Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra. Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes[J]. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
| [1] |
Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyp. Diff. Eqns., 2 (2005), 783-837. doi: 10.1142/S0219891605000622
|
| [2] |
B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4
|
| [3] |
E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253-265. doi: 10.1017/S0308210500003863
|
| [4] | K. Aziz and A. Settari, Fundamentals of Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979. |
| [5] |
R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math., 97 (2004), 25-65. doi: 10.1007/s00211-003-0503-8
|
| [6] |
G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272. doi: 10.1080/03605300600781600
|
| [7] | G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, Convergence of vanishing viscosity approximations of $2\times2$ triangular systems of multi-dimensional conservation laws, Boll. Unione Mat. Ital. (9), 2 (2009), 275-284. |
| [8] | C. Dafermos, Hyperbolic Conservation laws in Continuum Physics, $3^{rd}$ edition, Springer-Verlag, New York, 2005. |
| [9] |
E. vanDuijn, L. A. Peletier and S. Pop, A new class of entropy solutions of the Buckley-Leverett equation, SIAM J. Math. Anal., 39 (2007), 507-536. doi: 10.1137/05064518X
|
| [10] |
T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648. doi: 10.1137/0523032
|
| [11] |
R. Helmig, A. Weiss and B. I. Wohlmuth, Dynamic capillary effects in heterogeneous porous media, Comp. Geosci., 11 (2007), 261-274. doi: 10.1007/s10596-007-9050-1
|
| [12] |
S. Hassanizadeh and W. G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Wat. Res., 13 (1990), 169-186. doi: 10.1016/0309-1708(90)90040-B
|
| [13] | H. Holden, K. H. Karlsen and D. Mitrovic, Zero diffusion-dispersion-smoothing limits for scalar conservation law with discontinuous flux function, International Journal of Differential Equations, 2009 (2009), Art. ID 279818, 1-33. |
| [14] |
H. Holden, K. H. Karlsen, D. Mitrovic and E. Y. Panov, Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function, Acta Mathematica Scientia, 29B (2009), 573-612. doi: 10.1016/S0252-9602(10)60004-5
|
| [15] | Z. Angew. Math. Mech., to appear. |
| [16] | K. H. Karlsen, N. H. Risebro and J. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1-49. |
| [17] |
F. Kissling and C. Rohde, The computation of nonclassical shock waves with a heterogeneous multiscale method, Netw. Heterog. Media, 5 (2010), 661-674. doi: 10.3934/nhm.2010.5.661
|
| [18] |
P. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory Of Classical and Non-Classical Shock Waves, Lecture notes in Mathematics., ETH Zürich, Birkhauser, 2002. doi: 10.1007/978-3-0348-8150-0
|
| [19] |
S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media, Comp. GeoSci., 14 (2010), 105-124. doi: 10.1007/s10596-009-9135-0
|
| [20] | F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322. |
| [21] |
S. Mochon, An analysis of the traffic on highways with changing surface conditions, Math. Model., 9 (1987), 1-11. doi: 10.1016/0270-0255(87)90068-6
|
| [22] |
E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 195 (2010), 643-673. doi: 10.1007/s00205-009-0217-x
|
| [23] |
E. Yu. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 196 (2010), 1077-1078. doi: 10.1007/s00205-010-0303-0
|