Citation: Maria Cameron. Computing the asymptotic spectrum for networks representing energy landscapesusing the minimum spanning tree[J]. Networks and Heterogeneous Media, 2014, 9(3): 383-416. doi: 10.3934/nhm.2014.9.383
[1] | R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, New Jersey, 1993. |
[2] | O. M. Becker and M. Karplus, The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics, J. Chem. Phys., 106 (1997), 1495-1517. doi: 10.1063/1.473299 |
[3] | A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys., 228 (2002), 219-255. doi: 10.1007/s002200200609 |
[4] | A. Bovier, Metastability, in Methods of Contemporary Statistical Mechanics, (ed. R. Kotecky), Lecture Notes in Math., Springer, 1970 (2009), 177-221. doi: 10.1007/978-3-540-92796-9 |
[5] | A. Bovier, M. Eckhoff, V. Gayrard and M. Klein, Metastability in reversible diffusion processes I. Sharp estimates for capacities and exit times, J. Eur. Math. Soc., 6 (2004), 399-424. doi: 10.4171/JEMS/14 |
[6] | A. Bovier, V. Gayrard and M. Klein, Metastability in reversible diffusion processes. II. Precise estimates for small eigenvalues, J. Eur. Math. Soc., 7 (2005), 69-99. doi: 10.4171/JEMS/22 |
[7] | M. K. Cameron, Computing Freidlin's cycles for the overdamped Langevin dynamics, J. Stat. Phys., 152 (2013), 493-518. doi: 10.1007/s10955-013-0770-4 |
[8] | M. Cameron, R. V. Kohn, and E. Vanden-Eijnden, The string method as a dynamical dystem, J. Nonlin. Sc., 21 (2011), 193-230. doi: 10.1007/s00332-010-9081-y |
[9] | M. K. Cameron and E. Vanden-Eijnden, Flows in complex networks: Theory, algorithms, and application to Lennard-Jones cluster rearrangement, J. Stat. Phys., 156 (2014),427-454. arXiv:1402.1736. doi: 10.1007/s10955-014-0997-8 |
[10] | J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997. doi: 10.1137/1.9781611971446 |
[11] | E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematic, 1 (1959), 269-271. doi: 10.1007/BF01386390 |
[12] | J. P. K. Doye, M. A. Miller and D. J. Wales, The double-funnel energy landscape of the 38-atom Lennard-Jones cluster, J. Chem. Phys., 110 (1999), 6896-6906. doi: 10.1063/1.478595 |
[13] | W. J. Ewens, Mathematical Population Genetics 1: Theoretical Introduction, 2nd Ed., Springer Science+Business Media, Inc., 2004. doi: 10.1007/978-0-387-21822-9 |
[14] | F. C. Frank, Supercooling of liquids, Proc. R. Soc. Lond. A Math. Phys. Sci., 215 (1952), 43-46. doi: 10.1098/rspa.1952.0194 |
[15] | M. I. Freidlin, Sublimiting distributions and stabilization of solutions of parabolic equations with small parameter, Soviet Math. Dokl., 18 (1977), 1114-1118. |
[16] | M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd ed, Springer-Verlag Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3 |
[17] | M. I. Freidlin, Quasi-deterministic approximation, metastability and stochastic resonance, Physica D, 137 (2000), 333-352. doi: 10.1016/S0167-2789(99)00191-8 |
[18] | preprint. |
[19] | W. Huisinga, S. Meyn and Ch. Schuette, Phase transitions and metastability in Markovian and molecular systems, Ann. Appl. Prob., 14 (2004), 419-458. doi: 10.1214/aoap/1075828057 |
[20] | M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, 1985. doi: 10.1017/CBO9780511623486 |
[21] | J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50. doi: 10.1090/S0002-9939-1956-0078686-7 |
[22] | V. A. Mandelshtam and P. A. Frantsuzov, Multiple structural transformations in Lennard-Jones clusters: Generic versus size-specific behavior, J. Chem. Phys., 124 (2006), 204511. doi: 10.1063/1.2202312 |
[23] | J. H. Gillespie, Population Genetics: A Concise Guide, 2nd Ed. John Hopkins University Press, 2004. |
[24] | preprint, arXiv:1305.1352. |
[25] | J. P. Neirotti, F. Calvo, D. L. Freeman and J. D. Doll, Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble, J. Chem. Phys., 112 (2000), 10340. doi: 10.1063/1.481671 |
[26] | M. Picciani, M. Athenes, J. Kurchan and J. Taileur, Simulating structural transitions by direct transition current sampling: the example of $LJ_{38}$, J. Chem. Phys., 135 (2011), 034108. doi: 10.1063/1.3609972 |
[27] | M. Sarich, N. Djurdjevac, S. Bruckner, T. O. F. Conrad and Ch. Schuette, Modularity revisited: a novel dynamics-based concept for decomposing complex networks, Journal of Computational Dynamics, (2013) (In Press). doi: 10.3934/jcd.2014.1.191 |
[28] | Ch. Schuette, W. Huisinga and S. Meyn, Metastability of diffusion processes, IUTAM Symposium on Nonlinear Stochastic Dynamics Solid Mechanics and Its Applications, 110 (2003), 71-81. doi: 10.1007/978-94-010-0179-3_6 |
[29] | D. J. Wales, Discrete Path Sampling, Mol. Phys., 100 (2002), 3285-3306. doi: 10.1080/00268970210162691 |
[30] | D. J. Wales, Some further applications of discrete path sampling to cluster isomerization, Mol. Phys., 102 (2004), 891-908. doi: 10.1080/00268970410001703363 |
[31] | D. J. Wales, Energy landscapes: calculating pathways and rates, International Review in Chemical Physics, 25 (2006), 237-282. doi: 10.1080/01442350600676921 |
[32] | http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/. |
[33] | http://www-wales.ch.cam.ac.uk. |
[34] | D. J. Wales and J. P. K. Doye, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters containing up to 110 Atoms, J. Phys. Chem. A, 101 (1997), 5111-5116. doi: 10.1021/jp970984n |
[35] | D. J. Wales, M. A. Miller and T. R. Walsh, Archetypal energy landscapes, Nature , 394 (1998), 758-760. doi: 10.1038/29487 |
[36] | D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, 2003. |
[37] | D. J. Wales and P. Salamon, Observation time scale, free-energy landscapes, and molecular symmetry, Proc. Natl. Acad. Sci. USA, 111 (2014), 617-622. doi: 10.1073/pnas.1319599111 |
[38] | A. D. Wentzell, Ob asimptotike naibol'shego sobstvennogo znacheniya ellipticheskogo differentsial'nogo operatora s malym parametrom pri starshikh proizvodnykh, (Russian) [On the asymptotics of the largest eigenvalue of the elliptic differential operator with a small parameter at the highest derivatives], Dokl. Akad. Nauk SSSR, 202 (1972), 19-21. |
[39] | A. D. Wentzell, On the asymptotics of eigenvalues of matrices with elements of order $\exp\{-V_{ij}/2 (\epsilon^2)}$, Soviet Math. Dokl., 13 (1972), 65-68. |