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Abstract. We introduce and discuss a new kinetic system for a financial mar-

ket composed by agents that may belong to two different trader populations,

whose behavior determines the price dynamic of a certain stock. Our meso-
scopic description is based on the microscopic Lux–Marchesi model [16, 17], and

share analogies with the recent kinetic model by Maldarella and Pareschi [18],

from which it differs in various points. In particular, it takes into account price
acceleration, as well as a microscopic binary interaction for the exchange be-

tween the two populations of agents. Various numerical simulations show that
the model can describe realistic situations, like regimes of boom and crashes,

as well as the invariance of the large-time behavior with respect to the number

of agents of the market.

1. Introduction. Agent-based models represent a broad class of mathematical
models which have been recently considered to describe various phenomena of eco-
nomic dynamics. It is nowadays clear that this description can reproduce various
features of financial markets, like volatility clustering [14, 15, 16, 17, 18, 19, 26] and
fat tails of returns [2, 3, 4, 5, 6, 7, 9]. This relatively new research field borrows
several methods and tools from classical statistical mechanics, where the emerg-
ing complex behavior arises from relatively simple rules as a consequence of binary
interactions among a large number of agents [21, 22].

Starting from the microscopic dynamics, kinetic models for trading can be de-
rived with the tools of classical kinetic theory of fluids [7, 10, 11, 20, 24], where
kinetic econophysics has been treated in the framework of Boltzmann-like equa-
tion for Maxwell-type molecules. In contrast with microscopic dynamics, where the
large-time behavior of the system can be often studied only empirically through
computer simulations, in many cases kinetic models based on integro-differential
and/or partial differential equations allow to find analytically general information
on the model and its asymptotic behavior.

In most of these market models, the population of agents shares the same rules
with respect to trading. Only very recently, at the cost of increased complexity of
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the model, the personal behavior of agents on trading has been introduced as a new
parameter, to understand its effects on the long-time behavior of the system. In
[23], the importance of personal knowledge in a system of traders has been studied
by assuming that in a trade both the saving propensity and the risk could depend
on the personal degree of knowledge. There, the Boltzmann-like evolution equa-
tion for binary trading is coupled with a kinetic equation for knowledge evolution.
Also, the personal opinion and other psychological aspects have been considered by
Maldarella and Pareschi in [18]. Their model is intended to describe a speculative
market characterized by a single stock and a socio-economical interplay between
two different types of traders. Starting from the microscopic Lux–Marchesi model
for two categories of agents [15, 16, 17], the fundamentalists and chartists, and from
the kinetic model of opinion formation introduced in [25], Maldarella and Pareschi
derived a system of two kinetic equations for the two categories, which is particu-
larly rich, taking into account also psychological and behavioral components of the
agents, like the way they interact each other and perceive the risk. This is done
by means of a suitable value function in agreement with the Prospect Theory by
Kahneman and Tversky [12, 13].

The hypothesis adopted in [18], derived from the theory of [12, 13] implies an
instantaneous reaction towards risks of the agents at a given time t, based on the
ratio between the price and its derivative at time t. This assumption is some-
what controversial, and has been modified in many ways. Among others, Cristelli,
Pietronero and A. Zaccaria [8] arrive to a different conclusion. The usual reaction
of agents towards risks is generally based on a sufficiently long time series, which
takes into account at least the recent history of the price. In [1], it is indeed pointed
out that in price formation its first and second derivatives (velocity and acceleration
respectively) are the primary objects of interest. The key remark in [1] is that the
main modelling goal is to capture the dynamics of price, and in particular of how
fast the price is changing or moving.

Since the attributes that are typically associated with a moving object are its
velocity (or its speed) as well as its acceleration, following this dynamical example,
we will assume as in [1] that the perception of the risk and its consequent influence
on trading could depend, in addition to the actual price and its derivative, from
the second derivative (the price acceleration). In terms of the realization of the
numerical simulation, this corresponds to the knowledge of a two steps time history.
While this assumption corresponds to a relatively small additional complexity of the
model, it is enough to furnish the concavity (or convexity) of the price curve, thus
giving to traders a more complete information on the expected behavior of the price.

It is important to remark that in the microscopic Lux–Marchesi model [15, 16, 17]
and in its kinetic description [18], agents can move and change categories according
to some (fixed) transition rules, which do not exclude the possibility that one class of
agents could become empty. In particular, in [18] this exchange strategy is realized
by adding to the kinetic equations for the classes of agents a suitable linear operator.
As shown in [18] by various numerical experiments, this characteristics of the model
plays an essential rule in the appearance of fluctuations of the price, as well as in
the creation of boom and crash effects.

At difference with the model in [18], the transition rule between the two categories
of agents will be here introduced as a microscopic binary interaction between agents
of different classes. The result of this interaction will also depend on the personal
opinion of agents. The advantage of our choice is evident. In agreement with the
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classical kinetic theory [22], the whole evolution process is here based on microscopic
binary interactions between agents. For this reason, the model will result as a useful
prototype of collisional models in which there is more than one class of agents
involved.

The choice of a microscopic transition law allows to understand (at a microscopic
level) the importance of the opinion variable in the whole process of the price
formation. Indeed, it is shown that a weak role of the opinion variable in the
exchange between classes, drives the price towards upper and lower bounds, which
can be explicitly given in terms of the initial state of the system. In other words, a
weak role of the opinion variable is such that both boom and crashes in the market
are not possible.

The paper is organized as follows. The model will be introduced in Section 2.
Here, the evolution equation for the price of the stock, as well as the evolution
equations for the number densities of the two populations of agents are written in
the form of a kinetic system of correlated equations. In particular, we will outline
the main differences among the present model and the previous ones. In Section
3 we will discuss the basic role of the opinion variable, and its consequences on
fluctuations of the price. Finally, Section 4 collects various numerical simulations,
which describe how the choice of the relevant parameters of the system can lead to
boom, crashes and fluctuations of the price.

2. The model. The aim of the pioneering Lux–Marchesi model [16, 17] was to
show that the scaling laws that are observed in financial markets can arise from
mutual interaction between agents. In particular, Lux and Marchesi stressed the
clear difference between the statistical properties of the model input, i.e. the normal
noise that makes the stock fundamental price evolve in time, and the output, that
is the price dynamics produced by the operations between agents.

The agents are divided in two categories: the fundamentalists, who believe in
the existence of a reference price PF for the traded stocks (and so, they sell stocks
if the price P (t) > PF and they buy if P (t) < PF ), and the chartists, that are
noise traders whose behavior is dictated by herding and historical prices. While the
total number of agents N remains fixed in time, the number of fundamentalists and
chartists, nF and nC , are allowed to vary. This is done by assuming that at each
time step each agent can change its own category with a given transition probability.
In this way, an internal dynamics within the two classes of agents is established.

The effect of the two classes of agents on the price is very different. While
fundamentalists have a stabilizing effect on the market, as their operations drive the
price towards the reference one, chartists have a destabilizing effect and can create
bubbles and crashes. Furthermore, chartists agents are divided in two subcategories,
optimists, who believe that the price will rise and hence always buy stocks, and
pessimists, who believe that the price will decrease and so, on the contrary, always
sell stocks.

The main features of Lux–Marchesi model have been merged in [18] into the
framework of kinetic theory, with the goal to introduce a kinetic description both
for the behavior of the microscopic agents and for the price, and then to exploit
the tools furnished by kinetic theory to get more insight about the way the micro-
scopic dynamic of each trading agent can influence the evolution of the price. The
model introduced in [18] is still able to describe several phenomena like the pres-
ence of booms, crashes, and cyclic oscillations of the market price. The equilibrium
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behavior has been studied in a suitable asymptotic regime which originates from
the Boltzmann equations a system of Fokker-–Planck equations for the chartist’s
opinion dynamics and the price formation. However, in reason of the intrinsic com-
plexity of the interactions, various interesting aspects of the kinetic system remain
not fully studied and understood.

In what follows, still resorting to the classical methods of kinetic theory, we intro-
duce a model which is reminiscent of both Lux–Marchesi [16, 17] and Maldarella–
Pareschi [18] ideas. At difference with the model introduced in [18], the resulting
exchange mechanism between classes is here introduced at a microscopic level, by
means of a binary interaction between agents. Moreover, we will resort to the
analysis in [1, 8] to model the behavior of the chartists.

Assuming continuous parameters for the number of fundamentalists and chartists,
let f(w, t) denote the probability to have a number w ∈ IR+ of fundamentalist agents
at time t > 0, and let c(v, x, t), with v ∈ IR+, denote the distribution function of the
number of chartist agents. Note that, while the density of fundamentalists depends
only on the time, the density of chartists is also depending on the opinion variable
x ∈ [−1, 1] [25]. This opinion variable describes the individual propensity of agents
to sell or buy. Conventionally, we will assume that the x > 0 corresponds to the
buyer-state, and x < 0 to the seller-state. When x = 0 an agent is considered in a
neutral-state.

According to the classical kinetic theory, the knowledge of the density functions
f(w, t) and c(x, v, t) allows to compute all averaged quantities of interest. Among
them, the mass densities of fundamentalists

mF (t) =

∫
IR+

f (w, t) dw , (2.1)

and chartists

mC (t) =

∫ +1

−1

∫
IR+

c (x, v, t) dv dx . (2.2)

The mean number of fundamentalists agents (respectively chartists) is obtained by
taking the mean with respect to the number variables

nF (t) =

∫
IR+

w f (w, t) dw , (2.3)

and

nC (t) =

∫ +1

−1

∫
IR+

v c (x, v, t) dv dx . (2.4)

By taking the mean with respect to the opinion variable, we obtain the average
investment propensity X(t) of chartists, defined by

X (t) =

∫ +1

−1

∫
IR+

x c (x, v, t) dv dx . (2.5)

Other mean quantities will result of interest in what follows. By taking the means
with respect to the opinion variable (respectively the number variable) only, we
obtain the marginal distribution densities of chartists

mC (v, t) =

∫ +1

−1
c (x, v, t) dx , (2.6)
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and

MC (x, t) =

∫
IR+

c (x, v, t) dx . (2.7)

Likewise, by taking the mean with respect to the number variable only, we obtain
the local mean number of chartists

nC (x, t) =

∫
IR+

v c (x, v, t) dx . (2.8)

The total mean number n(t) of agents at time t ≥ 0 results by summing up nC(t) +
nF (t). Then ρF (t) = nF (t)/n(t) and ρC(t) = nC(t)/n(t) gives the percentages
of chartists and fundamentalists participating to the market. We will speak of
conservative in the mean population a market in which n(t) = n0 is constant.

Together with the densities of agents, and given a certain stock, the principal
object of investigation is the evolution of its price. To this aim, let us introduce
the distribution function h(p, t) of prices of this stock, which is such that h(p, t)dp
denotes the probability that the price belongs to the interval (p, p + dp). Starting
from h(p, t) one can then define the effective market price P (t). The effective market
price is defined as the mean price of the stock

P (t) =

∫ ∞
0

p h (p, t) dp. (2.9)

In order to write the kinetic system of equations for the distribution functions
f(w, t), c(x,w, t) and h(p, t) we have to introduce the rules of variations of the
microscopic variables x, v, w, p. Following [17], we will assume that the microscopic
variation of the price p is related both to the percentages of fundamentalists and
chartists and to the mean investment propensity (2.5) by the formula

p∗ = p+ β (nCµCX) p+ γ nF (PF − p) + ηp. (2.10)

In (2.10) the parameter β characterizes the price speed evaluation, while γ denotes
the reaction strength of fundamentalists to deviations from the fundamental value
PF of the price. Moreover η is a random variable with zero mean and variance
σ2. Thus, the term ηp(t) represents a risky component, which induces random
deviations of the price. In (2.10) it is supposed that chartist agents buy or sell the
same number of units, expressed by the parameter µC .

According to the kinetic theory of gases [22], the evolution in time of the density
price, where the variation of p is given by (2.10), obeys to the linear in p kinetic
equation (in weak form)

d

dt

∫
IR+

ϕ(p)h(p, t) dp =

〈∫
IR+

(ϕ(p∗)− ϕ(p))h(p, t) dp

〉
. (2.11)

In (2.11) ϕ(p) is a smooth function of p, and 〈·〉 denotes mathematical expectation.
Choosing ϕ(p) = p one obtains that the expected value for the price of the stock

satisfies the differential equation [17]

Ṗ (t) = β nC(t)µCX(t)P (t) + γ nF (t) (PF − P (t)) . (2.12)

The time variation of the price is linked to the percentages nC(t) and nF (t) of
chartists and fundamentalists, as well as to the average investment propensity X(t).
Thus, the kinetic equation (2.11) needs to be coupled with the evolution equations
of f(w, t) and c(x, v, t). As before, these evolution equations are constructed from
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the microscopic dynamics of the number variables v and w, and of the opinion
variable x.

In what follows we assume that these microscopic dynamics could depend on the
expected value of the price P (t) towards its first and second derivatives. Concerning
the dynamics of the opinion variable of chartists, following [18, 25] we will assume
the following law of variation

x∗ = x+ α1H(x) [X(t)− x] + α2

[
Φ(Ṗ (t), P̈ (t))− x

]
+ θD (x) . (2.13)

In (2.13), the post-interaction opinion x∗ is modified essentially by three different
contributions. The first one is related to the distance of the individual opinion from
the average investment propensity X(t). Its intensity is measured by a parameter
α1 ∈ [0, 1], and by the function H(x), which characterizes the herding behavior. The
simplest choice is to fix H(x) = 1, which means that all chartists are influenced in
the same way by the average investment propensity. A more realistic choice [18] is
given by

H(x) = 1− |x| . (2.14)

Note that, according to [25], in this case extremal opinions for which |x| = ±1
are not influenced by the average investment propensity. The second contribution
measures the variation of the individual opinion consequent to the market dynamical
state. The size of this variation is expressed by the second parameter α2 ∈ [0, 1].

We will here assume that the function Φ(Ṗ , P̈ ) is defined by

Φ
(
Ṗ , P̈

)
=

 1 if Ṗ > 0, P̈ > 0

−1 if Ṗ < 0, P̈ < 0
0 otherwise .

(2.15)

Within this simple assumption, chartists agents are pushed to buy in presence of a
local growing convex price P (t), or to sale in presence of a local decreasing concave
price. In the remaining cases, there is no variation of the opinion variable consequent
to the variation of the price.

Last, the third contribution is related to a possible change of opinion due to
external effects. This is represented by the random variable θ, assumed with zero
mean and variance τ2. The function D(x), defined by

D(x) =
√

1− x2, (2.16)

describes the diffusive behavior [25]. We remark that, as in the case of the herding
behavior, the choice (2.16) is such that the opinions close to be extremal are less
influenced by external events than the neutral ones.

In order to guarantee that the new opinion x∗ still belongs to the right interval
[−1, 1], the parameters α1, α2 and θ are subjected to the constraints α1+α2+|θ| ≤ 1.

Other choices of functions are of course possible. Note however that in order to
preserve the bounds for x it is essential that D(x) vanishes in x = ±1.

The chartist’s interaction (2.13) differs in a substantial way from the interaction
in [18], where the mechanism of opinion formation for chartists was given as a
function of the derivative of the logarithm of the price, and it is consistent with the
remark of [1, 8], in which even chartists agents use their knowledge of a sufficiently
long time history of the price to decide what to do. Clearly, our choice in (2.15)
can be modified in many ways, including the possibility to generalize the function
considered in [18] to include the acceleration of the logarithm of the price.
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We are now in a position to define the microscopic law of variation of the number
of chartists and fundamentalists. For any given pair (v, w) of numbers of the two
classes of agents, we assume that the new pair (v∗, w∗) will depend both on the
transition probabilities pCF and pFC to change class (from chartists to fundamen-
talists and viceversa), and on the local opinion of the chartists agents. The starting
point of our rule of transition is based on the assumption that a chartist is close to
become a fundamentalist when he has not a better strategy than a fundamental-
ist, and this eventually happens when his opinion is approximately neutral. Thus,
changes from chartists to fundamentalists will be allowed only when their opinion
is not too far from the neutral one. This neutrality will be expressed by a positive
parameter λ ≤ 1. Likewise, we will assume that the fundamentalists that change
class will enter the class of chartists with opinion close to the neutral one. We will
denote the measure of this interval by the parameter δ. Consequently, the general
microscopic law of variation of the pair (v, w) reads

v∗ = v∗(x) = v − pCF v(1− ϑ) I(|x| ≤ λ) + pFCw I(|x| ≤ δ),

w∗ = w∗(x) = w − pFCw(1− ϑ̃) I(|x| ≤ δ) + pCF v I(|x| ≤ λ).
(2.17)

In (2.17) the function I(A) denotes the characteristic function of the set A, that
is I(a) = 1 if a ∈ A, while I(a) = 0 if a /∈ A. Similarly to formulas (2.10) and
(2.13), (2.17) includes random fluctuations of the numbers of the two classes which
maintain constant the mean number of the whole population. This is done in (2.17)
by including in the first (respectively the second) relation in (2.17) a random term

ϑ (respectively ϑ̃), where ϑ and ϑ̃ are independent random variables of mean zero
and variance ς2.

Note that (2.17) implies

〈v∗(x) + w∗(x)〉 = v + w, (2.18)

namely the conservation (in the mean) of the total number of agents. Among the
possible choices of the transition rates between the classes of agents, we will assume
in the following that these rates could depend of the acceleration of the price. A
possible law for this is the following

pCF =

∣∣∣P̈ ∣∣∣
1 +

∣∣∣P̈ ∣∣∣ χ , pFC =
1

1 +
∣∣∣P̈ ∣∣∣ χ , (2.19)

where 0 < χ ≤ 1 is a statistical weight. Within this assumption, to mimic the
resistance to move towards a risk strategy in a turbulent market, the probability
of changing from fundamentalist to chartist decreases when the price acceleration
increases.

Finally the time evolution of the distributions c(x, v, t) of chartist agents and
f(w, t) of fundamentalists is given by the kinetic system (in weak form)

d

dt

∫ 1

−1

∫
IR+

ϕ(x, v)c(x, v, t) dv =〈∫ 1

−1

∫
IR2

+

(ϕ(x∗, v∗)− ϕ(x, v)) f (w, t) c(x, v, t) dv dw dx

〉
(2.20)
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d

dt

∫
IR+

ϕ(w)f(w, t) dw =〈∫ 1

−1

∫
IR2

+

(ϕ(w∗)− ϕ(w)) f (w, t) c(x, v, t) dv dw dx

〉
. (2.21)

We remark that, choosing the test functions ϕ = 1 in (2.20) and (2.21) shows that
the densities mC(t) and mF (t) of chartists and fundamentalists remain probability
densities at any subsequent time. Analogously, choosing ϕ(x, v) = v in (2.20) and
ϕ(w) = w in (2.21) we obtain

d

dt
nC(t) = pFC nF (t)

∫
{|x|≤δ}

MC(x, t) dx− pCF
∫
{|x|≤λ}

nC(x, t) dx

d

dt
nF (t) = pCF

∫
{|x|≤λ}

nC(x, t) dx− pFC nF (t)

∫
{|x|≤δ}

MC(x, t) dx

(2.22)

Hence, thanks to (2.18), we conclude that the total mean number of agents is
conserved in time, so that nC(t) + nF (t) = n0.

Furthermore, let us set ϕ = x in equation (2.20). This allows to compute the
evolution in time of the average investment propensity X(t). In the case in which
in (2.13) the herding function is assumed constant, H = 1, the evolution equation
for X(t) simplifies and takes the form

d

dt
X(t) = α2

[
Φ(Ṗ (t), P̈ (t))−X(t)

]
. (2.23)

Equations (2.22), coupled with the evolution equation for X(t), for example (2.23),
can be used in the equation (2.12) for the price velocity to reckon an exact formula
for the price acceleration.

3. The importance of the opinion of chartists. The kinetic system described
in Section 2 aims to describe the time-evolution of the price of a stock in a system of
agents which play according to different rules. In particular, the chartists strategy
is deeply linked to the formation of a personal opinion which would help to decide
whether or not it is opportune to buy the stock itself.

The basic hypothesis behind the construction of our model, with respect to the
previous ones existing in the literature [16, 18] is the combined rules of the opinion
formation of chartists, and the new idea of using acceleration of the price to measure
both the change of opinion and the change of class (from chartists to fundamentalists
and viceversa).

Despite our simple choices of interactions, which are described by (2.13) and
(2.17), to obtain an analytic precise description of the evolution of the densities
h(p, t), f(w, t) and c(x, v, t) seems to be prohibitive.

Nevertheless, some insight into the time behavior of the price induced by the
kinetic system can be done. The main result here will be to clarify the importance
of the opinion of chartists in order to drive the system towards extremal situa-
tions, which are typically known as booms (the mean price increases unlimited)
and crashes (the mean price collapses towards zero value).

To start with, let us assume that the constants λ and δ which are responsible
of the passage from chartists to fundamentalists and vice-versa are taken equal to
unity. In this case, independently of their personal opinion, a percentage of chartists
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is moved to the other class. In this case, equations (2.22) simplify and give

d

dt
nF (t) = −pFCnF (t) + pCFnC(t). (3.1)

Note that, by definition (2.19), pCF = χ − pFC , so that equation (3.1) can be
rewritten as

d

dt
nF (t) = χnC(t)− 3

2
pFCnF (t). (3.2)

Therefore, when the right-hand side of equation (3.2) is non-negative, the mean
density nF (t) starts to increase. On the other hand

χnC(t)− 3

2
pFCnF (t) ≥ 0

when

nF (t) ≤ 2χ

3pFC
nC(t) =

2

3
(1 + |P̈ |)nC(t). (3.3)

Condition (3.3) is automatically satisfied if nF (t) ≤ nC(t)/2. Owing to the conser-
vation law nF (t) + nC(t) = n0 gives the lower bound

nF (t) ≥ max

{
nF (0),

2

5
n0

}
,

or, what is the same

ρF (t) ≥ max

{
ρF (0),

2

5

}
= ρ̄.

Therefore, in case λ = δ = 1, the percentage of fundamentalists is always greater
than a fixed positive value ρ̄.

Using this information on equation (2.12), and considering that the mean opinion
X(t) ≥ −1, we obtain that at any time t > 0, P (t) can not be smaller than

Pmin(t) =
γρF (t)PF

γρF (t) + (1− ρF (t))tC
≥ γρ̄PF
γρ̄+ (1− ρ̄)tC

.

Consequently, the crash of the price is prevented. Likewise, if the initial percentage
of fundamentalists is bigger or equal than 2/5, so that by the previous argument it
remains bounded below by 2/5, and γ > 3tC/2, so that

γ

γ + tC
>

3

5
,

it holds

ρC(t) <
3

5
≤ γ

γ + tC
. (3.4)

Consequently, using that X(t) ≤ 1 in (2.12) one obtains

Ṗ (t) ≤ β [((tC + γ)ρC − γ)]P (t) + ρF γPF ,

where the coefficient of P (t), by (3.4) is negative. Therefore P (t) remains always
below the upper value

Pmax =
γρ̄PF

γρ̄− (1− ρ̄)tC
,

and there is no possibility of an indefinite growth (boom–state) of the price.
This simple analysis enlightens the importance of the parameters λ and δ in the

large-time behavior of the model, and at the same time the rule of the presence of
fundamentalists, which guarantee that the price evolution is contained in a bounded
interval, whit the lower value bounded away from zero.
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Figure 4.1. a) Average price P (t) in the case of boom–state (figure

left side). b) Acceleration P̈ (t) of the average price in the case of boom–
state (figure right side).

4. Numerical experiments. To study the evolution of price, we have performed
a series of kinetic Monte Carlo simulations for our Boltzmann-type system. In
this rather basic simulations, known as direct simulation Monte Carlo (DSMC)
method or Bird’s scheme, agents are randomly and non-exclusively selected for
interactions, and modify opinion according to the respective trade rules. One time
step corresponds to N such interactions, with N denoting the number of agents.
In all our experiments the group is composed by N = 10.000 agents with an initial
equal percentage of chartists and fundamentalists (i.e. ρC = ρF = 0.5). All agents
possess initially a unit wealth, and all chartist agents possess initially a neutral
opinion (x = 0).

The simulation steps are as follows. One agent is randomly selected. If the se-
lected agent is a chartist, it changes the investment propensity according to the
change of opinion rules (2.13). In the case in which the selected agent is a funda-

mentalist it buys (x = 1) when the average price increases (Ṗ > 0) or sells (x = −1)

when the price decreases (Ṗ < 0) with respect to the fundamental price PF .
To compute a stock approximation of the long-time behavior we noticed it is

appropriate to carry out the simulation for about 103 time steps.
Owing to structure of the kinetics equations, and to the exact results obtained in

Section 3, we tested the eventual formation of the boom and crash states, by acting
on the exchange rules between chartists and fundamentalists, in such a way the
number of density of chartists tends to dominate the number density of fundamen-
talists. A boom effect is then obtained by fixing the parameters β = 4, tC = 0.01,
α1 = 0.1, α2 = 0.5, γ = 0.1, λ = 0.1, δ = 0.01 and µ = 0.5. The boom price
behavior is displayed in Fig.(4.1).

Second, we fix the parameters β = 2, tC = 0.01, α1 = 0.1, α2 = 0.1, γ = 0.1,
λ = 0.8, δ = 0, 5 and µ = 0.5. Under this set of parameters, a crash price behavior
is reported in Fig.(4.2).

The last experiment refers to the case of predominance of the fundamentalist
agents. After the discussion of Section 3 it is known that this situation would prevent
the formation of critical situations. Indeed, the time evolution of the average price
is shown to produce damped oscillations which converge towards the fundamental
price value PF . In Fig.(4.3) the average price and the density of the chartist agents
are reported. In this case the choice of the parameters is β = 0.1, tC = 1, α1 = 0.1,
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Figure 4.2. a) Average price P (t) in the crash–state (figure left side).

b) Acceleration P̈ (t) of the average price in the crash–state (figure right

side).
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Figure 4.3. a) Average price P (t) in the case of damped oscillations
(figure left side). b) Density of the investment propensity (figure right

side).

α2 = 0.1, γ = 1.1, λ = 0.8, δ = 0.8 and µ = 0.5. Fig.(4.4) shows the acceleration

P̈ (t) and the returns market.

5. Conclusions. In this paper we analyzed a new kinetic version of the multi–
agent system introduced by Maldarella and Pareschi [18] in agreement with the
model introduced by Lux and Marchesi [15, 16, 17] to study the evolution of price
in presence of two different human behaviors, represented by fundamentalists and
chartists reactions to the market evolution. At difference with the kinetic descrip-
tion of the opinion formation considered by Maldarella and Pareschi [18], based on
price velocity, we analyzed the effects of price acceleration. Also, a microscopic
description of the migration from one population to the other has been introduced.
It is show both theoretically and numerically that the formation of critical situa-
tions is linked to the opinion variable which characterizes the behavior of chartists
agents, and to the parameters of migration, which depends on price acceleration. In
the case in which migration towards chartists agent is predominant, one shows that
the extremal phenomena of boom and crash can be observed for suitable values of
the parameters characterizing the model itself. On the contrary, when migration
towards chartists is not predominant, so that the percentage of fundamentalists
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b) Acceleration P̈ (t) of the average price in the crash–state (figure right
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remains bounded away from zero, these extremal phenomena are prevented. Nu-
merical simulations enlighten the various behaviors of the price observed in the
previous models, together with their stability with respect to the mean number of
agents present in the market.
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[9] A. Drǎgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. Jour. B, 17

(2000), 723–729.
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