A note on non lower semicontinuous perimeter functionals on partitions

  • Received: 01 May 2015 Revised: 01 August 2015
  • Primary: 49Q20; Secondary: 76M30, 76T30.

  • We consider isotropic non lower semicontinuous weighted perimeter functionals defined on partitions of domains in $\mathbb{R}^n$. Besides identifying a condition on the structure of the domain which ensures the existence of minimizing configurations, we describe the structure of such minima, as well as their regularity.

    Citation: Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions[J]. Networks and Heterogeneous Media, 2016, 11(3): 501-508. doi: 10.3934/nhm.2016006

    Related Papers:

  • We consider isotropic non lower semicontinuous weighted perimeter functionals defined on partitions of domains in $\mathbb{R}^n$. Besides identifying a condition on the structure of the domain which ensures the existence of minimizing configurations, we describe the structure of such minima, as well as their regularity.


    加载中
    [1] L. Ambrosio and A. Braides, Functionals defined on partitions in sets of finite perimeter. II, J. Math. Pures Appl., 69 (1990), 307-333.
    [2] E. Bretin and S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics, Preprint, 2015.
    [3] S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions, Comm. Pure Appl. Math., 68 (2015), 808-864. doi: 10.1002/cpa.21527
    [4] G. P. Leonardi, Infiltrations in immiscible fluids systems, Proc. Roy Soc. Edimburgh, 131 (2001), 425-436. doi: 10.1017/S0308210500000937
    [5] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, Cambridge studies in advanced mathematics, 2012. doi: 10.1017/CBO9781139108133
    [6] F. Morgan, Immiscible fluid clusters in $\mathbb R^2$ and $\mathbb R^3$, Michigan Math. J., 45 (1998), 441-450. doi: 10.1307/mmj/1030132292
    [7] M. Ritoré and E. Vernadakis, Isoperimetric inequalities in Euclidean convex bodies, Trans. Amer. Math. Soc., 367 (2015), 4983-5014. doi: 10.1090/S0002-9947-2015-06197-2
    [8] T. Schmidt, Strict interior approximation of sets of finite perimeter and functions of bounded variation, Proc. Am. Math. Soc., 143 (2015), 2069-2084. doi: 10.1090/S0002-9939-2014-12381-1
    [9] A. Voß-Böhme and A. Deutsch, The cellular basis of cell sorting kinetics, J. Theoret. Biol., 263 (2010), 419-436. doi: 10.1016/j.jtbi.2009.12.011
    [10] B. White, Existence of least-energy configurations of immiscible fluids, J. Geom. Analysis, 6 (1996), 151-161. doi: 10.1007/BF02921571
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3509) PDF downloads(164) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog