Loading [Contrib]/a11y/accessibility-menu.js

Boltzmann-type models for price formation in the presence of behavioral aspects

  • Received: 01 August 2014 Revised: 01 January 2015
  • Primary: 35B40, 91B60; Secondary: 82C40.

  • We introduce and discuss a new kinetic system for a financial market composed by agents that may belong to two different trader populations, whose behavior determines the price dynamic of a certain stock. Our mesoscopic description is based on the microscopic Lux--Marchesi model [16,17], and share analogies with the recent kinetic model by Maldarella and Pareschi [18], from which it differs in various points. In particular, it takes into account price acceleration, as well as a microscopic binary interaction for the exchange between the two populations of agents. Various numerical simulations show that the model can describe realistic situations, like regimes of boom and crashes, as well as the invariance of the large-time behavior with respect to the number of agents of the market.

    Citation: Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects[J]. Networks and Heterogeneous Media, 2015, 10(3): 543-557. doi: 10.3934/nhm.2015.10.543

    Related Papers:

    [1] Carlo Brugna, Giuseppe Toscani . Boltzmann-type models for price formation in the presence of behavioral aspects. Networks and Heterogeneous Media, 2015, 10(3): 543-557. doi: 10.3934/nhm.2015.10.543
    [2] Sabrina Bonandin, Mattia Zanella . Effects of heterogeneous opinion interactions in many-agent systems for epidemic dynamics. Networks and Heterogeneous Media, 2024, 19(1): 235-261. doi: 10.3934/nhm.2024011
    [3] Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier . Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks and Heterogeneous Media, 2021, 16(2): 257-281. doi: 10.3934/nhm.2021006
    [4] Min Shen, Gabriel Turinici . Liquidity generated by heterogeneous beliefs and costly estimations. Networks and Heterogeneous Media, 2012, 7(2): 349-361. doi: 10.3934/nhm.2012.7.349
    [5] Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg . Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks and Heterogeneous Media, 2017, 12(1): 59-92. doi: 10.3934/nhm.2017003
    [6] Sergei Yu. Pilyugin, Maria S. Tarasova, Aleksandr S. Tarasov, Grigorii V. Monakov . A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media, 2022, 17(6): 917-931. doi: 10.3934/nhm.2022032
    [7] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [8] Dieter Armbruster, Christian Ringhofer, Andrea Thatcher . A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10(3): 527-542. doi: 10.3934/nhm.2015.10.527
    [9] Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil . Opinion Dynamics on a General Compact Riemannian Manifold. Networks and Heterogeneous Media, 2017, 12(3): 489-523. doi: 10.3934/nhm.2017021
    [10] Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039
  • We introduce and discuss a new kinetic system for a financial market composed by agents that may belong to two different trader populations, whose behavior determines the price dynamic of a certain stock. Our mesoscopic description is based on the microscopic Lux--Marchesi model [16,17], and share analogies with the recent kinetic model by Maldarella and Pareschi [18], from which it differs in various points. In particular, it takes into account price acceleration, as well as a microscopic binary interaction for the exchange between the two populations of agents. Various numerical simulations show that the model can describe realistic situations, like regimes of boom and crashes, as well as the invariance of the large-time behavior with respect to the number of agents of the market.


    [1] R. Bapna, W. Jank and G. Shmueli, Price formation and its dynamics in online auctions, Decision Support Systems, 44 (2008), 641-656.
    [2] A. Chakraborti, Distributions of money in models of market economy, Int. J. Modern Phys. C, 13 (2002), 1315-1321. doi: 10.1142/S0129183102003905
    [3] A. Chakraborti and B. K. Chakrabarti, Statistical mechanics of money: Effects of saving propensity, Eur. Phys. J. B, 17 (2000), 167-170.
    [4] A. Chatterjee, B. K. Chakrabarti and S. S. Manna, Pareto law in a kinetic model of market with random saving propensity, Physica A, 335 (2004), 155-163. doi: 10.1016/j.physa.2003.11.014
    [5] A. Chatterjee, S. Yarlagadda and B. K. Chakrabarti, Eds., Econophysics of Wealth Distributions, New Economic Window Series, Springer-Verlag, Milan, 2005.
    [6] A. Chatterjee, B. K. Chakrabarti and R. B. Stinchcombe, Master equation for a kinetic model of trading market and its analytic solution, Phys. Rev. E, 72 (2005), 026126. doi: 10.1103/PhysRevE.72.026126
    [7] S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0
    [8] M. Cristelli, L. Pietronero and A. Zaccaria, Critical overview of agent-based models for economics, in Proceedings of the School of Physics E. Fermi, course CLXXVI, Varenna, 2010. E-Print: arXiv:1101.1847.
    [9] A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. Jour. B, 17 (2000), 723-729.
    [10] B. Düring, D. Matthes and G. Toscani, Kinetic equations modelling wealth redistribution: A comparison of approaches, Phys. Rev. E, 78 (2008), 056103. doi: 10.1103/PhysRevE.78.056103
    [11] B. Düring, D. Matthes and G. Toscani, A Boltzmann type approach to the formation of wealth distribution curves, Riv. Mat. Univ. Parma, 1 (2009), 199-261.
    [12] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 183-214. doi: 10.1017/CBO9780511609220.014
    [13] D. Kahneman and A. Tversky, Choices, values, and frames, American Psychologist, 39 (1984), 341-350. doi: 10.1037/0003-066X.39.4.341
    [14] M. Levy, H. Levy and S. Solomon, Microscopic Simulation of Financial Markets: From Investor Behaviour to Market Phoenomena, Academic Press, San Diego, 2000.
    [15] T. Lux, The socio-economic dynamics of speculative markets: Interacting agents, chaos, and the fat tails of return distributions, Journal of Economic Behavior & Organization, 33 (1998), 143-165. doi: 10.1016/S0167-2681(97)00088-7
    [16] T. Lux and M. Marchesi, Volatility clustering in financial markets: A microscopic simulation of interacting agents, International Journal of Theoretical and Applied Finance, 3 (2000), 675-702. doi: 10.1142/S0219024900000826
    [17] T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature, 397 (1999), 498-500.
    [18] D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets, Physica A, 391 (2012), 715-730. doi: 10.1016/j.physa.2011.08.013
    [19] R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.
    [20] D. Matthes and G. Toscani, On steady distributions of kinetic models of conservative economies, J. Stat. Phys., 130 (2008), 1087-1117. doi: 10.1007/s10955-007-9462-2
    [21] G. Naldi, L. Pareschi and G. Toscani, Eds., Mathematical Modelling of Collective Behavior in Socio-economic and Life Sciences, Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4946-3
    [22] L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014.
    [23] L. Pareschi and G. Toscani, Wealth distribution and collective knowledge. A Boltzmann approach, Phil. Trans. R. Soc. A, 372 (2014), 20130396, 15pp. doi: 10.1098/rsta.2013.0396
    [24] F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, Phys. Rev. E, 69 (2004), 046102. doi: 10.1103/PhysRevE.69.046102
    [25] G. Toscani, Kinetic models of opinion formation, Comm. Math. Scie., 4 (2006), 481-496. doi: 10.4310/CMS.2006.v4.n3.a1
    [26] J. Voit, The Statistical Mechanics of Financial Markets, Springer Verlag, Berlin, 2005.
  • This article has been cited by:

    1. G. Ajmone Marsan, N. Bellomo, L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, 2016, 26, 0218-2025, 1051, 10.1142/S0218202516500251
    2. Carlo Brugna, Giuseppe Toscani, Kinetic models for goods exchange in a multi-agent market, 2018, 499, 03784371, 362, 10.1016/j.physa.2018.02.070
    3. Hongjing Chen, Chong Lai, Hanlei Hu, Kinetic Models for the Exchange of Production Factors in a Multi-agent Market, 2024, 63, 0927-7099, 2559, 10.1007/s10614-023-10417-z
    4. Hongjing Chen, Chunhua Hu, Zhi Huang, Ewa Pawluszewicz, Optimal Control of Multiagent Decision-Making Based on Competence Evolution, 2023, 2023, 1607-887X, 1, 10.1155/2023/2179376
    5. Laurent Boudin, Lara Trussardi, Concentration Effects in a Kinetic Model with Wealth and Knowledge Exchanges, 2024, 3, 2730-9657, 166, 10.1007/s44007-023-00081-y
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3947) PDF downloads(149) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog