Citation: Patrick A. Blamo Jr, Hong Ngoc Thuy Pham, The Han Nguyen. Maximising phenolic compounds and antioxidant capacity from Laurencia intermedia using ultrasound-assisted extraction[J]. AIMS Agriculture and Food, 2021, 6(1): 32-48. doi: 10.3934/agrfood.2021003
[1] | Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C, et al. (2019) The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8: 406. |
[2] | Kadam SU, Álvarez C, Tiwari BK, et al. (2015) Extraction of biomolecules from seaweeds. In: Brijesh KT, Declan JT. (Eds), Seaweed sustainability, Food and Non-Food Applications. London: Academic Press, 243-269. |
[3] | Ha TTH, Huong LM, Cuong LH, et al. (2019) Evaluation of biological activities of some seaweed and seagrass species in the coastal area of Vietnam. Vietnam J Mar Sci Technol 19: 405-414. |
[4] | Kim JK, Kottuparambil S, Moh SH, et al. (2015) Potential applications of nuisance microalgae blooms. J Appl Phycol 27: 1223-1234. |
[5] | Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed. Sargassum muticum. Rev Environ Sci Biotechnol 15: 67-88. |
[6] | Uysal O, Uysal FO, Ekinci K (2015) Evaluation of microalgae as microbial fertilizer. Eur J Sustainable Dev 4: 77-82. |
[7] | Thiyagarasaiyar K, Goh BH, Jeon YJ, et al. (2020) Algae metabolites in cosmeceutical: an overview of current applications and challenges. Mar Drugs18: 323. |
[8] | Bwapwa JK, Jaiyeola AT, Chetty R (2017) Bioremediation of acid mine drainage using algae strains: A review. S Afr J Chem Eng 24: 62-70. |
[9] | Jun JY, Jung MJ, Jeong IH, et al. (2018) Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs 16: 301. |
[10] | Gandhi AD, Vizhi DK, Lavanya K, et al. (2017) In vitro anti-biofilm and anti-bacterial activity of Sesbania grandiflora extract against Staphylococcus aureus. Biochem Biophys Rep 12: 193-197. |
[11] | Zeraatkar AK, Ahmadzadeh H, Talebi AF, et al. (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manage 181: 817-831. |
[12] | Omar H, Al-Judaibiand A, El-Gendy A (2018) Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, Laurencia papillosa. Int J Pharmacol 14: 572-583. |
[13] | Haq SH, Al-Ruwaished G, Al-Mutlaq MA, et al. (2019) Antioxidant, anticancer activity and phytochemical analysis of green algae, Chaetomorpha collected from the Arabian Gulf. Sci Rep 9: 18906. |
[14] | Chingizova EA, Skriptsova AV, Anisimov MM, et al. (2017) Antimicrobial activity of marine algal extracts. Int J Phytomedicine 9: 113-122. |
[15] | Martínez Andrade KA, Lauritano C, Romano G, et al. (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16: 165. |
[16] | Liu X, Wang S, Cao S, et al. (2018) Structural characteristics and anticoagulant property in vitro and in vivo of a seaweed sulfated Rhamnan. Mar Drugs 16: 243. |
[17] | Delgado NG, Vázquez AIF, Sánchez CH, et al. (2013) Anti-inflammatory and antinociceptive activities of methanolic extract from red seaweed Dichotomaria obtusata. Braz J Pharm Sci 49: 65-74. |
[18] | Cotas J, Leandro A, Pacheco D, et al. (2020) A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 10: 19. |
[19] | Nguyen TH, Nguyen TLP, Tran TVA, et al. (2019) Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea. Asian Pac J Trop Biomed 9: 501-509. |
[20] | Trung DV, Truc NTT, Duy CNH, et al. (2019) Halogenated sesquiterpenes from the red alga Laurencia intermedia Yamada. Vietnam J Chem 57: 723-727. |
[21] | Irie T, Suzuki M, Kurosawa E, et al. (1970) Laurinterol, debromolaurinterol and isolaurinterol, constituents of Laurencia intermedia Yamada. Tetrahedron 26: 3271-3277. |
[22] | Makkar F, Chakraborty K (2017) Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int J Food Prop 20: 1326-1337. |
[23] | Chemat F, Rombaut N, Sicaire AG, et al. (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34: 540-560. |
[24] | Pacheco‐Fernández I, González‐Hernández P, Rocío‐Bautista P (2015) Main uses of microwaves and ultrasounds in analytical extraction schemes: An overview. In: Anderson JL, Pino V, Stalcup AM. (Eds), Analytical Separation Science. Hoboken, New Jersey, USA: John Wiley & Sons, 5: 1469-1502. |
[25] | Box GE, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Series B Stat Methodol 13: 1-38. |
[26] | Montgomery DC, Runger GC (2010) Applied statistics and probability for engineers. 5th ed. New York: John Wiley & Sons, 784. |
[27] | Kadam SU, Tiwari BK, Smyth TJ, et al. (2015) Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason Sonochem 23: 308-316. |
[28] | Topuz OK, Gokoglu N, Yerlikaya P, et al. (2016) Optimization of antioxidant activity and phenolic compound extraction conditions from red seaweed (Laurencia obtuse). J Aquat Food Prod Technol 25: 414-422. |
[29] | Dang TT, Vuong VQ, Schreider MJ, et al. (2017) Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J Appl Phycol 29: 3161-3173. |
[30] | Pham HNT, Nguyen VT, Vuong QV, et al. (2015) Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. Leaves. Technologies 3: 285-301. |
[31] | Pham HNT, Tang NV, Vuong QV, et al. (2017) Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. Stem as affected by various solvents and drying methods. J Food Process Preserv 41: e12879. |
[32] | Wang L, Wang Z, Li X (2013) Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh using response surface methodology: Sample preparation. J Sep Sci 36: 1652-1658. |
[33] | Ahmed MI, Xu X, Sulieman AA, et al. (2020) Effect of extraction conditions on phenolic compounds and antioxidant properties of koreeb (Dactyloctenium aegyptium) seeds flour. J Food Meas Charact 14: 799-808. |
[34] | Bamba BSB, Shi J, Tranchant CC, et al. (2018) Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 23: 1685. |
[35] | Topuz OK, Gokoglu N, Yerlikaya P, et al. (2016) Optimization of antioxidant activity and phenolic compound extraction conditions from red seaweed (Laurencia obtuse). J Aquat Food Prod Technol 25: 414-422. |
[36] | Mokrani A, Madani K (2016) Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purif Technol 162: 68-76. |
[37] | Hacke ACM, Marques JA, Vellosa JCR, et al. (2018) Ethyl acetate fraction of Cymbopogon citratus as a potential source of antioxidant compounds. New J Chem 42: 3642-3652. |
[38] | Belhaoues S, Amri S, Bensouilah M (2020) Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S Afr J Bot 131: 200-205. |
[39] | Mariem S, Hanen F, Inès J (2014) Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. S Afr J Bot 94: 114-121. |
[40] | Zubia M, Fabre MS, Kerjean V, et al. (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116: 693-701. |
[41] | Rahiman S, Tantry BA, Kumar A (2012) Variation of antioxidant activity and phenolic content of some common home remedies with storage time. Afr J Tradit Complement Altern Med 10: 124-127. |
[42] | Terpinc P, Čeh B, Ulrih NP, et al. (2012) Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind Crops Prod 39: 210-217. |
[43] | Ulewicz-Magulska B, Wesolowski M (2019) Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes. Plant Foods Hum Nutr 74: 61-67. |