[1]
|
R. Bapna, W. Jank and G. Shmueli, Price formation and its dynamics in online auctions, Decision Support Systems, 44 (2008), 641-656.
|
[2]
|
A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321. doi: 10.1142/S0129183102003905
|
[3]
|
A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.
|
[4]
|
A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity, Physica A, 335 (2004), 155-163. doi: 10.1016/j.physa.2003.11.014
|
[5]
|
A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Eds., Econophysics of Wealth Distributions, New Economic Window Series, Springer-Verlag, Milan, 2005.
|
[6]
|
A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126. doi: 10.1103/PhysRevE.72.026126
|
[7]
|
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0
|
[8]
|
M. Cristelli, L. Pietronero and A. Zaccaria, Critical overview of agent-based models for economics, in Proceedings of the School of Physics E. Fermi, course CLXXVI, Varenna, 2010. E-Print: arXiv:1101.1847.
|
[9]
|
A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. Jour. B, 17 (2000), 723-729.
|
[10]
|
B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103. doi: 10.1103/PhysRevE.78.056103
|
[11]
|
B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves, Riv. Mat. Univ. Parma, 1 (2009), 199-261.
|
[12]
|
D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 183-214. doi: 10.1017/CBO9780511609220.014
|
[13]
|
D. Kahneman and A. Tversky, Choices, values, and frames, American Psychologist, 39 (1984), 341-350. doi: 10.1037/0003-066X.39.4.341
|
[14]
|
M. Levy, H. Levy and S. Solomon, Microscopic Simulation of Financial Markets: From Investor Behaviour to Market Phoenomena, Academic Press, San Diego, 2000.
|
[15]
|
T. Lux, The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat tails of return distributions, Journal of Economic Behavior & Organization, 33 (1998), 143-165. doi: 10.1016/S0167-2681(97)00088-7
|
[16]
|
T. Lux and M. Marchesi, Volatility clustering in financial markets: A microscopic simulation of interacting agents, International Journal of Theoretical and Applied Finance, 3 (2000), 675-702. doi: 10.1142/S0219024900000826
|
[17]
|
T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature, 397 (1999), 498-500.
|
[18]
|
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets, Physica A, 391 (2012), 715-730. doi: 10.1016/j.physa.2011.08.013
|
[19]
|
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.
|
[20]
|
D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Stat. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2
|
[21]
|
G. Naldi, L. Pareschi and G. Toscani, Eds., Mathematical Modelling of Collective Behavior in Socio-economic and Life Sciences, Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4946-3
|
[22]
|
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014.
|
[23]
|
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge. A Boltzmann approach, Phil. Trans. R. Soc. A, 372 (2014), 20130396, 15pp. doi: 10.1098/rsta.2013.0396
|
[24]
|
F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004), 046102. doi: 10.1103/PhysRevE.69.046102
|
[25]
|
G. Toscani, Kinetic models of opinion formation, Comm. Math. Scie., 4 (2006), 481-496. doi: 10.4310/CMS.2006.v4.n3.a1
|
[26]
|
J. Voit, The Statistical Mechanics of Financial Markets, Springer Verlag, Berlin, 2005.
|