First of all, from the theoretical point of view,
we have presented an extensive analysis of the properties of a weighted wave equa-
tion in an infinite compact tree with self-similar endings. One particularly tricky
question is the treatment of the boundary conditions (Neumann or Dirichlet) at ’in-
finity’, the understanding of which requires a deep analysis of particular weighted
Sobolev spaces on compact fractal p-adic trees. From the computational point of
view, based on this analysis, we have constructed transparent boundary conditions
for truncating the computational domain for solving the weighted wave equation
on such fractal trees. The key ingredient is the construction of a reference DtN op-
erator associated to a p-adic self-similar tree, which is a time convolution operator
whose symbol (the Fourier transform of the convolution kernel) is characterized as
a particular solution of a non-linear functional equation. This solution is a mero-
morphic function, analytic in the vicinity of the origin. The analysis of the equation
allows us in particular to compute the second-order Taylor expansion of this sym-
bol around the origin, which we use for constructing approximate local boundary
conditions. We have proven that these conditions are stable and their use results
in a satisfactorily accurate approximation of the solutions. However, because the
range of frequencies for which this Taylor expansion provides a good approximation
is limited (to the pole-free region around the origin), in practice the use of such
low-order conditions is likely to become prohibitively expensive for high-frequency
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FIGURE 12. L%-error between exact and approximate solutions,
with respect to the number of generations and the order of the
approximate boundary condition.

problems. That is why we intend in a future work to improve the approximation-
s of the boundary conditions, by considering two different approaches. The first
idea is to replace the polynomial approximation by a rational approximation, in the
spirit of [15], which would take into account the most significant poles of the exact
symbol. The second idea is to consider the exact boundary conditions. In this case
the main difficulty lies in the time discretization, for which we intend to adapt the
convolution quadrature method [10].

Acknowledgments. The authors are grateful to Konstantin Pankrashkin (Univer-
sity of Paris-Sud) for fruitful discussions.

Appendix A. Proof of lemma 3.16. The first case of the lemma is obvious.
First of all, it is not difficult to verify by induction that:

n—1
Tp <" xo + Z e i (170)
=0

The first term in the rhs of (170) converges to zero because v < 1. For the second
term, we split the sum into two parts that we estimate separately:

(3]
S ey (2] 4+ 1) Jefoo v BT — 0 (since y < 1)

(=0

n—1 1

Soog it ——  sup gy — 0 (since g, — 0)
e=[31+1 L=7 t2n/21

The second case is slightly trickier. First of all, we obtain by induction the equivalent
of the inequality (170), that is:
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xOHw+Zek<h ) (171)
k=0 l=k+1

or equivalently, setting I, = H ve,
=0

19€0+Z n1/Tk)e (172)

The first term in the rhs of (171) converges to 0 because, since 1 — ax < e~ ** for
z =0,

N
1
‘g
;

w:l—g_’_i1 Hwée — 0, n — 00.

On the other hand, for n > N 4+ 1 (N to be fixed later), the second term in the rhs
of (171) satisfies, since I‘n,l/I‘k <1,

n—1 N “+o0
> (Twoa/Tk)e Z n1/Te) e+ > e
k=0 k=0 k=N+1
[e'e] “+o0 c
Since Z en < 00, for any € > 0, we can choose N = N, so that Z er < 5:
n=0 k=N+1
n—1
n>Ns+1 - Z(Fn—l/rk)€k< nlS +E Z

k=0
Since I',, — 0, for n large enough I',,_; 5. < ; and the conclusion follows

Appendix B. Proof of lemma 3.22. Step 1: proof that (124) implies the com-
pactness. Let v, — 0, n — 0o, be s.t. (124) holds. Let u, be a bounded sequence
in V. Our goal is to show that it has a convergent in LZ (T) subsequence. First, up
to the extraction of a first subsequence, we can assume that u, converges weakly
in V to some limit u.

Let us consider the sequence |0, which is bounded in Hi(TO). Since Hi(TO)

is compactly embedded into LZ(TO)7 there exists a subsequence u® of u,, s.t.

u9L|T0 —u’=wy7yo in Li(’TO)

0

Similarly, w is bounded in Hi(Tl) and we extract from v a subsequence u},

s.t.

ol
n|71

UHTI —u' =y in Li(’Tl).
By induction, we can thus build a double-indexed sequence {u”, (n,k) € N2} satis-
fying
n — ufT! is a subsequence of n — u* and u® — u* = upk  in Li(Tk). (173)
Let us now define the diagonal subsequence of u™
Un =u" €V, (174)

for which
Up —u inLo(TF), VEk>1. (175)
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Indeed, for all k, {u”,n > k} is a subsequence of n — u* which converges to u in
Li(Tk) thanks to (173).
Next, let us demonstrate that @,, — u in Li(T). Notice that

[[tn — UHiﬁ(T) = [un — U”ii(frk) + [[n — U||ii(7-\7k) ) keN. (176)

It remains to apply (124) to v = u,, — u. Since %, — u is bounded in H}L(T), there
exists C' > 0, s.t.

~ 2 ~ 2

[ — u”Li(T) < ldn — u”Li(Tk) +C, keN. (177)
Let ¢ > 0. We first fix &k large enough such that C'77 < £/2. Next, exploiting
(175), we choose n large enough (n > Ng(g)) so that ||u, — u”ii(T’“) < ¢/2 and we

conclude that
n>Np(e) = |in— uHii(T) <e.

Thus, @, converges to u in LZ(T).

Step 2: proof that the compactness implies (124). Assume that the embedding of
Vin Li(T) is compact. Let us introduce

Y =8 fulliz (rygey s B=Au €V /el = 11 (178)

Note that 7™ C 7"*! implies that +, is a decreasing sequence. Let us find a
subsequence of ~,, that converges to 0, which would prove that ~,, — 0 as n — oo,
i.e. (124). By compactness of B, there exists u, € B that realizes the supremum in
(178), i.e.

Tn = ”un”Li(T\TH) : (179)
Again, by compactness of B, u, has a subsequence (u,(n))nen, such that
Upny —> u €V, strongly in Li(’T), weakly in H}L(T) (180)
Writing we(n) = (Ugp(n) — u) + u and using the triangular inequality, we get
Vo) < lullz mrem) + [[uwem) = ulles o - (181)
This shows that «,(,) tends to 0. Thus, v, — 0 as n — oo.

Appendix C. Proof of lemma 5.5. Let A be continuous in the origin. Taking
the limit w — 0 in (145), we obtain the following equation :

A(0) = <a>(1 A(0))A(0), or, alternatively, A(0) (1 <a> + <a>A(0)> 0.
The above equation has the following solutions:
e when <ﬁ> # 1, there are two solutions:
a
_ (BN
A0) =0 or A(0)=1 <a> . (182)

e when <g> =1, there is a single solution A(0) = 0.
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Hence the first part of the lemma. To prove the rest of the lemma we will show that
under the appropriate assumptions on g and «, the value in 0 defines in a unique
way any even function, analytic in a neighborhood of the origin, satisfying (145) in
this neighborhood. Thus, let A(w) be an even function, analytic around the origin.
Then for |w| small enough, we have

w) = i Ao w?. (183)

Inserting this expansion into (145), we obtam the following equation:

)2t X (L])ry2n
WZ 2n+1 (Z/\z" M)(nz_%((l?)n)'>
TP SIPES o
P~ (=1)"w 2n,

5 (3w (3 ) (S )

Next, we wish to identify the terms in w?™ of the left and right hand sides of (184).
First of all, for m = 0, A\g = A(0), defined in (182)

For m > 1, one notices that the coefficient in w?™ in the left hand side of (184)
is

. ( 1 m mk>\2k
Lom = 7o +Z

( ' k=0
I G

1 )™ ’“/\
(2 ) + >\2m + Z Qk (185)

As for the right hand side, we next observe that

ngo (-1 (72 /\2nw2n) ( Z W) Z Con w2n7

n=0
where we have set

B e zn:((—l)”%q (186)

(2n)! — (2n—2¢ + 1)!
The coefficient in w?™ in the right hand side of (184) is
m p—1 m
Rop, = Z (Z i Oé?k_l) A2k Com—2k = Zﬁzk A2k Com—2k,
k=0 =0 k=0

where we defined

p—1
-1
M :ZMO‘? , n = 0.
i=0

In other words, with (186),

m ( mfk m m—k (_1)m7k7q>\2q

Rom = ok A2k o oS PP 2m— 2k —2¢ + I’

k=0 gq=0
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Isolating the terms involving A, that correspond to k = m in the first sum, (k =
0,¢g =m) and (k = m,q = 0) in the second sum, we get

m—1 ( 1)m7k

Rop, = (772m (770 + n2m))\0> Aom + Z 72]{,‘)' M2k Aok ( )
187
m—1 m— 1m k
(71) 4 >\2q 1)mikiq )\2(1
~ e\ =) T A2 A .
0 Oqz(2m 2q + 1)! ;qum % 2m — 2k — 2q + 1)!
With Loy, = Rapm, (see (185) and (187)), we obtain a linear equation for Agy,:
m—1
—1)ym -1 m—k
A dom = _eym Z D™ Aae
(2m —1)! pors (2(m —k))!
m—1 m—1
(—1ym* (1),
——— Mok Aok — T A N ) 729
+ kZ:O )1 2k A2 oo ;::0 @m 2 1 1] (188)
b mzk M2k )‘Qk (_1)m7kiq)\2q
— _ [’
= = 2k —2q+ 1)
where A, =1 — Nom + (’[70 + 772m))\0- (189)

Thus, to prove the uniqueness of an even solution analytic in the origin, it is sufficient
to fix A to either of the values (182), and show that A,, # 0 for all m > 1. As we
will see later, this is the only place where Dirichlet and Neumann problems can de
distinguished.

Now it remains to consider the two cases of the statement of the lemma, see also
(123):

o If (@) € Py UPNp & <ua> < 1. We are interested in the solution that

satisfies
Ao =A(0) =0.
In this case, we get the following expression for (189):
A =1 — o, m > 1. (190)

Notice that 7,41 < 1, for all m > 0, and hence A,,+1 > A, for all m > 1.
Thus

Al =1—{(pa)>0 = A, >0foralm>1, (191)

hence the uniqueness of the solution with A(0) = 0. With (188), it is easy
to compute the first two terms of the expansion in w? of the solution A in
the origin. In particular, Ao = —(1 — <,ua>)_1, hence the announced Taylor
expansion.

o If (u,a) € PpUPNp & <H> > 1. We are interested in the solutions
a

satisfying

In this case (189) becomes

Ap =1 = + (10 +12m) 1 —=15") =10 — N2m 15 " (192)
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Like before, it is easy to see that A,,+1 > A,,, for all m > 1. Moreover,

= ()~ o) ()7 = (5 ()~ ) 0 )

because <g>2 > <g> > <;La>.

Hence A, > 0 for all m > 1, thus the uniqueness of the solution. With
(188), it is then immediate to obtain the announced Taylor expansion.
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