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Abstract. The concept of metastability has caused a lot of interest in recent

years. The spectral decomposition of the generator matrix of a stochastic
network exposes all of the transition processes in the system. The assumption

of the existence of a low lying group of eigenvalues separated by a spectral gap

has become a popular theme. We consider stochastic networks representing
potential energy landscapes whose states and edges correspond to local minima

and transition states respectively, and the pairwise transition rates are given

by the Arrhenuis formula. Using the minimal spanning tree, we construct the
asymptotics for eigenvalues and eigenvectors of the generator matrix starting

from the low lying group. This construction gives rise to an efficient algorithm
suitable for large and complex networks. We apply it to Wales’s Lennard-

Jones-38 network with 71887 states and 119853 edges where the underlying

energy landscape has a double-funnel structure. Our results demonstrate that
the concept of metastability should be applied with care to this system. For

the full network, there is no significant spectral gap separating the eigenvalue

corresponding to the exit from the wider and shallower icosahedral funnel at
any reasonable temperature range. However, if the observation time is limited,

the expected spectral gap appears.

1. Introduction. In this work we consider stochastic networks with detailed bal-
ance where the pairwise transition rates are of the form

Lij =

{
kij
ki
e−(Vij−Vi)/T , if i ∼ j,

0, otherwise,
, where i 6= j. (1)

Networks of this kind represent, e.g., potential energy landscapes where all critical
points are isolated. The set of states is equivalent to the set of local minima, and the
set of edges is equivalent to the set of transition states or Morse index one saddles
separating the local minima. States i and j are connected by an edge (i, j) (notation
i ∼ j) if and only if the corresponding local minima are separated by a single saddle1.
The number Vij in Eq. (1) is the potential at the saddle ij separating i and j, Vi is
the potential at the minimum i, kij and ki are temperature-independent prefactors
defined by the Hessian matrices and the orders of the point groups of the saddle
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ij and the minimum i respectively [29]. T is the temperature, a small parameter.
Eq. (1) defines the off-diagonal entries of the generator matrix L while its diagonal
entries are defined so that the sum of entries in each row is zero, i.e.,

Lii = −
∑
j 6=i

Lij . (2)

D. Wales [29, 30, 31] proposed to model the low temperature dynamics of a
molecular cluster by the dynamics of the corresponding stochastic network. Wales
and his group developed efficient tools for generating and exploring stochastic net-
works representing energy landscapes. A large collection of them can be found at
the web site [33]. Wales’s stochastic networks are complex and fascinating. They
exhibit metastability, offer rich families of possible transition paths, and involve a
remarkable interplay between energetic and entropic barriers. Their study evokes
new theoretical paradigms and inspires the development of new computational tools.

Another context where networks with pairwise transition rates of the form of Eq.
(1) arise is the evolutionary genetics. The networks represent fitness landscapes in
the models of evolutionary dynamics [24, 23, 20, 13].

Analysis of large stochastic networks is an interesting and challenging problem.
The number of states in the network representing an energy landscape coming from
chemical physics is of the order of 10p, p = 3, 4, 5, 6, . . .. The incidence matrix is
sparse but unstructured. The pairwise rates vary by tens of orders of magnitude.
Therefore, it is important to develop efficient computational tools able to cope with
these difficulties.

One of the most appealing analysis tools of stochastic networks is the spectral
decomposition of its generator matrix. It reveals the whole collection of transition
processes taking place in the system. Originally, the asymptotics for the eigenvalues
for of the generator matrices with entries of the order of e−Uij/T , without the
assumption of the detailed balance, was established by A. Wentzell [38, 39, 16] in
1970s. Wentzell’s formulas, involing optimization among the so called W -graphs,
determine the whole collection of the eigenvalues up to the exponential order.

In 2000s, Bovier and collaborators considered systems with detailed balance and
assumed the presence of a spectral gap. They proved sharp estimates for low lying
eigenvalues and the corresponding eigenvectors of Markov chains with detailed bal-
ance in terms of capacities and exit times, and proposed a definition of metastability
in terms of metastable points (representative points for metastable sets) [3, 4, 5, 6].

Spectral analysis in the context of molecular systems was considered by Schuette
and collaborators [28, 19], and another definition of metastability related to ergod-
icity was proposed. An application of spectral analysis to clustering can be found
in [27].

In this work, we focus on the construction of an efficient algorithm for computing
the complete asymptotic spectrum. Our starting point is Wentzell’s formulas. We
prove that in the case of detailed balance, the collection of the so called optimal

1This criterion for the states being connected by an edge can be relaxed. More generally, we

connect states i and j by an edge (i, j) if and only if one can find a Minimum Energy Path φij(α),
α ∈ [0, 1] with the following properties: (i) φij(0) = x1 and φij(1) = xj , where xi and xj are the
local minima corresponding to the states i and j; (ii) φij passes through no other local minima
other than its endpoints xi and xj ; (iii) the only critical points that φij passes through are saddles;

(iv) the maximal value of the potential along φij is achieved at a Morse index one saddle. Then
the number Vij is the maximal potential value along φij . A number of interesting phenomena

regarding the Minimum Energy Paths is discussed in [8].
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W -graphs in Wentzell’s formulas is nested and hence can be built recursively start-
ing from a certain minimal spanning tree and removing edges from it in a certain
order. Then the exponents determining the asymptotics of eigenvalues as well the
asymptotics for eigenvectors are readily found from the optimal W -graphs. These
exponents also define exit rates from certain Freidlin’s cycles [15, 17, 16, 7] which
are easily extracted from the optimal W -graphs as well. We propose a fast com-
putational procedure for finding the collection of the optimal W -graphs and the
asymptotics for the full set of the eigenpairs starting from the smallest eigenvalues
in the absolute value. Precisely, the output of the algorithm is the collection of
potential differences ∆k and sets Sk such that the eigenvalues λk are logarithmi-
cally equivalent to exp(−∆k/T ) and the eigenvectors φk are approximated by the
indicator functions for the sets Sk. Modifying the stopping criterion, one can stop
this algorithm as soon as the eigenvalues exceed some provided threshold.

Using our algorithm, we compute the asymptotic spectrum of Wales’s stochastic
network representing the Lennard-Jones cluster of 38 atoms (we will refer to it as
LJ38). The largest connected component of this network publicallly available via
Wales’s group web site [32] contains 71887 states and 119853 edges. The LJ38 cluster
is interesting because its potential energy landscape has a double-funnel structure
[12, 31]. The deeper and narrower funnel has the face-centered cubic truncated
octahedron (FCC), the global minimum, at the bottom, while the shallower and
wider funnel of icosahedral packings has the second lowest minimum (ICO) at the
bottom. These structures are show in Fig. 5. The double funnel feature might make
us expect that the corresponding network is in some sense metastable. Our results
reveal that it is so in the sense of the definition by Schuette et al [28, 19] but not so in
the sense of the definition of Bovier et al [3, 4] at a reasonable range of temperatures.
The reason is that this network has a large collection of local minima each of which
is relatively high but separated from the ground state by an even higher barrier.
As a result, the set of the potential differences ∆k, k = 1, . . . , n − 1, defining the
exponents of the eigenvalues is relatively dense. If the numbers ∆k are ordered so
that

∆1 ≥ ∆2 ≥ . . . ≥ ∆n−1,

(i.e., the corresponding eigenvalues are ordered according to their absolute values
in the increasing order), the eigenvalue corresponding to exiting from the icosahe-
dral funnel is buried under the number 245. The gaps between the majority of
the numbers ∆k, in particular, the gap ∆245 − ∆246, are much smaller than the
temperatures at which the LJ38 cluster is typically considered. Thus, one cannot
define, following Bovier et al, a set of metastable points, one of which corresponds
to ICO, satisfying the definition of the metastability. This means, that one cannot
approximate the long-time dynamics of the LJ38 network by defining some number
m � n = 71887 of metastable sets and considering transitions between them. On
the other hand, there is a large gap between the number ∆245, determining the
exit rate from the icosahedral basin, and the next largest ∆k corresponding to a
transition process within it. This means that if the system gets to the icosahedral
basin, it will equilibrate there prior to exiting it. Therefore, the icosahedral basin
is metastable in the sense of the definition by Schuette et al [28, 19].

We also would like to point out our use of disconnectivity graphs as a visualization
tool. Originally, they were introduced by Becker and Karplus [2] and extensively
used by Wales et al [35, 36, 31]. Traditionally, the states are arranged along the
x-axis arbitrarily, just so that the graph looks aesthetical. We propose to organize
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the states along the x-axis according to some ordering of interest. In particular, this
ordering can be by the number of the corresponding eigenvalue. In [9], where the
transition process between FCC and ICO was analyzed at finite temperature, we
ordered states along the x-axis according to the committor (a. k. a. the capacitor).

The rest of the paper is organized as follows. In Section 2, we provide a brief
overview of some important properties of networks with detailed balance. The
theoretical relationships between the optimal W -graphs, Freidlin’s cycles and the
asymptotics of the spectrum are discussed in Section 3. The algorithm for comput-
ing the asymptotics of the spectrum is introduced in Section 4. The application to
the LJ38 network is presented in Section 5. We finish this paper with a conclusion
in Section 6.

2. Spectral properties of networks with detailed balance. We consider an
irreducible network with a finite set of states S and the generator matrix L given
by Eqs. (1)-(2). Eqs. (1)-(2) imply that the network possesses the detailed balance
property

πiLij = πjLji, (3)

where π ≡ {π1, π2, . . . πn} is the equilibrium probability distribution satisfying

πTL = 0,
∑
i∈S

πi = 1.

The detailed balance condition (3) means that the expected numbers of transitions
from state i to state j and vice versa per unit time are equal.

The detailed balance property dramatically simplifies the spectral analysis of
the stochastic network. First, Eq. (3) implies that the generator matrix L can be
decomposed as

L = P−1Q, (4)

where P = diag{π1, π2, . . . , πn}, and Q is symmetric. Second, the eigenvalues of L
are real and nonpositive, and the eigenvectors of L are orthogonal with respect to
the inner P product. These facts can be deduced from the similarity of L = P−1Q
and the symmetric matrix P−1/2QP−1/2, and the strict diagonal dominance of the
matrix (tI − L) for any t > 0. The irreducibility of L implies that the eigenvalue 0
is simple. We will write the matrix of eigenvalues of L as

Λ := diag{0,−λ1,−λ2, . . . ,−λn−1}, where 0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1. (5)

Third, the eigen-decompositions of the matrices L and LT can be written as

L = ΦΛΦTP, LT = PΦΛΦT . (6)

In particular, since the row sums of L are zeros, the eigenvector corresponding
to the zero eigenvalue can be chosen to be e := [1, 1, . . . , 1]T . The corresponding
eigenvector of LT is Pe ≡ π, the equilibrium probability distribution.

The spectral decomposition of the stochastic network with detailed balance leads
to a nice representation of the time evolution of the probability distribution. The
probability distribution evolves according to the forward Kolmogorov (a. k. a. the
Fokker-Planck) equation

dp

dt
= LT p, p(0) = p0. (7)
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Using Eqs. (5) and (6) one can write the solution of Eq. (7) in the form

p(t) = etL
T

p0 = PΦetΛΦT p0 = π +

n−1∑
j=1

(φTj p0)Pφje
−λjt, (8)

where Φ = [e, φ1, . . . , φn−1]. Eqs. (5) and (8) show that, no matter what the
initial probability distribution p(0) = p0 is, it will evolve eventually toward the
equilibrium distribution π. However, the components (φTj p0)Pφje

−λjt of p(t) with

small decay rates λj can remain significant for long times, O(λ−1
j ). If the temper-

ature is sufficiently small, the eigenvalues λj of −L are logarithmically equivalent
to exp(−∆j)/T , where ∆j are the certain constants determined by the values Vkl
and Vi, i, k, l,∈ S [38, 39, 16]. Therefore, if the temperature is small enough and
all numbers ∆k are distinct, then

0 < λ1 � λ2 � . . .� λn−1.

3. The spectrum, the minimal spanning tree, and Freidlin’s cycles. In this
Section, we present a construction that allows us to calculate the asymptotics for
the eigenvalues and eigenvectors starting from λ1 and φ1 using a certain minimal
spanning tree. Our starting point is the result established by A. Wentzell in 1970s
[38, 39] (also see [16], Chapter 6).

3.1. Wentzell’s formulas. Wentzell’s theorem [38, 39] is valid for an arbitrary
irreducible stochastic network with a finite number of states, not necessarily with
detailed balance, where the pairwise transition rates are logarithmically equiva-
lent to exp(−Uij/T ). Being adapted for networks with detailed balance where the
generator matrix is of the form (1)-(2), Wentzell’s theorem reads as follows.

Theorem 3.1. Let λ1 < λ2 < . . . < λn−1 be the positive eigenvalues of −L where
L is the generator matrix given by Eq. (1). Let us define the numbers V (k) as

V (k) = min
g∈G(k)

∑
(i→j)∈g

(Vij − Vi) , (9)

where G(k) is the set of W -graphs with the set W = Wk containing k states. Then
for T → 0 we have

λk � e−(V (k)−V (k+1))/T , k = 1, 2, . . . , n− 1. (10)

where the symbol � denotes the logarithmic equivalence.

We remind that a W -graph is defined as follows [16].

Definition 3.2. Let S be the set of states. Let W ⊆ S be its subset. The states
in W are called sinks. A W -graph is a directed graph defined on the set of states S
and possessing the following properties:

(i): Each state in S\W is the origin of exactly one arrow.
(ii): There are no cycles in the graph.

Alternatively, (ii) can be replaced with the condition that for every state i ∈ S\W
there exists a sequence of arrows leading from it to a sink j ∈W .

Thus, a W -graph with k sinks can be constructed as follows. Pick k sinks and
partition the rest of the states into k subsets so that each of them contains exactly
one sink. In each subset, draw arrows to connect the sets with the sink according
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to the rules in Definition 3.2. If states i and j are not connected by an edge we set
Vij =∞.

Note that if W = S, the W -graph contains no edges. Hence V (n) in Eq. (9) is
zero. Therefore, λn−1 � V (n−1), and the number V (n−1) is the smallest barrier in
the network:

V (n−1) = min
i,j∈S, i∼j

(Vij − Vi).

If the number of states in the system is small, one can calculate the numbers V (k),
k = 1, 2, . . . , n−1 directly using Eq. (9) and find the asymptotics for the eigenvalues
using Eq. (10). However, if the number of states is large, this approach becomes
infeasible.

In the next few Sections, we will derive recurrence relationships for the num-
bers V (k) for the case where the pairwise rates are of the form of Eq. (1), and
dramatically simplify the calculation of the asymptotic spectrum.

3.2. The minimum spanning tree. In this Section, we recall the definition of
the minimum spanning tree and its crucial properties (see e.g. [1]). An undirected
graph is called a tree if it consists of a single connected component and contains no
cycles. Let G(S,E,C) be a graph with the set of states S, the set of edges E, and
the cost matrix C = {cij}i,j∈S . If states i and j are connected by an edge, the cost
cij is finite, otherwise cij =∞.

Definition 3.3. Let G(S,E,C) be a connected graph. A spanning tree T =
G(S,E′, C) is a connected graph with the set of states S, the set of edges E′ ⊂ E,
and no cycles. The total cost of the spanning tree is defined as

σ(T ) :=
∑

(i,j)∈E′
cij .

A minimum spanning tree is a spanning tree whose total cost is minimal possible.

A minimum spanning tree has two important properties: it satisfies the cut
optimality condition and the path optimality condition [1]. A cut of a graph is a
partition of its set of states into two subsets. The set of edges connecting states from
the different subsets is called a cut-set or also a cut. The cut optimality condition
states that a spanning tree T is a minimum spanning tree if and only if for any edge
(i, j) ∈ T cij ≤ ckl for every edge (k, l) contained in the cut obtained by removing
the edge (i, j) from T . The path optimality condition claims that a spanning tree
T is a minimum spanning tree if and only if for every edge (k, l) /∈ T , ckl ≥ cij
belonging to the unique path w(k, l) ⊂ T connecting the states k and l.

The cut optimality condition implies that the unique path w∗(k, l) in a minimum
spanning tree T ∗ connecting the states k and l posesses the minimax property, i.e.,

max
(i,j)∈w∗(k,l)

cij = min
w(k,l)∈W(k,l)

max
(i,j)∈w(k,l)

cij , (11)

where W(k, l) is the set of all paths in G(S,E,C) connecting k and l. We will call
a path w∗(a, b) connecting a pair of states a and b minimax if for any two states
k, l ∈ w∗(a, b) the path w∗(k, l) ⊂ w∗(a, b) satisfies Eq. (11).

A minimum spanning tree does not need to be unique. If it is unique, then for
each pair of states k and l there is a unique minimax path.

For a network with pairwise rates given by Eq. (1) we define the cost cij = Vij .
This means that if the set of states of the network is equivalent to the set of local
minima of a potential energy landscape, and the edges correspond to the saddles
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separating the local minima, the cost of the edge (i, j) is the value of the potential
at the saddle separating local minima i and j.

For the rest of the paper, we will make the following genericness assumption.

Assumption 1. The values of the potential at the states Vi, i ∈ S, and at the
edges Vij, i, j ∈ S, are all different. Furthermore, all of the differences Vij − Vk,
i, j, k ∈ S, are also different.

In particular, this means that the minimum spanning tree where the cost cij = Vij
is unique. This minimum spanning tree T ∗ is the key object for our construction.
The problem of finding the minimum spanning tree is a well-studied (see e.g. [1]).
There exist a numbers of efficient algorithms for doing this.

3.3. Notations and terminology. In order to make our presentation clear and
our equations compact, we introduce the following notations.

• A directed W -graph gk ∈ G(k) can be converted to a forest of k trees by
making all its edges undirected. We will denote this forest by Tk. (A graph
that can be decomposed into a collection of trees is called a forest.)

• We will call a W -graph in G(k), at which the minimum in Eq. (9) is achieved,
optimal, and denote it by g∗k. The corresponding forest T ∗k will also be called
optimal.

• We will denote the W -set of the optimal graph g∗k ∈ G(k) by W ∗k , and call it
the optimal set of sinks.

3.4. Construction of asymptotic eigenvalues using the minimum spanning
tree. In this Section, we construct the set of numbers ∆k determining the asymp-
totics for the eigenvalues using the minimum spanning tree. Simultaneously, we
construct a collection of subsets Sk ⊂ S whose indicator functions give the asymp-
totics for the corresponding eigenvectors. We start with the observation that Eq.
(9) defining the numbers V (k) can be rewritten as

V (k) = min
g∈G(k)

 ∑
(i,j)∈Tk

Vij −
∑

i∈S\Wk

Vi

 =

=
∑

(i,j)∈T ∗k

Vij +
∑
i∈W∗k

Vi −
∑
i∈S

Vi, (12)

where g∗k ∈ G(k) is the optimal W -graph with k sinks, and T ∗k and W ∗k are the

corresponding optimal forest and set of sinks. Therefore, the number V (k) is the
sum of potentials Vij over the edges of the optimal forest plus the sum of potentials
over the optimal sinks minus the sum of potentials over all states. The last sum in
Eq. (12) is the same for all W -graphs gk and all k = 1, 2, . . . , n. At this point, we
can make the folowing observation.

Observation 1. Let t be a connected component of the optimal W -graph g∗k. The
sink s ∈ t is the state with the minimal value of the potential among all states i ∈ t,
i.e., Vs = mini∈t Vi.

If Observation 1 would not hold, we would be able to reduce the sum of potentials
at the sinks while leaving optimal forest the same.

Unfortunately, the first two sums in Eq. (12) cannot be optimized independently.
If we sort the states and the edges of the minimum spanning tree in the ascending
order according to their potentials and take the first k states to be the sinks and
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the first n−k edges to constitute the forest, there is no guarantee that each subtree
of the resulting forest contains exactly one sink. Therefore, determination of the
numbers V (k) is a nontrivial constrained optimization problem. Below we propose
a solution to it exploiting the nested property of the optimal W -graphs. We claim
that (i) all optimal forests T ∗k are subgraphs of the minimum spanning tree T ∗,
and (ii) the optimal W -graphs are nested. The former together with Eq. (12)
immediately implies that

V (1) =
∑

(i,j)∈T ∗
Vij + min

i∈S
Vi −

∑
i∈S

Vi. (13)

The latter means that all of the sinks of the optimal W -graph g∗k are also sinks of
g∗k+1, and all of the edges of the optimal forest T ∗k+1 are also edges of T ∗k :

W ∗k ⊂W ∗k+1, k = 1, 2, . . . , n− 1, (14)

T ∗k ⊃ T ∗k+1, k = 1, 2, . . . , n− 1. (15)

Hence, in order to obtain the optimal W -graph g∗k+1 from the optimal W -graph g∗k,
one needs to add exactly one sink and remove exactly one edge. Since each subtree
of the optimal forest T ∗k+1 must contain exactly one sink, one needs to perform three
optimal picks, the last two of which need to be done simultaneously:

• pick a subtree t of the optimal forest T ∗k ,
• split it into two subtrees by removing one edge; denote the subtree containing

the sink of t by t′, and the other one by t′′, and
• pick a new sink in the subtree t′′.

Therefore, the numbers V (k) satisfy the following recurrence relationships:

V (k+1) = V (k) −max
t∈T ∗k

max
(p,q)∈t,i∈t′′

(Vpq − Vi), (16)

where t = t′ ∪ t′′ ∪ {(p, q)}, t′′ ∩W ∗k = ∅, k = 1, 2, . . . n− 1.

Assumption 1 guarantees that in Eq. (16), the optimal edge to remove and the op-
timal sink to add are unique. We will denote them by (p∗k, q

∗
k) and s∗k+1 respectively.

The asymptotics of the eigenvalue λk is determined by the difference V (k)−V (k+1)

according to Theorem 3.1 [38, 39, 16]. Taking into account Eq. (12) we conclude
that

∆k := V (k) − V (k+1) = Vp∗kq∗k − Vs∗k+1
, λk � exp(−∆k/T ). (17)

In the rest of this Section we will prove our claims stated above.
First we prove that all optimal forests T ∗k are subgraphs of the minimum spanning

tree T ∗.

Theorem 3.4. Suppose that Assumption 1 holds. Then the optimal W -graphs
g∗k ∈ G(k), k = 1, . . . , n are subgraphs of the minimum spanning tree T ∗.

Proof. We will proceed from converse. Let g∗k ∈ G(k) be the optimal W -graph, and
T ∗k be the corresponding optimal forest. Suppose that T ∗k contains an edge (p, q)
that does not belong to the minimum spanning tree T ∗. Suppose the edge (p, q)
belongs to a subtree t of T ∗k . Let w∗(p, q) be the unique path in the minimum
spanning tree T ∗ connecting the states p and q. By the path optimality condition
[1] combined with Assumption 1 we have

Vpq > max
(i,j)∈w∗(p,q)

Vij .
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Figure 1. Illustration for the proof of Theorem 3.4.

The removal of the edge (p, q) splits the tree t into two subtrees t′ and t′. Without
the loss of the generality we assume that p ∈ t′, q ∈ t′′, and the sink s of the tree t
belongs to t′. Therefore, if we remove the edge (p, q) from the forest T ∗k and replace
it with an edge (x, y) ∈ w∗(p, q) such that x ∈ t′′ and y /∈ t′′ as shown in Fig. 1, we
transform the W -graph g∗k into another W -graph g?k with the same set of sinks and
with a smaller sum of potentials over its edges. This contradicts to the fact that
g∗k is the optimal graph. Hence the optimal W -graph g∗k must contain only those
edges that belong to the minimum spanning tree T ∗.

Now we prove the nested property of the optimal W -graphs and the recurrence
relationship for the numbers V (k).

Theorem 3.5. Suppose that Assumption 1 holds. Then the optimal W -graphs are
nested, i.e., Eqs. (14) and (15) hold, and the numbers V (k) satisfy the recurrence
relationships given by Eq. (13) and (16).

The proof of Theorem 3.5 relies on

Lemma 3.6. Suppose that Assumption 1 holds. Then

(i): the sink s∗1 of the optimal W -graph g∗1 is also a sink of the optimal W -graphs
g∗k, k = 2, 3, . . . , n;

(ii): the edge (p∗1, q
∗
1) that belongs to T ∗ but does not belong to T ∗2 , also does not

belong to T ∗k , k = 3, . . . , n;
(iii): the second sink s∗2 of the optimal W -graph g∗2 is also a sink of g∗k, k =

3, . . . , n.

Claim (i) of Lemma 3.6 follows from Observation 1. Indeed, since the optimal
graph g∗1 is connected, the state

s∗1 = arg min
i∈S

Vi

is the sink for all optimal W -graphs g∗k, i.e., s∗1 ∈Wk, k = 1, 2, . . . , n.
The proof of Claim (ii) is done from converse. The key point is to find an edge in

the assumed-to-be-optimal W -graph g∗k to be replaced with (p∗1, q
∗
1) so that the sum

in Eq. (12) decreases. The choice of such an edge is different in different cases. The
proof of Claim (iii) easily follows once Claim (ii) is proven. The proofs of Claims
(ii) and (iii) are found in the Appendix.
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Proof. (Theorem 3.5) The optimal W -graph g∗1 contains one connected component
and one sink. Eq. (13) for V (1) immediately follows from Eq. (12) and Theorem
3.4.

The optimal W -graph g∗2 contains all edges of g∗1 except for one than we denote
by (p∗1, q

∗
1), and two sinks, s∗1 (by Lemma 3.6, (i)) and s∗2. It follows from Eq. (12)

that (p∗1, q
∗
1) and s∗2 satisfy

{(p∗1, q∗1), s∗2} = arg max
(p,q)∈T ∗, i∈t′′

(Vpq − Vi), (18)

where T ∗ = t′ ∪ t′′ ∪ {(p, q)}, s∗1 ∈ t′. Therefore,

V (2) =
∑

(i,j)∈T ∗
Vij − Vp∗1q∗1 + Vs∗1 + Vs∗2 −

∑
i∈S

Vi = V (1) − (Vp∗1q∗1 − Vs∗2 ). (19)

Thus, Eqs. (13)-(17) are valid for k = 1.
By Lemma 3.6, (ii) and (iii), the edge (p∗1, q

∗
1) does not belong to T ∗k , k =

3, . . . , n, and the sink s∗2 of the optimal W -graph g∗2 is also a sink of g∗k, k = 3, . . . , n.
Therefore, we can restrict the further analysis to each of the connected components
of the optimal W -graph g∗2 . Applying Lemma 3.6 to each of the connected compo-
nents we obtain that (i) the sink s∗2 of the optimal W -graph g∗2 is also a sink of g∗k,
k = 3, 4 . . . , n; (ii) the edge (p∗2, q

∗
2) that belongs to T ∗2 but does not belong to T ∗3 ,

also does not belong to T ∗k , k = 4, . . . , n, and the third sink s∗3 of g∗3 is also a sink
of g∗k, k = 4, . . . , n. Then we restrict the further analysis to each of the connected
components of g∗3 . Proceeding recursively, we prove the nested property of the op-
timal W -graphs given by Eqs. (14) and (15). Then the recurrence relationship for
the numbers V (k) readily follows from the nested property and Eq. (12).

3.5. Asymptotic eigenvectors, the optimal W -graphs, and Freidlin’s cy-
cles. In this Section, we discuss the relationship between the asymptotic eigenvec-
tors, the optimal W -graphs, and Freidlin’s cycles. Suppose that we have constructed
the optimal W -graphs g∗1 , g∗2 , ..., g∗k+1. Let s∗k+1 be the sink of g∗k+1 that is not
a sink of the optimal W -graphs g∗1 , g∗2 , ..., g∗k. Let us denote by Sk the set of
states in the connected component of the optimal forest T ∗k+1 containing the sink
s∗k+1. Then it follows from the theory developed in [3] by Bovier and collaborators
that the asymptotic eigenvector corresponding to the eigenvalue λk � Vp∗kq∗k −Vs∗k+1

is proportional to the indicator function of the set Sk. I.e., if the temperature is
sufficiently small, the eigenvector corresponding to λk can be approximated by

φk = [φk(1), . . . , φk(n)]T , where φk(j) =

{
1, j ∈ Sk,
0, j /∈ Sk.

(20)

In addition to the set of states Sk one also can consider the largest Freidlin’s cycle
Ck ≡ C(s∗k+1) containing the sink s∗k+1 and not containing any state with a smaller
value of the potential. Below we will show that Ck ⊂ Sk. The significance of
Freidlin’s cycle Ck is that if the system is originally in the set Sk, it will quickly get
to Ck and stay in Ck prior to exiting from the set Sk. Hence the cycle Ck can be
viewed as a metastable set of states of the network in the sense that if the system
is originally in Ck it will equilibrate in it prior to exiting it [28, 19]. It was proven
in [3], that the eigenvalue λk approaches the exit rate rk from the set Sk which is
equal to the exit rate from the cycle Ck as the temperature tends to zero, i.e.,

λk = rk(1 + o(1)).
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In the rest of this Section we will clarify the claim that the asymptotic eigenvector
is the indicator function for the set Sk and give an effective description of the
Freidlin’s cycle Ck. We will return to the discussion of metastability in Section 5.

If the temperature is small enough and Assumption 1 holds, then the eigenvalues
satisfy

0 < λ1 � λ2 � . . .� λk−1 � λk � . . . .

Then the normalized eigenvector φk is approximately equal to the normalized ca-
pacitor hs∗k+1,W

∗
k

(a.k.a. committor) [3], i.e.

φk(j) ≈
hs∗k+1,W

∗
k

(j)

‖hs∗k+1,W
∗
k
‖
, (21)

where the set W ∗k is the optimal set of sinks in the W -graph g∗k and the capacitor
hs∗k+1,W

∗
k

(j) is the probability that the process starting at state j first reaches state

s∗k+1 rather then any state in the set W ∗k . The capacitor satisfies the backward
Kolmogorov equation

∑n
i=1 Lijhs∗k+1,W

∗
k

(j) = 0, i /∈W ∗k+1 = W ∗k ∪ {s∗k+1},
hs∗k+1,W

∗
k

(i) = 0, i ∈W ∗k ,
hs∗k+1,W

∗
k

(s∗k+1) = 1.

(22)

By our construction of the optimal W -graphs in Section 3.4, the highest potential
barrier separating any state j ∈ Sk from state s∗k+1 is smaller than the one separating
it from any state in W ∗k , i.e.,

max
(x,y)∈w∗(j,s∗k+1)

Vxy− min
i∈w∗(j,s∗k+1)

Vi < Vp∗kq∗k−Vs∗k+1
≤ max

(x,y)∈w∗(j,s)
Vxy− min

i∈w∗(j,s∗k+1)
Vi

(23)
for any j ∈ Sk and any s ∈ W ∗k (here w∗(a, b) is the unique path in the minimum
spanning tree connecting states a and b). Hence, as the temperature tends to zero,
the process starting at state j ∈ Sk will reach first s∗k+1 rather than any state
s ∈ S\Sk with probability tending to one. On the other hand, by construction, for
any state j ∈ S\Sk, the highest barrier separating it from the sink in the connected
component of the optimal W -graph g∗k+1 containing state j is strictly less than
Vp∗kq∗k − Vs∗k+1

. Hence the probability to reach state s∗k+1 rather than some sink

in the set W ∗k starting from state j tends to zero as temperature tends to zero.
Therefore, that the capacitor hs∗k+1,W

∗
k

approaches the indicator function of the set

Sk.
Now we remind what are Freidlin’s cycles. Originally, they were introduced by

M. Freidlin in 1970s in order to describe the large time behavior of systems evolving
according to the SDE dx = b(x)dt+

√
2Tdw, where x ∈ Rd, b(x) is a continuously

differentiable vector field, and w is the Brownian motion [15]. If the parameter T is
small, the dynamics of this system can be reduced to the dynamics of a continuous-
time Markov chain where the states correspond to the attractors of the system
[15, 17, 16].

Suppose that the vector field b(x) is potential, i.e., b(x) = −∇V (x), where V (x)
is twice continuously differentiable and satisfies the following conditions: (1) V (x)
is bounded from below, (2) V (x) has n isolated local minima, (3) all saddle points of
V (x) have different heights, and (4) |V (x)| → ∞ as |x| → ∞. In this case, the long
time dynamics of the system reduces to the continuous-time Markov chain with the
generator of the form of Eq. (1). The hierarchy of Freidlin’s cycles in this case was
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studied in [7]. In particular, it was shown that the hierarchy of cycles is a full binary
tree, whose leaves correspond to the potential minima or the states. They are called
the zero order cycles. In total, there are 2n− 1 cycles, and there is an isomorphism
between the set of Freidlin’s cycles and the set of edges of the minimum spanning
tree. In [15, 17, 16] the hierarchy of cycles was constructed using W -graphs. In
[7] the hierarchy of cycles was constructed via a sequence of conversions of rate
matrices into jump matrices and taking limits T → 0. Here we will give a simple
and intuitive contruction. Its justification follows from [7, 15, 17, 16].

Imagine the potential energy landscape V (x), x ∈ Rd, and consider the sublevel
sets

Xa := {x ∈ Rd | V (x) < a}, a ∈ R.
The sets Xa are compact. For a fixed a, either the set Xa is empty, or it consists of
a finite number of connected components each of which contains at least one local
minimum. The collection of local minima belonging to the same connected compo-
nent of Xa forms a Freidlin’s cycle. Since all saddles are assumed to have different
heights (Assumption 1), each cycle consisting of more than one local minimum (i.e.,
of a nonzero order) can be decomposed into is a union of exactly two subcycles.
This shows that the hierarchy of cycles is a complete binary tree. Suppose we are
gradually increasing the level number a starting from minx∈Rd V (x). There will be
exactly n− 1 saddles x∗ such that as a reaches V (x∗), there occurs merging of two
connected components of Xa that used to be disjoing for some range of smaller
values of a. These n− 1 saddles correspond to the edges of the minimum spanning
tree.

Therefore, any Freidlin’s cycle in the network with pairwise rates of the form of
Eq. (1) can be defined as follows.

Definition 3.7. A Freidlin’s cycle C containing a state s∗ ∈ S is a subset of states
C ⊂ S of the form

C =

{
s ∈ S max

(i,j)∈w∗(s∗,s)
Vij < a

}
, (24)

where a is a constant and w∗(s∗, s) is the unique path in the minimum spanning
tree connecting s∗ and s.

The relationship between the optimal W -graphs and the Freidlin’s cycles Ck are
given by

Theorem 3.8. Suppose that Assumption 1 holds. Let s∗k be the sink of the optimal
W -graph g∗k that is not a sink of any g∗j , j = 1, 2, . . . , k − 1. Let tk be the subtree
of the optimal forest T ∗k containing the state s∗k. Then the largest Freidlin’s cycle
Ck containing s∗k and not containing any state s such that Vs < Vs∗k is the subset of
states of tk satisfying

Ck =

{
s ∈ tk max

(i,j)∈w∗(s∗k,s)
Vij < Vp∗k−1q

∗
k−1

}
. (25)

Proof. Let us consider the cut of the network partitioning the set of states S as

S = {i ∈ tk} ∪ {i /∈ tk}.
Obviously, the edge (p∗k−1, q

∗
k−1) belongs to the cut-set of this partition. We claim

that the edge (p∗k−1, q
∗
k−1) has the smallest value of the potential in this partition.

We proceed from converse. Suppose there is another edge (p, q) in this cut-set such
that Vpq < Vp∗k−1q

∗
k−1

. By the strong form of the cut optimality condition (see [1],
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Section 13.3) (p, q) belongs to the minimum spanning tree. Let us consider the W -
graph g?k−1 that is obtained from g∗k−1 by removing the edge (p∗k−1, q

∗
k−1), adding

the edge (p, q), and choosing the sinks properly. Let s∗a and s∗b be the sinks of
the connected components of the optimal W -graph g∗k adjacent to tk via the edges
(p∗k−1, q

∗
k−1) and (p, q) respectively (see Fig. 2). Then the corresponding sinks of

p

q

pk−1
*

qk−1
*

sa
*

sb
*

sk
*

tk

Figure 2. Illustration for the proof of Theorem 3.8.

the W -graph g?k−1 are s∗a and the one out of s∗k and s∗b whose potential is smaller.
Since Vpq < Vp∗k−1q

∗
k−1

and Vs∗b ≥ min{Vs∗k , Vs∗b }, the sum in Eq. (12) for the W -

graph g?k−1 is smaller than the one for g∗k−1. This contradicts to the optimality of
g∗k−1. Therefore, the edge (p∗k−1, q

∗
k−1) has the smallest value of the potential in the

cut-set, i.e.,
Vp∗k−1q

∗
k−1

= min
p∈tk, q /∈tk

Vpq.

Therefore, the Freidlin’s cycle containing s∗k and all other states s such that

max
(i,j)∈w∗(s∗k,s)

Vij < Vp∗k−1q
∗
k−1

belongs to tk, i.e., it is the cycle Ck.
Next we observe that (see Fig. 2)

Vp∗k−1q
∗
k−1

= max
(i,j)∈w∗(s∗a,s∗k)

Vij ,

and this maximum is unique by Assumption 1. Hence, any larger Freidlin’s cycle
contains s∗a and Vs∗a < Vs∗k . Therefore, the Freidlin’s cycle Ck is the largest cycle
containing s∗k and not containing any state with a smaller value of the potential.

4. An algorithm for computing the asymptotic spectrum. In this Section we
propose an algorithm to compute the asymptotics for the spectrum of the generator
matrix L starting from its low lying part. Central to the algorithm are the barrier
function u and the escape function v defined as follows.

Definition 4.1. Let W ∗ ⊂ S be a subset of states in the stochastic network with
pairwise rates of the form (1). The barrier function u(i) for the given set W ∗ is
defined as

u(i) = min
s∗∈W∗

max
(p,q)∈w∗(i,s∗)

Vpq, i ∈ S, (26)
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where w∗(s∗, i) is the unique path in the minimum spanning tree connecting the
states s∗ and i.

Definition 4.2. Let W ∗ ⊂ S be a subset of states in the stochastic network with
pairwise rates of the form (1). The escape function v(i) for the given set of sinks
W ∗ is defined as

v(i) = u(i)− Vi, i ∈ S.

The output of the algorithm is the set of numbers

∆k := Vp∗kq∗k − Vs∗k+1

and the sets Sk determiniming the asymptotics of the eigenvalues and the eigen-
vectors respectively, and the Freidlin’s cycles Ck. This Algorithm is justified by
Theorems 3.4, 3.5 and 3.8.
Algorithm 1: Calculation of the asymptotic spectrum
Initialization
Precompute the minimum spanning tree T ∗. Remove all edges that do not belong
to T ∗. Set

k = 0;

s∗1 = arg min
i∈S

Vi;

u(s∗1) = 0, u(i) = max
(p,q)∈w∗(s∗1 ,i)

Vpq, i ∈ S;

v(s∗1) = 0, v(i) = u(i)− Vi, i ∈ S;

T ∗1 = T ∗;
S0 ≡ C0 = S,

where w∗(s∗1, i) is the unique path in T ∗k connecting the states s∗1 and i.
For k = 1 : n− 1

1. Find the new sink s∗k+1 = arg maxi∈S v(i).
2. Find the cutting edge (p∗k, q

∗
k) in the path in T ∗k connecting the new sink s∗k+1

with one of the existing sinks:

w∗ = {s∗j , . . . , p∗k, q∗k, . . . , s∗k+1}, j ∈ {1, 2, . . . , k},

such that u(p∗k) < u(s∗k+1) and u(q∗k) = u(s∗k+1). Set

∆k = (Vp∗kq∗k − Vs∗k+1
).

3. Remove the cutting edge (p∗k, q
∗
k), i.e., set T ∗k+1 = T ∗k \{(p∗k, q∗k)}.

4. Set u(s∗k+1) = 0; v(s∗k+1) = 0.
5. Set Sk to be the collection of states in the connected component of T ∗k con-

taining the sink s∗k+1. For all states i ∈ Sk update the barrier function u and
the escape function v:

u(i) = min

{
u(i), max

(p,q)∈w∗(s∗k+1,i)
Vpq

}
, v(i) = min{v(i), u(i)− Vi},

where w∗(s∗k+1, i) is the unique path in T ∗k connecting the states s∗k and i.
The sink s∗k+1 and the set of states where the values of u and v have changed
constitute the Freidlin’s cycle Ck.
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end for
There exists a collection of greedy algorithms for finding the minimum spanning

tree [1]. We have used Kruskal’s algorithm [21, 1] whose computational cost for a
network with n states and m edges is O(m + n log n) plus the time of sorting the
edges [1].

The initialization and Step 5 in the for-cycle is done using a recursive procedure
in at most n−k steps because the minimum spanning tree and its subgraphs contain
no cycles. Step 1 in the for-cycle is done using the heap sort whose cost is log(n−k).
Step 2, finding the cutting edge, requires at worst l steps if the path w∗(s∗k+1, s

∗
k)

consists of l edges. Obviously, l ≤ n− k, and typically l� n− k.
Therefore, the upper bound for the computational cost of the for-cycle is O(n(n−

1) + n log n− n) = O(n2 − 2n+ n log n).
We remark that one can replace the for-cycle with the while-cycle in Algorithm

1 with the stopping criterion of the form Vp∗kq∗k − Vs∗k+1
< ∆.
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Figure 3. Example: the seven-well potential. The potential en-
ergy landscape is converted into a stochastic network. Then the
minimum spanning tree and the disconnectivity graph are built.

We demonstrate how Algorithm 1 works on the example of the seven-well po-
tential (Figures 3 and 4). The continuous potential energy landscape (Figure 3,
top left) is converted into a stochastic network with 7 states corresponding to the
potential minima (Figure 3, top right). A pair of states is connected by an edge if
and only if there exists a Minimum Energy Path (MEP) connecting them that does
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not pass through other minima. The resulting network contains 9 edges. The num-
bers Vi, i = 1, . . . , 7, are the values of the potential at the corresponding minima.
The numbers Vij , i, j ∈ {1, . . . , 7}, i 6= j, are the maximal values of the potential
along the corresponding MEPs, i.e., the values of the potential at the corresponding
saddles. Then we extract the minimum spanning tree (Figure 3, bottom left) that
can be easily converted into the disconnectivity graph (Figure 3, bottom right).

Since state 1 corresponds to the deepest minimum, we set s∗1 = 1. The saddle
separating minima 1 and 2 is higher than those separating minima 2, 3, 4, 5, and 6,
but lower than the one separating all of them from minimum 7. The value function
u and the escape function v are initialized as shown in Figure 4, top left. The
set S0 as well as Freidlin’s cycle C0 are always the whole set of states. Then the
for-cycle at k = 1 gives the following. The maximum of v is reached at state 2.
Hence state 2 becomes the new sink s∗2. The cutting edge (p∗1, q

∗
1) is the edge (1, 2).

We remove it from the network. Hence the set S1 is {2, 3, 4, 5, 6, 7}. We update
the functions u and v starting the computation from state 2. State 1 does not
belong to the same connected component as the new sink 2, therefore, u(1) and
v(1) are not updated. State 7 belongs to the same connected component as state
2. However, since the highest barrier separating states 1 and 7 is the same as the
one separating states 2 and 7, the values u(7) and v(7) remain the same. At the
rest of the states, both values u(i) and v(i) are updated. Hence the Freidlin’s cycle
is C1 = {2, 3, 4, 5, 6} (Figure 4, top middle). Continuing in a similar manner for
k = 2, 3, . . ., we obtain the following sequences of sinks, cutting edges, sets Sk and
the corresponding Freidlin’s cycles:

s∗1 = 1, S0 = C0 = {1, 2, 3, 4, 5, 6, 7},
s∗2 = 2, (p∗1, q

∗
1) = (1, 2), S1 = {2, 3, 4, 5, 6, 7}, C1 = {2, 3, 4, 5, 6},

s∗3 = 7, (p∗2, q
∗
2) = (3, 7), S2 = C2 = {7},

s∗4 = 5, (p∗3, q
∗
3) = (4, 5), S3 = C3 = {5, 6},

s∗5 = 6, (p∗4, q
∗
4) = (5, 6), S4 = C4 = {6},

s∗6 = 3, (p∗5, q
∗
5) = (2, 3), S5 = {3, 4}, C5 = {3},

s∗7 = 4, (p∗6, q
∗
6) = (3, 4), S6 = C6 = {4}.

These sequences define the asymptotic eigenvalues and eigenvectors:

λ0 = 0, φ0 = [1, 1, 1, 1, 1, 1, 1]T ,

λ1 � exp(−(V12 − V2)/T ), φ1 = [0, 1, 1, 1, 1, 1, 1]T ,

λ2 � exp(−(V37 − V7)/T ), φ2 = [0, 0, 0, 0, 0, 0, 1]T ,

λ3 � exp(−(V45 − V5)/T ), φ3 = [0, 0, 0, 0, 1, 1, 0]T ,

λ4 � exp(−(V56 − V6)/T ), φ4 = [0, 0, 0, 0, 0, 1, 0]T ,

λ5 � exp(−(V23 − V3)/T ), φ5 = [0, 0, 1, 1, 0, 0, 0]T ,

λ6 � exp(−(V34 − V4)/T ), φ6 = [0, 0, 0, 1, 0, 0, 0]T .

5. Application to the Lennard-Jones-38 network. The potential energy of a
Lennard-Jones cluster LJN is given by

V (r) = 4ε
∑
i<j

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (27)
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2 1

k = 0:
S0 = C0 = {1,2,3,4,5,6,7}

u = [0, 12.5, 12.5, 12.5, 12.5,  12.5, 14.9]!
v = [0, 11.2, 9.7, 3.9, 8.7, 8.4, 10.3]

657

3
4

2 1

k = 1:
S1 = {2,3,4,5,6,7};  C1 = {2,3,4,5,6}

u = [0, 0, 7.3, 8.7, 9.0, 9.0, 14.9]!
v = [0, 0, 4.5, 0.1, 5.1, 4.9, 10.3]

657

3
4

2 1

k = 2:
S2 = C2 = {7}

u = [0, 0, 7.3, 8.7, 9.0, 9.0, 0]!
v = [0, 0, 4.5, 0.1, 5.1, 4.9, 0]

657

3
4

2 1

k = 3:
S3 = C3 = {5,6}

u = [0, 0, 7.3, 8.7, 0, 8.9, 0]!
v = [0, 0, 4.5, 0.1, 0, 4.8, 0]

657

3
4

2 1

k = 4:
S4 = C4 = {6}

u = [0, 0, 7.3, 8.7, 0, 0, 0]!
v = [0, 0, 4.5, 0.1, 0, 0, 0]

657

3
4

2 1

k = 5:
C5 = {3,4};  C5 = {3}

u = [0, 0, 0, 8.7, 0, 0, 0]!
v = [0, 0, 0, 0.1, 0, 0, 0]

s1*=1; s2*=2;  (p1*,q1* )=(1,2); s3*=7;  (p2*,q2* )=(3,7); 

s4*=5;  (p3*,q3* )=(4,5); s5*=6;  (p4*,q4* )=(5,6); s6*=3;  (p5*,q5* )=(2,3);

Figure 4. Example: the application of Algorithm 1 to the sto-
chastic network in Figure 3. The functions u and v are computed
and then updates at every step. The sequences of the sinks s∗j , the
cutting edges (p∗j , q

∗
j ), and the corresponding Freidlin’s cycles Cj

are built in the process.

where the numbers rij = |ri − rj | are the pairwize distances between the atoms.
Throughout this work we will use reduced units with kB = ε = σ = 1. The
majority of global potential energy minima for Lennard-Jones clusters of various
sizes are based on the icosahedral packing. However, for some special numbers
of atoms, Lennard-Jones clusters may admit a high symmetry configuration based
on other packings [34, 12, 31]. The smallest special number is 38. The potential
energy minimum of the LJ38 cluster is achieved at the face-centered cubic truncated
octahedron with the point group Oh (Fig. 5). The second lowest minimum is the
icosahedral structure with the C5v point group (Fig. 5). For brevity we will refer
to these configurations as FCC and ICO respectively. These two lowest minima
are far disconnected in the configurational space. It was shown by Frank in 1950s
[14] that as a monoatomic liquid cools, structures based on the icosahedral packing
tend to appear. However, in order to crystalize, the atoms should rearrange into a
periodically-extendable structure, e.g., face-centered cubic.

Wales and collaborators developed an efficient technique for conversion of poten-
tial energy landscapes into stochastic networks whose states and edges correspond
to local minima and transition states (saddles of Morse index one separating pairs
of local minima) respectively [12, 31, 36]. The stochastic network associated with
LJ38 is publicly available via Wales’s group web site [32]. Its connected component
containing FCC and ICO (minima 1 and 7 in Wales’s list respectively) contains
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FCC (minimum 1)

The lowest minimum

ICO (minimum 7)

The second lowest minimum

Minimum 16

The third lowest minimum Minimum 41

Minimum 264 Minimum 3 Minimum 4 Minimum 5

Minimum 2052 Minimum 3551 Minimum 5215

Figure 5. Some important local minima of the potential energy
of the LJ38.

71887 states and 119853 edges. We will denote the states in the LJ38 network other
than FCC and ICO by their index in Wales’s list.

The problem of the LJ38 cluster rearrangement has attracted a lot of atten-
tion in the past fifteen years and has become a benchmark problem in chemical
physics. Many scientists attacked the problem of LJ38 rearrangement between its
two lowest potential minima FCC and ICO using different tools. Wales analyzed
the LJ38 network using the Discrete Path Sampling [29, 30, 31]. The asymptotic
zero-temperature path connecting FCC and ICO and the sub-hierarchy of Freidlin’s
cycles involved into the transition process was found in [7]. A finite temperature
analysis of the LJ38 network using the tools of the Transition Path Theory was
recently conducted in [9]. The LJ38 cluster rearrangement in the continuous setting
was also attacked by methods that do not involved the exhaustive study of the
energy landscape. These methods include direct transition current sampling [26],
molecular dynamics and temperature accelerated molecular dynamics [18], and par-
allel tempering [25].

The barrier separating FCC and ICO has the height of 4.219 and 3.543 energy
units with respect to FCC and ICO respectively [12]. Typically, LJ38 is considered
at low temperatures 0 < T � 1 as the solid-solid phase transition between face-
centered cubic and icosahedral structures takes place at T = 0.12, the outer layer
starts to melt at T = 0.18, and the cluster melts completely at T = 0.35 [22].
The barrier, separating ICO from FCC is about 30 kBT at T = 0.12. One might
expect that the icosahedral basin with the deepest minimum ICO is, in some sense,
a metastable subset of the LJ38 network. Our results show, however, that the
situation is delicate. Whether to view the icosahedral basin as metastable or not
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depends upon what definition of metastability is used and the observation time as
well.

The graph of ∆k := Vp∗kq∗k − Vs∗k+1
versus k for k = 1, . . . , 71886 is shown in

Fig. 6. Recall that λk � exp(−∆k/T ). More or less notable gaps are present
only between the first few barriers ∆k corresponding to sinks with high potential
evergy. These sinks are separated from the rest of the states by very high potential
barriers. The eigenvalue corresponding to the sink ICO is λ245. There is no signif-
icant gap separating ∆245: ∆246 − ∆245 ≈ 0.0036. This means that λ245 � λ246

only for extremely low temperatures (at least, T should be less than 0.0036). The
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Figure 6. The numbers ∆k := Vp∗k−1q
∗
k−1
− Vs∗k versus k for the

LJ38 network.

disconnectivity graph for the sinks from s∗1 ≡FCC up to s∗300 is shown in Fig. 7.
ICO is the sink s∗246. This graph shows that if the system is initially at ICO or
FCC, it is extremely unlikely for it to get to any other sink out of the first 300,
if the temperature T < 0.1. Therefore, the sinks corresponding to the smallest
eigenvalues are essentially irrelevant to the low-temperature dynamics. This means
that if the system is initially not in one of these states, and the observation time is
not extremely long, it is unlikely for the system to reach those states. A relevant
discussion can be found in [37].

Algorithm 1 also gives the collection of sets Sk determining the asymptotic eigen-
vectors, and the corresponding Freidlin’s cycles Ck. A few largest disjoint sets Sk,
k ≥ 1, are shown in Fig. 8. The largest set Sk for k ≥ 1 is S245, the one which
appears when the sink corresponding to the second lowest minimum ICO is added.
It consists of 56290 states. Freidlin’s cycle C(ICO) contains 791 states. This means
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Figure 7. The disconnectivity graph showing the first 300 sinks
of the LJ38 network. FCC and ICO correspond to sinks 1 and 246
respectively. The states are ordered according to the number of
sink that they represent. The potential energy is shown relative to
FCC.

that if the temperature is low enough and the system is initially at any state be-
longing to S245, it relatively quickly gets to C(ICO) ⊂ S245 and stays there for
relatively long time O(exp(∆245/T )) prior to exiting it. The other large disjoint
sets Sk, k ≥ 1, are S6910 with 4252 states, the corresponding sink is minimum 3,
and the corresponding Freidlin’s cycle contains 3 states; S7482 with 1316 states,
corresponding to minimum 4, and |C(4)| = 1; S5296 with 379 states, corresponding
to minimum 5, and |C(5)| = 2; S4143 with 990 states, corresponding to minimum
5215, and |C(5215)| = 8; S11750 with 680 states, corresponding to minimum 3551,
and |C(3551)| = 7; and S11961 with 1758 states, corresponding to minimum 2052,
and |C(2052)| = 4. The relationship between these sets outlined in Fig. 8 is ob-
tained using the algorithm for computing the asymptotic zero-temperature path
introduced in [7]. Besides the states belonging to one of the shown sets Sk, there
are 6221 more states (excluding FCC) in the LJ38 network that do not belong to
any of the shown sets. The largest set Sk, k ≥ 1 formed by these remaining 6221
states is S8009 with 288 states corresponding to minimum 587, and C(587) consists
of 2 states. The next largest disjoint sets Sk, k ≥ 1, formed by the remaining states
consist of 160, 98, 87, 79, . . . states. Overall, the set of states in the LJ38 network
can be decomposed into a disjoint union of the global minimum FCC and 2327 sets
Sk. Out of them, 1395 sets consist of a single state, 406 consist of 2 states, 177
consist of 3 states, etc. The complete data about these disjoint sets Sk are found
in Table 1.
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Figure 8. The largest disjoint sets Sk’s in the LJ38 network
together with the corresponding ∆k’s and Freidlin’s cycles. The
area of the circles representing the sets Sk is proportional to the
number of states in them.

Fig. 7 suggests that some of the sets Sk are separated by high potential barri-
ers from the global potential minimum FCC. This fact motivates us to restrict our
attention to the part of the LJ38 network that is accessible from FCC at low temper-
atures if the observation time is large but not very large. We take the decomposition
of the LJ38 network into the disjoint union of FCC and 2327 sets Sk and select only
those Sk’s that are separated from FCC by a barrier whose height does not exceed 5
relative to VFCC (i.e., for these Sk’s, Vp∗kq∗k −VFCC < 5 or Vp∗kq∗k < −168.928). All 60
such sets Sk, k ≥ 1, are listed in Table 2. Table 2 shows that there is a significant
spectral gap for the truncated and factored LJ38 network: ∆245 − ∆4143 = 1.790.
The truncated and factored minimum spanning tree for the LJ38 network formed by
these selected sets and FCC in Fig. 9 is calculated using the algorithm introduced in
[7]. Lumping the states into disjoint sets Sk can be helpful for comparison with elec-
tron microscopy or diffraction experiments since large collection of states [32] based
on icosahedral packing (395 states, states 6 through 400) is indistinguishable from
low resolution experimental data. Similarly, states 1 – 5 [32] based on face-centered
cubic packing are also indistinguishable. Therefore, for a careful comparison, even
further lumping may be done. We leave this problem for the future.

The size distribution of Freidlin’s cycles is presented in Table 3. Naturally, C0 ≡
C(FCC) contains all 71887 states. The second largest Freidlin’s cycle is C(ICO)
containing 791 states. The third largest cycle with 45 states corresponds to the
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N The # of sets Sk with |Sk| = N Sink(s)
56290 1 ICO
4252 1 3
1758 1 2052
1316 1 4
990 1 5215
680 1 3551
379 1 5
288 1 587
160 1 5429
98 1 2295
87 1 9087
79 1 4305
66 1 3552
54 1 7746
49 1 30562
47 1 13165
45 1 407
40 1 17251
36 1 3074
33 1 4065
28 3 45155, 77289, 85766
27 1 3191
25 3 3863, 32036, 75247
24 1 85341
23 1 6757
21 2 2, 6070
20 1 4066
18 1 11218
17 3 18648, 36425, 39076
16 4 16545, 24258, 33579, 79028
15 5 11238, 29369, 59335, 70722, 94195
14 1 9833
13 3 13287, 35221, 51978
12 10
11 11
10 14
9 18
8 21
7 27
6 47
5 55
4 97
3 177
2 406
1 1395

Table 1. The sizes of disjoint sets Sk constituting the set of states
of the LJ38 network together with FCC. The indicator functions of
the sets Sk are asymptotic eigenvectors.

third deepest minimum (minimum 16) (Fig. 5). Note that C(16) ⊂ C(ICO) ⊂ S245.
About 84% of Freidlin’s cycles Ck consist of single states. This is the result of the
fact that the states in the LJ38 network are separated by relatively high barriers.
Therefore, one cannot significantly factor the dynamics of the LJ38 network by
decomposing it into a disjoint union of Freidlin’s cycles.

At this point, we would like to remark about the validity of Assumption 1 (the
genericness assumption). Out of 71886 numbers ∆k there are 3 repeated ones:
∆44216 = ∆44217, ∆47405 = ∆47406, and ∆54732 = ∆54733. This means that special
care should be taken about the corresponding asymptotic eigenvectors. However,
these eigenvectors are not of interest. The rest of asymptotic eigenvectors are not
affected.
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k Sink Vp∗kq∗k ∆k |Ck| |Sk|

245 ICO 4.219269e+00 3.543221e+00 791 56290
4143 5215 4.171512e+00 1.753054e+00 8 990
4342 2295 4.875641e+00 1.722202e+00 4 98
4609 13165 4.837103e+00 1.683919e+00 3 47
5296 5 3.880840e+00 1.592507e+00 2 379
5804 19647 4.840889e+00 1.528352e+00 1 1
6038 5429 4.778529e+00 1.502450e+00 11 160
6521 3552 4.812691e+00 1.450600e+00 2 66
6910 3 3.763385e+00 1.408780e+00 3 4252
7482 4 3.429287e+00 1.356882e+00 1 1316
7659 9087 4.686362e+00 1.338609e+00 7 87
7675 4065 4.952008e+00 1.337357e+00 1 33
7823 407 4.864080e+00 1.325427e+00 2 45
8010 587 4.210932e+00 1.309406e+00 2 288
8231 4305 4.793179e+00 1.289844e+00 2 79
8451 26615 4.595571e+00 1.270736e+00 1 11
8498 32036 4.929577e+00 1.266567e+00 3 25
8693 55024 4.718209e+00 1.251325e+00 1 1
9464 19633 4.823696e+00 1.192426e+00 1 7
10136 12536 3.921984e+00 1.145851e+00 1 12
10833 1787 4.823821e+00 1.100551e+00 1 12
10999 43115 4.866834e+00 1.089582e+00 1 1
11355 61403 4.845165e+00 1.063956e+00 2 3
11750 3551 3.830233e+00 1.039356e+00 7 680
11961 2052 3.913145e+00 1.026976e+00 4 1758
12917 3624 4.715649e+00 9.728158e-01 2 6
14327 59098 4.457973e+00 8.977427e-01 1 1
16694 47464 4.617778e+00 7.857551e-01 2 3
19098 5074 4.788369e+00 6.897715e-01 2 9
20834 16468 4.918987e+00 6.277720e-01 1 1
22168 3190 4.871516e+00 5.837694e-01 3 3
22544 28583 4.775726e+00 5.725636e-01 2 6
24715 10735 3.882704e+00 5.094120e-01 1 1
24967 3191 3.652424e+00 5.030321e-01 1 27
25642 22585 4.686717e+00 4.854972e-01 1 1
27507 6119 4.665559e+00 4.395695e-01 1 1
27508 7135 4.779884e+00 4.395485e-01 1 3
27907 11388 4.783819e+00 4.305184e-01 1 1
29151 16976 4.575356e+00 4.012544e-01 1 2
29477 5029 3.631126e+00 3.941418e-01 1 3
31771 12970 4.339322e+00 3.465081e-01 2 2
32961 16916 4.449395e+00 3.233989e-01 1 1
34118 6129 4.579289e+00 3.027489e-01 1 1
35518 15156 4.969974e+00 2.795456e-01 1 2
38928 2 2.399623e+00 2.292819e-01 1 21
39857 5334 4.362974e+00 2.169966e-01 1 1
39872 3863 3.308673e+00 2.167377e-01 4 25
40647 3261 4.595683e+00 2.063268e-01 1 3
42847 16435 4.329995e+00 1.793789e-01 1 1
44417 7820 4.176016e+00 1.617021e-01 1 4
45846 18074 4.159332e+00 1.463683e-01 1 1
47271 26132 4.109060e+00 1.321669e-01 2 4
50106 658 4.116532e+00 1.061901e-01 1 9
54440 12347 4.885824e+00 7.330549e-02 1 1
58491 4586 4.861846e+00 4.776641e-02 1 3
59154 9102 4.999152e+00 4.385418e-02 1 1
59683 3181 4.566481e+00 4.115680e-02 1 11
61752 11817 4.893556e+00 3.039805e-02 1 1
64175 420 3.007773e+00 2.020888e-02 1 3
69069 3179 4.922959e+00 4.457720e-03 1 1

Table 2. The data for the truncated and factored LJ38 network.
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Figure 9. The truncated and factored minimum spanning tree
for the LJ38 network.

N The # of states with |C(i)| = N
71887 1
791 1
45 1
31 1
23 1
20 1
19 2
18 1
17 2
16 3
15 9
14 9
13 7
12 16
11 12
10 34
9 41
8 79
7 132
6 228
5 389
4 843
3 2108
2 6990
1 60973

Table 3. The distribution of sizes of Freidlin’s cycles C(i), i ∈ S
for the LJ38 network.
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Now we return to the question whether the Freidlin’s cycle CICO can be viewed
as a metastable set at the range of temperatures 0 < T < 0.12 (the solid-solid phase
transition critical temperature is T = 0.12). The definition given by Bovier in [4]
and adjusted to our notations and terminology sounds as follows.

Definition 5.1. A Markov process defined on a network with the set of states S is
metastable with respect to the subset M⊂ S, if

infs∈M Es[τM\s]
supi/∈M Ei[τM]

≥ 1

ρ
� 1, (28)

where Ej [τA] denotes the expected hitting time of the subset A ⊂ S for the process
starting at a state j.

The states inM are representative states of metastable sets. Definition 5.1 treats
metastability as a way to factor the dynamics. It says that a system is metastable
if one can find a subset of states M such that the expected time to reach from any
state inM another state inM is much larger than the expected time to reach from
any state not in M one of the states in M. We remark that the set M can be
chosen to be the subset of sinks {s∗k}Kk=1. In our case, if Eq. (28) holds then there
exists a spectral gap

0 < λ1 ≤ . . . ≤ λK−1 � λK ≤ . . . ≤ λn−1.

Apparently, there is no significant spectral gap for the LJ38 network near λ245 unless
T < 0.0036, i.e., extremely low. Therefore, the full LJ38 network1 with 71887 states
and infinite observation time is not metastable in the sense of the definition of
Bovier and collaborators unless the temperature is extremely low.

Now let us look just at the numbers ∆k corresponding to the states belonging to
the Freidlin’s cycle C(ICO). They are plotted separately versus k in Fig. 10. The
gap between ∆(ICO) ≡ ∆245 and the second largest ∆ which is ∆(264) ≡ ∆1379

is more than 1. This fact encourages us to consider the definition of metastability
introduced by Schuette and collaborators in the context of general diffusion pro-
cesses [28, 19]. Their definition relates metastability with ergodicity. Adjusted for
stochastic networks with detailed balance it becomes

Definition 5.2. Let s ∈ S be a state of a stochastic network with pairwise rates of
the form of Eq. (1). The Freidlin’s cycle C(s) (the largest Freidlin’s cycle containing
s and not containing any state with a smaller potential value) is metastable with
exit rate λ(s) if for any state i ∈ C(s)\{s} the exit rate λ(i) from the Freidlin’s
cycle C(i) satisfies

λ(i)� λ(s). (29)

The graph in Fig. 10 shows eloquently that the Freidlin’s cycle C(ICO) is
metastable in the sense of Definition 5.2. In order to visualize the structure of
the metastable state C(ICO) we have extracted all of the sinks (ordered according
to the magnitude of the corresponding eigenvalue) lying in C(ICO) and plotted a
disconnectivity graph for the fisrt 20 of them. We have also included the sink cor-
responding to FCC (see Fig. 11). The first four sinks in this substructure are ICO,
minimum 264 in Wales’s list [32], the third lowest minimum (minimum 16), and
minimum 41. These four minima correspond to those eigenvalues of the reduced

1Actually, Wales’s group created a more complete LJ38 network with over a million of local
minima. Only its part containing the lowest 105 local minima is available at [32], but it is sufficient

for modeling the low-temperature dynamics.
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Figure 10. The numbers ∆k := Vp∗kq∗k − Vs∗k+1
versus k corre-

sponding to the states belonging to the Freidlin’s cycle C(ICO).

LJ38 network separated by spectral gaps from the rest. It is apparent from the
disconnectivity graph that minimum 264 is separated from ICO by almost as high
barrier as the one separating ICO and FCC. Freidlin’s cycle C(264) consists of 4
states.

Finally, we perform one more experiment with the LJ38 network. Instead of
lumping together states constituting disjoint sets Sk and the putting a cap on the
highest admissible potential barrier, we simply truncate the LJ38 network without
any lumping. Exactly, we remove all edges (i, j) with Vij > 6.0+VFCC and take the
connected component of the resulting network containing FCC and ICO. It consists
of 30520 states and 71750 edges. This cut off is equivalent to limiting the observation
time. The graph of the first 100 ∆k is shown in Fig. 12. There are notable gaps in
∆’s. These differences are ∆1 −∆2 ≈ 0.19, ∆2 −∆3 ≈ 0.46, ∆3 −∆4 ≈ 0.11, and
∆4−∆5 ≈ 0.15. The other differences are significanly smaller. The first eigenvalue
λ1 is smaller than λ2 by the factor of at least 10 if the temperature T < 0.083.
All four first eigenvalues are separated by gaps of at least of the factor of 10 if the
temperature T < 0.047. Therefore, the truncated LJ38 network is metastable with
respect to ICO and FCC in the sense of Definition 5.1 if T < 0.083. It is metastable
in the sense of Definition 5.1 with respect to five metastable points, FCC, ICO, and
the ones corresponding to ∆2, ∆3 and ∆4 in Fig. 12 (minima 223, 21450 and 7583
in Wales’s list [32]) if T < 0.047. The disconnectivity graph showing the first 101
sinks of the reduced LJ38 network is shown in Fig. 13.

6. Conclusion. In this work we have considered stochastic networks representing
potential energy landscapes. We have established a connection between the optimal
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Figure 11. The disconnectivity graph showing the first 20 sinks
belonging to the Freidlin’s cycle C(ICO). The states are ordered
in the increasing order of the sink inside C(ICO). The potential
energy is shown relative to FCC.

W -graphs determining the asymptotics of the eigenvalues [38, 39, 16] and the min-
imum spanning tree for the edge cost equal to the potential at the corresponding
saddle. We have proven the nested property of the optimal forests corresponding
to the optimal W -graphs, i.e., T ∗k+1 ⊂ T ∗k , k = 1, 2, . . . , n, and established recur-
rence relationships allowing us to construct the optimal forests and calculate the
asymptotics for the eigenvalues and the eigenvectors. We have reconciled Wentzell’s
formulas, the optimal W -graphs, Freidlin’s cycles and sharp estimates for the low
lying spectra by Bovier and collaborators in our construction.

Relying on our theoretical results (Theorems 3.4 -3.8), we have proposed an effi-
cient algorithm for computing the asymptotic spectrum starting from the smallest
eigenvalues in the absolute value. In the nutshell, this algorithm is a procedure
for cutting the minimum spanning tree in a certain order. It is extremely robust
and suitable for complex networks with large numbers of states and edges that do
not have to possess any special structural properties other than the genericness
assumption (Assumption 1).

We have applied this algorithm to Wales’s Lennard-Jones-38 network [32]. Since
the energy landscape of the LJ38 has a double-funnel structure, one could expect
that the LJ38 network should have a spectral gap separating the eigenvalue corre-
sponding to the transition from the larger and shallower icosahedral funnel to the
deeper and narrower face-centered cubic funnel from the rest. However, our results
demonstrate that this is not the case for the full LJ38 network available at [32]. The



410 MARIA CAMERON

1 20 40 60 80 1002

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

k

6
k=
V p

� kq
� k−V

s� k+
1

ICO
#223

#21450
#7583
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reduced LJ38 network. Only the first 100 ∆k’s are shown.

aforementioned eigenvalue has number 245 in the ordered list and it is not separated
from the rest by a notable spectral gap. On the other hand, the sinks correspond-
ing to the smallest eigenvalues are essentially irrelevant to the low temperature
dynamics. If the system is initially at the global minimum FCC, the temperature
is low, and the observation time is not very large, these high-lying states will be
extremely unlikely to observe during an experiment or a simulation. Putting a cap
on the highest barrier separating states from FCC which is equivalent to limiting
the observation time and/or lumping together sets of states, we can obtain a no-
table spectral gap. Furthermore, without any capping or lumping, Freidlin’s cycle
C(ICO) is metastable according to Definition 5.2 related to ergodicity.

Spectral analysis suggests a way to factor the network-in-hand. We have demon-
strated how this can be done for the LJ38 network. The decomposition of the
network into disjoint sets Sk (whose indicator functions are subset of the asymp-
totic eigenvectors) is helpful for simplification and visualization of low-temperature
dynamics. It also might be helpful for comparison with experiment, a problem that
we leave for the future.
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Appendix A. Proof of Lemma 3.6.

Proof. First we prove Claim (ii). We will proceed from converse. Let us assume
that the edge (p∗1, q

∗
1) belongs to the optimal graph g∗k for some k ∈ {3, . . . , n− 1}.

Then one can replace (p∗1, q
∗
1) with another edge (p, q) not in g∗k and possibly pick

another sink so that the sum over the edges and sinks in Eq. (12) decreases. I.e., if
gk is the W -graph obtained as a result of these replacements, and Tk and Wk are
the corresponding tree and the set of sinks of gk, then∑

(i,j)∈Tk

Vij +
∑
i∈Wk

Vi <
∑

(i,j)∈T ∗k

Vij +
∑
i∈W∗k

Vi.

There is no single recipe for the choice of the edge (p, q). We will have to consider
several cases. Let w∗12 := w∗(s∗1, s

∗
2) be the unique path in the minimum spanning

tree T ∗ connecting the sinks s∗1 and s∗2 of the optimal W -graph g∗2 . The edge (p∗1, q
∗
1)

must belong to w∗12, as s∗1 and s∗2 belong to different connected components of g∗2 .
Without the loss of generality we assume that

w∗12 = {s∗1, . . . , p∗1, q∗1 , . . . , s∗2}.

We observe that

Vp∗1q∗1 = max
(p,q)∈w∗12

Vpq, (30)
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as otherwise we get a contradiction with Eq. (18). By Assumption 1 the maximum
in Eq. (30) is reached at the unique edge (p∗1, q

∗
1).

Further we will need the following definition. Let us consider the W -graph ĝ
obtained from g∗k by removing the edge (p∗1, q

∗
1) and adjusting the directions of the

edges so that the sink of each connected component of ĝ is the state with minimal
potential in it. Then for any state i, sink(i) is the sink of the connected component
of ĝ containing i. We will consider five cases:

Case A: All edges of the path w∗12 belong to g∗k.
Case B: There is an edge in w∗12 not belonging to g∗k.

Case B.1: Vsink(p∗1) ≤ Vsink(q∗1 )

Case B.1.1: There is an edge (p, q) ∈ w∗(q∗1 , s
∗
2) ⊂ w∗12 such that

(p, q) /∈ T ∗k .
Case B.1.2: The whole path w∗(q∗1 , s

∗
2) belongs to g∗k.

Case B.2: Vsink(p∗1) > Vsink(q∗1 ).
Case B.2.1: There is an edge (p, q) ∈ w∗(s∗1, p

∗
1) ⊂ w∗12 such that

(p, q) /∈ T ∗k .
Case B.2.2: The whole path w∗(s∗1, p

∗
1) belongs to T ∗k .

Cases A, B.1.1, B.1.2, and B.2.1 are illustrated in Fig. 14. Case B.2.2 is impossible.
Indeed, if the whole path w∗(s∗1, p

∗
1) belongs to g∗k then the states p∗1 and s∗1 belong

to the same connected component of g∗k. Hence sink(p∗1) = s1, the state with the
minimal potential in the whole network. This contradicts to the assumption that
Vsink(p∗1) > Vsink(q∗1 ).

Now we will explain how to choose the edge (p, q) in each of the cases A, B.1.1,
B.1.2, and B.2.1.

Case A: Since the W -graph g∗k is not connected, there is an edge (p, q) ∈ T ∗
such that (p, q) /∈ g∗k and p belongs to the connected component of g∗k contain-
ing the path w∗12 (see Fig. 14(a)). Replacing the edge (p∗1, q

∗
1) with the edge

(p, q) and choosing s∗2 to be sink(q∗1), we transform the optimal W -graph g∗k
into another W -graph gk. By the assumption that g∗k is optimal we have

Vp∗1q∗1 + Vsink(q) − (Vpq + Vs∗2 ) < 0, i.e. Vp∗1q∗1 − Vs∗2 < Vpq − Vsink(q). (31)

The inequalities above are strict by Assumption 1. This contradicts to the
definition of (p∗1, q

∗
1) and s∗2 given by Eq. (18). Hence the W -graph g∗k is not

optimal.
Case B.1.1: In this case, there is an edge (p, q) ∈ w∗(q∗1 , s∗2) such that (p, q) /∈ g∗k

but w∗(q∗1 , p) ∈ g∗k (see Fig. 14(b), Top). Replacing the edge (p∗1, q
∗
1) with the

edge (p, q) and properly choosing sinks, we transform the optimal graph g∗k
into another W -graph gk. By the assumption that g∗k is optimal we have

Vp∗1q∗1 + min{Vsink(p∗1), Vsink(q∗1 )}+ Vsink(q)

− (Vpq + Vsink(p∗1) + min{Vsink(q∗1 ), Vsink(q)}) ≤ 0. (32)

By assumption, Vsink(p∗1) ≤ Vsink(q∗1 ). Hence min{Vsink(p∗1), Vsink(q∗1 )} =
Vsink(p∗1). Therefore,

Vp∗1q∗1 + Vsink(q) < Vpq + min{Vsink(q∗1 ), Vsink(q)}). (33)

The inequality above is strict by Assumption 1. Noting that Vsink(q) ≥
min{Vsink(q∗1 ), Vsink(q)} we conclude that Vp∗1q∗1 < Vpq. This contradicts to
the fact that that Vp∗1q∗1 = max(i,j)∈w∗12 Vij (see Eq. (30)). Hence g∗k is not
optimal.
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(a)

s1
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∗p1
∗ q1

∗

p q

(b)

s1
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∗p1
∗ q1

∗p q
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∗p1
∗ q1

∗p q

s1
∗ s2

∗p1
∗ q1

∗ p q

s1
∗ s2

∗p1
∗ q1

∗ p q

s1
∗ s2

∗p1
∗ q1

∗p q

s1
∗ s2

∗p1
∗ q1

∗p q

Figure 14. Illustration for the proof of Theorem 3.5. (a): Case
A. (b): Case B. Top: Case B.1.1. Center: Case B.1.2. Bottom:
Case B.2.1

Case B.1.2: In this case, there is an edge (p, q) ∈ w∗(s∗1, p∗1) such that (p, q) /∈ g∗k
but w(a, p) ∈ g∗k (see Fig. 14(b), Center). Replacing the edge (p∗1, q

∗
1) with the

edge (p, q) and choosing s∗2 to be sink(q∗1), we transform the optimal graph
g∗k into another W -graph gk. By the assumption that g∗k is optimal we have

Vp∗1q∗1 + Vsink(q) + min{Vsink(p∗1), Vsink(q∗1 )} − (Vpq + Vsink(p∗1) + Vs∗2 ) ≤ 0. (34)

By assumption, Vsink(p∗1) ≤ Vsink(q∗1 ). Hence min{Vsink(p∗1), Vsink(q∗1 )} =
Vsink(p∗1). Therefore,

Vp∗1q∗1 − Vs∗2 < Vpq + Vsink(q). (35)
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The inequality above is strict by Assumption 1. This contradicts to the defi-
nition of (p∗1, q

∗
1) and s∗2 given by Eq. (18). Hence g∗k is not optimal.

Case B.2.1: In this case, there is an edge (p, q) ∈ w∗(s∗1, p∗1) such that (p, q) /∈ g∗k
but w∗(q, p∗1) ∈ g∗k (see Fig. 14(b), Bottom). Replacing the edge (p∗1, q

∗
1) with

the edge (p, q) and properly choosing sinks, we transform the optimal graph
g∗k into another W -graph gk. By the assumption that g∗k is optimal we have

Vp∗1q∗1 + Vsink(p) + min{Vsink(p∗1), Vsink(q∗1 )}
− (Vpq + Vsink(q∗1 ) + min{Vsink(p), Vsink(p∗1)}) ≤ 0. (36)

By assumption, Vsink(p∗1) > Vsink(q∗1 ), hence min{Vsink(p∗1), Vsink(q∗1 )} =
Vsink(q∗1 ). Therefore,

Vp∗1q∗1 + Vsink(p) < Vpq + min{Vsink(p), Vsink(p∗1)}. (37)

The inequality above is strict by Assumption 1. Noting that Vsink(p) ≥
min{Vsink(p∗1), Vsink(p)} we conclude that Vp∗1q∗1 < Vpq. This contradicts to
the fact that that Vp∗1q∗1 = max(i,j)∈w∗12 Vij (see Eq. (30)). Hence g∗k is not
optimal.

Now we prove Claim (iii). Since the edge (p∗1, q
∗
1) does not belong to g∗k, k =

2, 3, . . . , n, the states s∗1 and s∗2 belong to different connected components of the
graphs g∗k, k = 2, 3, . . . , n. By Observation 1, the state s∗2 has the smallest value of
the potential in its connected component of g∗2 . Since the connected components
of g∗k, k = 3, . . . , n containing the state s∗2 are subgraphs of the of the connected
component of g∗2 containing s∗2, s∗2 has also the smallest value of the potential in
its connected components of g∗k, k = 3, . . . , n. Therefore, it must be a sink of g∗k,
k = 3, . . . , n.
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