Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis

  • Received: 01 July 2014 Revised: 01 December 2014
  • Primary: 05C90, 05C75; Secondary: 68M10, 94C15, 90B18.

  • In this work we propose a model for the diffusion of information in a complex network. The main assumption of the model is that the information is initially located at certain nodes and then is disseminated, with occasional losses when traversing the edges, to the rest of the network. We present two efficient algorithms, which we called max-path and sum-path, to compute, respectively, lower and upper bounds for the amount of information received at each node. Finally we provide an application of these algorithms to intentional risk analysis.

    Citation: Santiago Moral, Victor Chapela, Regino Criado, Ángel Pérez, Miguel Romance. Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis[J]. Networks and Heterogeneous Media, 2015, 10(1): 195-208. doi: 10.3934/nhm.2015.10.195

    Related Papers:

    [1] Santiago Moral, Victor Chapela, Regino Criado, Ángel Pérez, Miguel Romance . Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis. Networks and Heterogeneous Media, 2015, 10(1): 195-208. doi: 10.3934/nhm.2015.10.195
    [2] Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya . On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7(3): 441-461. doi: 10.3934/nhm.2012.7.441
    [3] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, Dorothea Wagner . Augmenting $k$-core generation with preferential attachment. Networks and Heterogeneous Media, 2008, 3(2): 277-294. doi: 10.3934/nhm.2008.3.277
    [4] Massimiliano Zanin, Ernestina Menasalvas, Pedro A. C. Sousa, Stefano Boccaletti . Preprocessing and analyzing genetic data with complex networks: An application to Obstructive Nephropathy. Networks and Heterogeneous Media, 2012, 7(3): 473-481. doi: 10.3934/nhm.2012.7.473
    [5] Divya Pandey, Vandana Kushwaha . The use of Analytical Hierarchy Process in sensor-based networks for security-aware congestion control. Networks and Heterogeneous Media, 2023, 18(1): 244-274. doi: 10.3934/nhm.2023009
    [6] Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance . Preface: "New trends, models and applications in complex and multiplex networks". Networks and Heterogeneous Media, 2015, 10(1): i-iii. doi: 10.3934/nhm.2015.10.1i
    [7] Regino Criado, Rosa M. Benito, Miguel Romance, Juan C. Losada . Preface: Mesoscales and evolution in complex networks: Applications and related topics. Networks and Heterogeneous Media, 2012, 7(3): i-iii. doi: 10.3934/nhm.2012.7.3i
    [8] Mirela Domijan, Markus Kirkilionis . Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3(2): 295-322. doi: 10.3934/nhm.2008.3.295
    [9] Jan Lorenz, Stefano Battiston . Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3(2): 185-200. doi: 10.3934/nhm.2008.3.185
    [10] Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou . Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13(4): 567-583. doi: 10.3934/nhm.2018026
  • In this work we propose a model for the diffusion of information in a complex network. The main assumption of the model is that the information is initially located at certain nodes and then is disseminated, with occasional losses when traversing the edges, to the rest of the network. We present two efficient algorithms, which we called max-path and sum-path, to compute, respectively, lower and upper bounds for the amount of information received at each node. Finally we provide an application of these algorithms to intentional risk analysis.


    [1] A. Barrat, M. Barthélemy and A. Vespignani, Dynamical Processes on Complex Networks, $1^{st}$ Edition, Cambridge University Press, New York, 2008. doi: 10.1017/CBO9780511791383
    [2] Y. Bar-Yam, Dynamics of Complex Systems, $1^{st}$ Edition, Addison-Wesley, Boston, 1997.
    [3] S. Boccaletti, G. Bianconi , R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks, Physics Reports, 544 (2014), 1-122. doi: 10.1016/j.physrep.2014.07.001
    [4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308. doi: 10.1016/j.physrep.2005.10.009
    [5] J. Borondo, F. Borondo, C. Rodriguez-Sickert and C. A. Hidalgo, To each according to its degree: The meritocracy and topocracy of embedded markets, Scientific Reports, 4 (2014), 1-7. doi: 10.1038/srep03784
    [6] V. Chapela, Tips for Managing Intentional Risk, ISACA, 2011. Available from: http://www.isaca.org/About-ISACA/-ISACA-Newsletter/.
    [7] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics, 8 (1956), 399-404. doi: 10.4153/CJM-1956-045-5
    [8] Y. Lin, J. C. S. Lui, K. Jung and S. Lim, Modelling multi-state diffusion process in complex networks: Theory and applications, 2013 International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2013, 506-513. doi: 10.1109/SITIS.2013.86
    [9] D. López-Pintado, Diffusion in complex social networks, Games and Economic Behavior, 62 (2008), 573-590. doi: 10.1016/j.geb.2007.08.001
    [10] M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256. doi: 10.1137/S003614450342480
    [11] M. Safar, K. Mahdi and S. Torabi, Network robustness and irreversibility of information diffusion in Complex networks, Journal of Computational Science, 2 (2011), 198-206. doi: 10.1016/j.jocs.2011.05.005
    [12] S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.
  • This article has been cited by:

    1. A.M. Cabanas, L.M. Pérez, D. Laroze, Strange non-chaotic attractors in spin valve systems, 2018, 460, 03048853, 320, 10.1016/j.jmmm.2018.04.024
    2. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 3, 978-3-319-26421-9, 37, 10.1007/978-3-319-26423-3_3
    3. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 1, 978-3-319-26421-9, 1, 10.1007/978-3-319-26423-3_1
    4. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 7, 978-3-319-26421-9, 103, 10.1007/978-3-319-26423-3_7
    5. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 5, 978-3-319-26421-9, 65, 10.1007/978-3-319-26423-3_5
    6. Stam Nicolis, Julien Tranchida, Pascal Thibaudeau, Probing the hue of the stochastic magnetization dynamics, 2016, 738, 1742-6588, 012005, 10.1088/1742-6596/738/1/012005
    7. Ángeles Criado-Alonso, Elena Battaner-Moro, David Aleja, Miguel Romance, Regino Criado, Enriched line graph: A new structure for searching language collocations, 2021, 142, 09600779, 110509, 10.1016/j.chaos.2020.110509
    8. D. Urzagasti, D. Becerra-Alonso, L. M. Pérez, H. L. Mancini, D. Laroze, Hyper-chaotic Magnetisation Dynamics of Two Interacting Dipoles, 2015, 181, 0022-2291, 211, 10.1007/s10909-015-1338-2
    9. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 4, 978-3-319-26421-9, 53, 10.1007/978-3-319-26423-3_4
    10. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 2, 978-3-319-26421-9, 9, 10.1007/978-3-319-26423-3_2
    11. A. Criado-Alonso, E. Battaner-Moro, D. Aleja, M. Romance, R. Criado, Using complex networks to identify patterns in specialty mathematical language: a new approach, 2020, 10, 1869-5450, 10.1007/s13278-020-00684-1
    12. Victor Chapela, Regino Criado, Santiago Moral, Miguel Romance, 2015, Chapter 6, 978-3-319-26421-9, 99, 10.1007/978-3-319-26423-3_6
    13. D. Urzagasti, D. Becerra-Alonso, L. M. Pérez, H. L. Mancini, D. Laroze, 2016, Chapter 20, 978-3-319-24869-1, 261, 10.1007/978-3-319-24871-4_20
    14. Sergio Iglesias Pérez, Santiago Moral-Rubio, Regino Criado, A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity, 2021, 150, 09600779, 111143, 10.1016/j.chaos.2021.111143
    15. Regino Criado, Santiago Moral, Ángel Pérez, Miguel Romance, On the edges’ PageRank and line graphs, 2018, 28, 1054-1500, 075503, 10.1063/1.5020127
    16. Sergio Iglesias Perez, Regino Criado, Increasing the Effectiveness of Network Intrusion Detection Systems (NIDSs) by Using Multiplex Networks and Visibility Graphs, 2022, 11, 2227-7390, 107, 10.3390/math11010107
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4381) PDF downloads(104) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog