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ABSTRACT. Flow of two phases in a heterogeneous porous medium is modeled
by a scalar conservation law with a discontinuous coefficient. As solutions
of conservation laws with discontinuous coefficients depend explicitly on the
underlying small scale effects, we consider a model where the relevant small
scale effect is dynamic capillary pressure. We prove that the limit of vanishing
dynamic capillary pressure exists and is a weak solution of the corresponding
scalar conservation law with discontinuous coefficient. A robust numerical
scheme for approximating the resulting limit solutions is introduced. Numerical
experiments show that the scheme is able to approximate interesting solution
features such as propagating non-classical shock waves as well as discontinuous
standing waves efficiently.

1. Introduction. Scalar conservation laws with spatially dependent and possibly
discontinuous coefficients arise in a wide variety of models in physics and engineering
[1, 2] and other references therein, for instance in flows in heterogeneous porous
media [19], modeling of the clarifier-thickener units in the chemical industry [5] and
in traffic flows with heterogeneous surface conditions [21]. The generic form of such
equations is given by,

O+ O f (k(x),u) =0, t>0,z€eR,
u(0,x) = uo(x), r eR.

(1.1)

Here, u : [0,00) x R — R is the unknown and &k : R — R is the (possibly discontin-
uous) coefficient with f : R? — R being the flux function.

It is well known that solutions of nonlinear conservation laws contain disconti-
nuities in the form of shock waves, even when the initial data ug is smooth. Hence,
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solutions to conservation laws are sought in the sense of distributions. Such weak so-
lutions are not unique. Additional admissibility criteria or entropy conditions need
to be imposed in order to single out the physically relevant solution [8]. Uniqueness
of entropy solutions for scalar conservation laws with a smooth (C!) coefficient k
follows from the seminal result of Kruzkhov [8].

As the conservation law (1.1) is derived by neglecting underlying small scale
effects such as diffusion, dispersion, capillarity etc, it is customary to incorporate
information about these small scale effects in the entropy conditions in order to
single out the physically relevant solutions. Again, for smooth coefficients k, entropy
solutions (& la Kruzkhov) encapsulate the vanishing viscosity limit.

The design of suitable entropy conditions for a scalar conservation law with
a discontinuous coefficient k has received considerable attention in recent years,
see [10, 1, 3, 16, 2, 14, 15, 16] and references therein. In [1], it was pointed out
that the scalar conservation law (1.1) with a discontinuous coefficient can have
infinitely many L' contractive semigroups of solutions. In particular, incorporating
different underlying small scale effects in (1.1) with a discontinuous k, can result in
different solutions. Thus, physically relevant solutions of scalar conservation laws
with discontinuous coefficients depend on the underlying small scale effect. This
implies that every physical model of interest has to be considered separately and
the resulting semigroup of solutions which arise by neglecting the underlying small
scale effects has to be characterized. We are interested in one such model in this
paper.

A motivating example for scalar conservation laws with discontinuous coefficient
is provided by two-phase flow in a heterogeneous porous medium. A brief derivation
of this model is presented below.

1.1. Modeling two phase flow in a heterogeneous porous medium with
dynamic capillary pressure. Consider a one dimensional porous medium with
(possibly discontinuous) rock permeability K. We consider the flow of two phases
(say water and oil) in this porous medium. Denoting, water and oil saturations
as S* € [0,1] and S° € [0, 1], respectively, we see that mass conservation for each

phase results in
SP =0, L
Sy + vy =0. (12)

Here, v, v° are the phase velocities for the water and oil phases, respectively.
As the total saturation S* + S° = 1, adding the two equations in (1.2) results in

vV 0% =g, (1.3)

with ¢ = ¢(t) being the total flow rate (specified for instance by boundary condi-
tions).
The phase velocities are modeled by Darcy’s law [4]:

v = —KA\YPY + K\YpYqg, L4
v? = —KX°PJ + KX\p°g. (14)
Here, \" = kr(‘ST) ,7 = w, 0, are the phase mobilities, given in terms of the relative
permeabilities k" and the phase viscosities pu”, p”,r = w, o is the phase density and
g is the (constant) acceleration due to gravity.
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The phase pressures are denoted by P",r = w, o. Introducing the capillary pres-
sure P¢ = P* — P° adding the two equations in (1.4) and using (1.3), we obtain,
_ K ALU w AO (o} KAO .
qg— KA\"p" +X%%g pe (1.5)
AW ) AW 4 )0
Hence, by substituting (1.5) in the first equation of (1.4), we eliminate the phase
pressure P and obtain,

w qAv KXY)X(p¥ — p°)g KAYXe
oY = — — .
)\w+)\o )\w+)\o )\w+)\o z

~KPY =

Substituting for v* in the first equation for mass conservation (1.2) results in,

w gA" KXUN(p” —p%)g\ _ [ KAYA° .

Aw+)\o )\w+Ao

As A%, \° are given (smooth functions) of S*, the mass conservation equation is
completed once the capillary pressure P¢ is specified. In standard models of capil-
lary pressure [4],

P = P°(S%) = vP°(S"Y). (1.7)

Here, P¢ is a smooth monotone increasing function of the saturation and v << 1
is given in terms of the surface tension and the pore size (see [4] for a detailed
description of the capillarity parameter v). However, this model of the capillary
pressure was found to be inadequate in explaining dynamic behavior of the flow.
Instead, we follow the model proposed in [12] (see also [11]) and introduce a dynamic
capillary pressure:

P¢ =P (8%) + 1128, (1.8)

Here fc(S“’) is a smooth and monotone increasing function of the saturation.
Hence, the capillary pressure also depends on the dynamics of moving fronts. We
observe that the static capillary pressure function PC(S“’) is the same in the above
equation as in (1.7). The main difference is in the addition of the dynamics of
moving fronts through a dispersion parameter 7.

The model is completed by substituting the expression of the capillary pressure
(1.8) in (1.6) to obtain the following equation:

w g " KNP = p%)g
St+<)\w+)\o )\w+)\0 ac
_, ( KX\¥)\° i ONPN

FC w " 2 w )

Furthermore, we observe that the rock permeability K can vary (discontinuously)
in space (see [19] and references therein). Our aim is to obtain information about the
limit as ¥ — 0, even when the coefficient K is discontinuous. Hence, we will recover
the physically relevant solutions, obtained using the correct small scale information
(including the dynamic capillary pressure).

(1.9)

1.2. Aims and scope of the current paper. The main aim of the current paper
is to investigate mathematically the flow of two phases in a heterogeneous porous
medium, in the limit of vanishing dynamic capillary pressure. For notational sim-
plicity, we rename the water saturation by S* = wu and consider the following
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Cauchy problem;

Oy, + Op f (K, uy)
= v (9(y,u,)0puy) + V205 (h(my, u,)02u,), t>0,z €R,
Orky = v02, Ky, t>0,z ek,
Ol = vd2, L., t>0,2 R,
dymy, = vO2,my, t>0,z€R, (1.10)
uy (0, 2) = ug (), z €R,
ky(0,2) = ko (), z € R,
2,(0,2) = Ly, (x), z €R,
my(0,x) = mg,, (), z €R,

where 0 < v <1, u, : [0,00) x R — R. The case h =0, g = 1 has been studied in
[7].
By identifying the functions f,g and h with their counterparts in (1.9), we can
assume that

(A.1) f, g, h:R? — R, are smooth functions such that

for some constant a > 0;
(A.2) f(k,-)is assumed to be genuinely nonlinear for every & € R, namely the map
u € [0,1] — f(k,u) is not affine on any nontrivial interval for every k € R.

This assumption is satisfied by most physically relevant relative permeability func-
tions in (1.9).
On the functions ko ., 4o, Mo, v, : R = R we assume that

(A3) I{/’Q’,,, fo’m mo,, € COO(R) N Wl’l(R), Up,y € COO(R) N Ll(R> n LOO(R), 0<
Uo,v < 17
(A.4) there exist

k, £, m e BV(R)NLY(R), wugc L'R)NL>®R), 0<wuy<1,

such that
Uy — U, Koy — k, ae andin LP(R), 1 <p < oo,
by, = £, mg, - m, ae andin LP(R), 1 <p < oo,
||Uu,0||L2(R) < ||“0||L2(R)7 W,
||k0,VHLoo(R) < HkHLOO(]R)’ ||k0,VHL2(R) < Hk”L2(R)7 iz
10zkowll gy STV (E), ol oy < Ml ooy Vs
ol oy < Hllpzmys  N0elopllpimy < TV(E), Vo,
Mol oo @) < 1Ml ooy > 1Mol 2@y < Ml 2y Y,
||3xm07,,||L1(R) < TV(m), VY.

(1.12)

Our first aim in this paper is to study the behavior of solutions of (1.10) as
v — 0 and in particular, whether these solutions converge to a weak solution of the
conservation law (1.1). We answer this fundamental question by stating the main
result of this paper.
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Theorem 1.1. Assume (A.1), (A.2), (A.3), (A.4). There exist a sequence
{Vn}n € (0,1], vy, = 0, a sequence {u,, }nen of solutions of (1.10), and a distribu-
tional solution u of (1.1) such that

uy, = u, mLP ((0,00) xR),1<p< oo, and a.e. in (0,00) X R. (1.13)

loc

The second aim of this paper is to study the limit solutions of (1.10) as ¥ — 0 nu-
merically. We design an efficient numerical scheme and compute the limit solutions
that will approximate the physically relevant (vanishing dynamic capillary pressure
limit) solutions of the scalar conservation law with discontinuous coefficient, arising
in a model of two phase flow in a heterogeneous porous medium.

The rest of the paper is organized as follows. In Section 2, we present the proof of
Theorem 1.1. The numerical scheme and numerical results are presented in Section
3 and a summary of the results is presented in Section 4.

2. Proof of Theorem 1.1. Let us assume that (A.1), (A.2), (A.3), (A.4) hold
and (1.10) admits a smooth solution (u,, k., £,, m,) such that

0<u, <1.
Lemma 2.1. The following estimates hold
1Bl Los (0,00 xm) S WEll ooy > 102k (E )| L1y < TV (R),
101 oo ((0,00) ) < Wl ooy s 10bu (E )l L1y < TV (0),
||mu||Loo((o,oo)xR) < Hm”Loo(R)» (|0 (¢, ')HLl(]R) <TV(m),

t

o (b, )y + 20 / 100k (5, )2 gy ds < 1K) gy
t

16, (72 gy + 20 /0 10260 (5, 172y ds < 10172 g »

t
2 2 2
([, (2, ')HL?(]R) + 21//0 [0z (s, ')”Lz(R) ds < ||m||L2(]R) )
for everyt >0 and v > 0.

Since the proof of this lemma is straightforward we omit it.
Following [6, Lemma 4.2], we show the following result.
Lemma 2.2. Let v > 0. Fized T > 0, we have
i) the family {u,}, is bounded in L>°(0,T; L*(R));
ii) the families {\/vOpuy}, {v202,u,},, {\/POuy Y, are bounded in L2((0,T) x
R).
Proof. Let B be a positive constant that will be specified later. Multiplying the
first equation in (1.10) by w, + vBdu, , we have
(uy + vBOu,, ) Opuy, =v(uy + vBoyu, )0z (g(Ly, uy)uy)
+ 1% (uy + vBOu, )0y (h(my,, u,)02,u,) (2.1)
— (uy + vBOwu, )0y f (ky,uy).

Since

1
/(u,, + vBowu, ) diu,dx = Ld uldx + VB/(@tuy)2dx,
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I//R(U,, + vBowu,)0:(9(Ly, uy)Ozu, )dx
= fz//Rg(&,,ul,)(azuufdxfV2BAg(€V,uy)3zuuafzuydx,
v? /R(u,, + vBOu, )0y (h(my,, u, )02, u,, ) de

:—1/2/h(my,uu)atzzuuamu,,dx—l/?’B/h(mu,uu)(ﬁfmuu)zdm,
integrating (2.1) oveLRR, thanks to (1.11) ’
%%/}Ru?,dx—i—Va/R(azul,)2dx+1/3aB/R(8t2zu,,)2dx+VB/R(atul,)zdx

< — VB/Ratu,,arf(kwu,,)dx — 2 /R h(my,, u,) 02,1, 0puy, da

—/uuamf(k?u,uu)dx—VQB/Q(fu,uu)amuuafmuydx-
Lemma 2.1 and (1.12)Rgive )

f/uyﬁmf(ky,uy)dx:f/uuﬁkf(kl,,ul,)amkudx—/uyauf(ky,uu)&ruydx
R R R w
== [t s tu)oddr = [ 0.( [ 0ush.00d6)do
[ ([ st gobic)as

C
< (HakaLOO(I) + HaikaLm(ID TV (k) = 5
where

C= 2( Ha’ikaLoo(]) + ”akaLOO(I) )TV(/G),

1= (= 1l ey Nl ey ) ¢ (0,1):

Then

1d
—— [ vldr+ Va/(amul,)zdm + VgaB/(afwul,)Qd:c + uB/(@tuu)Zdaz
2dt Jg R R R

< — VB/ Or, Oy f (kyywy )dx — 12 / h(my,, u,) 02,1, Opuy, dz
R R
2 2 C
—v B/ gLy, uy )0, O uy dr + —
R 2
=— VB/ Oy fOpuy, Opuy, da — Z/B/ O fO Ky Oyuy, dx
R R

C
2 /(Bg(éw w,) 4+ by, )0, Oy, da +
R
Using the Young’s inequality,

fBl//ﬁuf(ku,uu)ﬁzuyatu,,dxfBV/@kf(ky,ul,)a@kuﬁtuydz
R R

<v +v

/Bauf(k,,,ul,)azul,ﬁtul,dx
R

/Bauf(k,,,uu)axuyatuydx
R
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§V/ \B@uf(ku,uu)azul,|\8tul,|dz+1// |BOy. f (v, uy ) Ok ||Opuy | d
R R

:u/ BOuf (k. ) Oty |0¢u,, D1 |dx
R D,
u kl/) v Ikl/
—|—V/ BOuf (ky, )0 |Opuy, Da|dx
R Dy

vB? 12 in
u () 2
<
< 22 /]R(ag;u,,) dx

Z/B2 3 200 D2 D2
o8 N0k ey / (Buky)?da + 2L / (Opw,)*d,
2Ds R 2 ®

—VQ/(Bg(El,,ul,) + h(ml,,ul,))amuyafmu,,dx
R

SVQ‘ /R(Bg(ﬂwuu) + h(mwuu))ar“'fa?w“”dm‘

2 (Bg(ly,u,) + h(muvuu))at%cuv
D3

:/ 1/%|D381uu\y dz
R

<1/D§
-2

3
/ (Optty)2d + —— / (Bg(ly, ) + h(my,u,))2 (02, u, ) dz
R 2D3 R

D2 V3 ||Bg + h 2
Su/(aﬂw)%lx—i— | 2HL (1) /(8t21ul,)2dw,
2 Jr 2D3 R

where D1, Do, D3 are three positive constants that will be specified later and

Jy =1 U J,
1= (= 10y 1€l ey ) % (0,1), 22)
J = (= Imll g gy s Il e gy ) (0.

Thus,

d B2 |0uf |21 .
%/Ru?jdx + V(204 B Dg) /R((“)xul,) dz

Bg + hl[3
+ V3 (ZOZB _ W) /R(at?muu)Qd$

n V(QB - D? - Dg) /R(atuu)%x

B2 |0k f11%
_VW/(axkl,)2dm+C.
D2 R

An integration over (0,t¢) and Lemma 2.1 give

B 0uf |1 : >
8 My + (20 = =50 = D) [ 0105, s s
1

1Bg + hl[7 !
+u3B<2aB— DgL(Jl))/O HatQIuV(s’.)Hiz(R) ds
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t
+ u(?B — D% — DS) /0 [| O, (s, ')Hi%R) ds

B2|0 f 11 1)

2 2
<Ct+ I 1l 72y + llwollze(w) -

We can find three constants D1, Do, D3 such that

B0l
D}
HBnghHiw(Jl) 0 (2.3)
o "
2B — D? — D2 > 0.

- D?>0,

2aB

Indeed B can be taken very big, and up to rescaling we can have o = B3. Therefore,
the proof is done. O

To prove Theorem 1.1, the following technical lemma is needed [20].

Lemma 2.3. Let Q be a bounded open subset of R?. Suppose the sequence {Ln}nen
of distributions is bounded in W~=5>°(Q). Suppose also that

‘Cn = £1,n + £2,n7

where { L1 }nen lies in a compact subset ofooc1 (Q) and {Lan }nen liesin a bounded
subset of Mioe(Q). Then {L,}nen lies in a compact subset of H; 1 ().

Proof of Theorem 1.1. Let ¢ € R be fixed, we claim that the family
{O|uy — ¢ + Ox(sign (uy — ) (f(k,un) — f(k,€)))} >0
is compact in H;,!((0,00) x R). For the sake of notational simplicity we write
mo(u) = u—c|—|d,
Qo(k, u) = sign (u — ¢) (f(k,u) — f(k,c)) — sign (—c) (f(k,0) — f(k,c)).
Observe that
70(0) = Qo(k,0) =0,
and
Orluy, — cf + Oy (sign (uy — ) (f(k,un) — f(k,c)))
=0imo(uv) + 02 Qo(k, uy) (2.4)
+ sign (—¢) 0:(f(k,0) — f(k, ).
Let {(ny, @.)}u>0 be a family of maps such that
n € C¥(R), Qo€ C¥(R),
0uQu(k,u) = 0uf(k,u)n;, (u), ny >0,
[l — 770||Loo(o,1) <v, lm - 776||L1(0,1) <,
L0y <1, m(0) = Qu(k,0) =0,

for each v > 0. Since

Qolk,u) = / Buf (ks O (E)dE,  Qu(ky ) = / B f (k)11 (€)dE
0 0
we also have

||akQVHL°°(1) < HaikaL“(I) ) HQV - QOHLOO(I) < ||8UfHL°°(I) v.
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By (1.10),
Omo(uy) + 9:Qo(k, uy)
=00 () + 02 Qu (ku, ) + 0 (110 () — 0 (ws))
+ 02(Qo(k, uw) — Qu(k, uy)) + 0x(Qu(k, uy) — Qulky, uy))
=v0; (n/u(ul/)g(guauu)azu» - VWZ(UV) (&,,ul,)(aruy)z
+ 120, (., (wy)h(m,, u,,) 02,1, ) — V20! (w, ) h(my,, u, ) Opu, OF
— [, (w,) O f (ks ) — Ok Q(Kyy w,y)] 0k
+ 0c (Mo () — 1w (uy)) + 02 (Qo(k, uy) — Qu(ky,uy))
+ 02(Qu(k, uy) — Qulky, uy)).
Then, for (2.4),
B — | + B, (sigm (u, — ) (F (k) — F(k, )
=L, V1, +13, +1s, +1I5, +1Is, + 17, + I3, + g,
where
I =v0y (1, (u) g (€, 1) Oay),
Iy, = — v (u,)g(by, uu)(azuu)zv
Iy, =020, (1), (uy)h(my,, u,)0fu,),
L, = — vl (u,)h(my, u, )0y, 02,1,
Is = — [0, (w,)0uf (K, w,) — OkQ(k, u,)]0cky,
Is,, =0 (no(wy) — nu(uu))

Iz, =0:(Qo(k,uy) — Qu(k,u,)),
Is, =0.(Qu(k,uy) — Qu(ky,u)),
Iy =sign (—c) dx(f(k,0) — f(k,c)).
Let us show that
I, —0 in H((0,T) xR), T > 0. (2.6)

Thanks to Lemma 2.2,

2
||V77;,(Uu)g(€u, Uy, )0z ”L?((O,T) xR)

2 2
<oy gl 1, 2 / 10ty (5, 2o

2 2
< 1z 0,1y 19022 (1) vCLUT +1) = 0,

where Cy > 0 is independent on v and T', and I; is defined in (2.2).
Let us show that

{I2.,}v>0 is bounded in LY((0,T) x R).

Again for Lemma 2.2,

HVUL/(%)g(Kw w,)(Opuy)? HLl((O,T) xR)

T
<1 ooy Il oe ¥ / 102100 (5, )2y

< ”nZ/IHLOO(O,l) 9/l o (1) C2(T + 1),
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where Cs > 0 is independent on v and T'.
We claim that
I3, =0 in H'((0,T) xR), T > 0. (2.7)
Thanks to Lemma 2.2,

||V277; (un)h(m,, )0y ||i,2((0,T)><]R)

T
2 2
< ||77;/||L°°(0,1) 1l oe () V4/0 ||5t2z”l'(sv')“L2(R) ds
2
< 1z 0,1y 1Al poe gy vC3(T + 1) — 0,

where C3 > 0 is independent on v and T', and J is defined in (2.2). Let us show
that
{I4,}y>0 is bounded in L'((0,7) x R).
Again for Lemma 2.2 and Young’s inequality,
HVQUIV'(Uu)h(mwUv)ax“uatzxuuHLl((o,T)xR)

T
< oy Wl 7 [ [ 100108 ueldsda
ﬂmmﬂm|wmw/‘/wwMW4  u,|dsda

A Py LY
< o <’VA|mwx Wy ds

2

I, ||Looo1 ||hHLoo J T
+ 5 (J) 3/ Hatz

<l e o,y 1Bl oo (y Ca(T + 1),

where C4 > 0 is independent on v and 7.
Moreover, thanks to (2.5),

{I5,},>0 isbounded in L'((0,T) x R) for each T >0,
1((0,00) x R),

{Is,}y>0 is compactin  H, '((0,00) x R),

Iy € Mioe((0,00) x R).

Therefore, Lemma 2.3, [23], and [22, Theorem 5] give (1.13).
Let us show that u is a distributional solution of (1.1). Let ¢ € C*°(R?) be a
test function with compact support, we have to prove that

/ h / (Do + f(k, )y ) dtda + / o (2)6(0, 2)dz = 0. (2.8)
0 R R

ds

2
S")HL?(R)

Is, —0, I;, =0 in H,

loc

We have
| [ w006+ 10 0001+ [ o, (216002
0 R R

+ I/n/ / gl uy, )0z, Opddtde — I/n2/ / h(my, ,u,, )02 1, Oxd = 0.
o Jr o Jr

Therefore, (2.8) follows from (1.13), (1.12), Lemma 2.2, and the Dominated Con-
vergence Theorem. O
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3. Numerical results. Theorem 1.1 establishes that the limit of solutions of the
two phase flow in a heterogeneous porous medium with vanishing dynamic capillary
pressure exists and is a weak solution of the scalar conservation law (1.1). We aim
to characterize this limit in this section using numerical experiments.

3.1. Numerical scheme. We will consider the regularized problem (1.10) and
discretize it using a finite difference scheme. Consider a spatial domain [X;, X,
and discretize it (for simplicity) into N equally spaced points x; = X; + j * h with
h=(X,—X;)/N with j =0,1,--- , N—1. Then the approximate solution is defined
as

u;(t) = u(t, x;).

Similarly the coefficients are represented on the grid as,

(kj(t)vgj(t)amj(t)) ~ (k(tﬂ zj)ag(ta‘rj)vm(tvxj))'

The approximate solution is computed using the following semi-discrete finite
difference scheme:

ki1, uip1) — fkj1,u-1)

(uj)e = — 2Ax
v gl ui) + g1, ujt1)
£'7U' + li_ s Uj—
_g(] ;) 92(a 1, Uj—1) (Uj_ujl)} (3.1)
T2 h(mj,u;) + h(mit1, u;

h(mj,u;) + h(mj—1,uj—1)
e (),
We take the time-dependent terms to the left-hand side of the equation, apply trans-

parent boundary conditions and then invert the matrix to obtain a semi-discrete
formulation of the form

Here U = {u;}j—qo,.. n—1} is the vector of unknowns. In order to discretize the
above ODE system, we will use a third-order Runge-Kutta time stepping of the
form:
Ut U4+ AL (UM,
1 1
v® = 3pny o I (U(l)) : (3.2)
4 4 4
1 2 2
ntl _ 2oy 2@ 4 S Ay ( (2)).
U 3U + 3U + 3 LU

3.2. Numerical experiments. We will focus on results when the scheme is ap-
plied to the flow of two phases in a heterogeneous porous medium with vanishing
dynamic capillary pressure (1.9). The following identifications,

u(z,t) = S (x,t),

wy _ A" KX (p" = p°)g
FhS") = e e




980 G. M. COCLITE, L. DI RUVO, J. ERNEST AND S. MISHRA

K)\'IU AO

wy _ pc,/ w
9(l.5") = T3 P (S,
KA\
h(m, S¥) = — "
(m’S ) /\“’—I—)\O’

are used to represent two phase flow in the form (1.10) and we can apply the scheme
(3.1) to these equations.
For the rest of this section, we will use the following parameters,

q= ]-7

A\ = (Sw)Q,

20 = (50)2 _ (1 o Sw)2,

pv =1, p°=09, g=10 — (p¥ —p°)g =1,
_ , 1/4
Pc(Sw) _ ((Sw)—4/3 _ 1) )
The above relative permeability and capillary pressure functions are taken from
[11].

For the numerical experiments, we compute on a uniform grid on the interval

[0,2] and use the following parameter settings:

T=1,
v =6Ax,

CFL = 0.45,

(5*)° =08 1{y<0.25) + 0.2 155025},
T =0.6.

Thus, we set the small scale parameter in terms of the mesh width and expect to
capture the small scale limit as the mesh is refined.

3.2.1. Flow in a homogeneous medium. In order to test the numerical schemes, we
start with a simple homogeneous medium (single rock type) by setting the rock
permeability as

K=1.

The results of a mesh refinement study for the above Riemann problem are
presented in Figure 1. In this figure, we show the water saturation at time 7' = 0.6
for a series of mesh resolutions ranging between 200 and 1600 mesh points. In
the absence of an exact solution, we notice that the simulations converge to a
weak solution of the scalar conservation (1.10) that consists of a classical shock
wave (satisfying the Lax entropy condition) as well as a non-classical shock wave
with an intermediate state in between. The non-classical shock violates the Lax
entropy condition and is a consequence of the fact that the flux function f in
(1.1) is non-convex. Non-classical shocks for two phase flow with dynamic capillary
pressure have also been studied in [9] and [17]. A detailed discussion on non-classical
shocks is presented in [18]. The results presented in Figure 1 clearly show that the
scheme (3.1) provides a good approximation of the equation (1.1) in the case of a
homogeneous medium and is able to resolve interesting small scale dependent shock
waves such as non-classical shock waves. Note that a good resolution of the non-
classical shock wave (in particular of the intermediate state) is provided, even on a
fairly coarse resolution of 200 mesh points.
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FIGURE 1. Water saturation (Y-axis) with respect to the spatial
domain (X-axis) at time T' = 0.6 for the homogeneous medium
with a single rock permeability K = 1. Results of a mesh conver-
gence study showing convergence to a non-classical solution of the
underlying scalar conservation law.

3.2.2. Flow in a heterogeneous medium. Next, we consider a heterogeneous medium
by using the rock permeability:

K=1- 1{w§0.6} +1.2. 1{w>046}~ (33)

Thus, we consider flow in a medium that has two rock types with a sharp interface at
x = 0.6. We use the same parameters and initial data as in the previous numerical
experiment and show the results of a mesh convergence study in Figure 2. The
figure shows that the approximate solutions generated by the scheme (3.1) converge
to a weak solution of the scalar conservation law with discontinuous coefficient (1.10)
that consists of the following three waves: i) a non-classical shock wave on the right,
ii) a classical shock wave in the middle, and iii) a discontinuity at the rock type
interface at = 0.6. It is easy to check that the standing wave at x = 0.6 satisfies
flux continuity conditions (Rankine-Hugoniot conditions for the scalar conservation
law with discontinuous flux). Again, the results show the robustness of the scheme
and its ability to resolve interesting solution features, even at coarse resolutions.

3.2.3. Comparison. We conclude this section by providing a comparison between
a homogeneous and a heterogeneous medium. The parameters are from the two
previous numerical experiments and the water saturation, computed with scheme
(3.1), is plotted in Figure 3. The figure brings out the role of the discontinuity quite
well. The discontinuity creates the standing wave at the interface and changes the
speeds of both the classical as well as the non-classical shock waves. Thus, it is
essential to consider the effect of the discontinuity in rock permeability as it has a
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FIGURE 2. Water saturation (Y-axis) with respect to the spatial
domain (X-axis) in a heterogeneous porous medium with discon-
tinuous rock permeability (3.3), computed with the scheme (3.1) at
time 7' = 0.6. Note the resolution of both the non-classical shock
wave as well as the standing wave at the interface x = 0.6.

major effect on the wave structure of the flow. Also, the effect of dynamic capillary
pressure is crucial as it generates non-classical shock waves in the vanishing capillary
pressure limit. This should be contrasted with the solutions obtained with a static
capillary pressure, as were considered in [1, 19], where only classical shock waves
were present away from the interface.

4. Conclusion. We considered a scalar conservation law with a spatially depen-
dent and possibly discontinuous coefficient. It is well known that these equations
contain infinitely many L' contractive semigroups of solutions and the standard
Kruzkhov entropy conditions do not suffice to single out a physically relevant solu-
tion. It has also been established in [1, 2] and references therein that the solutions
to such equations depend ezplicitly on the underlying small scale effects. Here, we
consider a concrete model of two phase flow in a heterogeneous porous medium. The
relevant small scale effect is a dynamic capillary pressure term, that was introduced
in [12]. Compared to the standard capillary pressure models [4], the addition of
the new term resulted in a model that contain higher-order mixed spatio-temporal
derivatives.

In the current paper, we considered the regularized problem corresponding to the
dynamic capillary pressure as well as a discontinuous spatial coefficient in the flux,
diffusion and dispersion terms. We showed rigorously that the limit under vanishing
capillary pressure exists and is a weak solution of the corresponding scalar conser-
vation law with discontinuous coefficient. Thus, it makes sense to talk about the
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FIGURE 3. Comparison of water saturation (Y-axis) with respect
to the spatial domain (X-axis), for a homogeneous medium with
constant rock permeability and a heterogeneous medium with dis-
continuous rock.

semigroup of solutions for the scalar conservation law with discontinuous coefficients
that arises as a limit of vanishing dynamic capillary pressure.

We introduced a finite difference scheme in order to approximate the regularized
problem. The numerical scheme was tested on a suite of numerical experiments
and was shown to be robust. It enabled us to characterize the vanishing dynamic
capillary pressure limit, in some concrete examples. In particular, we found that the
limit solution can contain non-classical shock waves as well as standing waves at the
interface between different rock types. This numerical scheme can be employed to
identify the vanishing dynamic capillary pressure limit in a large number of cases.

In the future, we would like to extend the methods of this paper to models
of multi-dimensional porous medium flows. The numerical scheme will also be
extended in this setting to characterize the vanishing dynamic capillary pressure
limit in several space dimensions.
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