Differential equation approximations of stochastic network processes: An operator semigroup approach

  • Received: 01 July 2011 Revised: 01 January 2012
  • Primary: 47D06; Secondary: 60J28, 92A15.

  • The rigorous linking of exact stochastic models to mean-field approximations is studied. Starting from the differential equation point of view the stochastic model is identified by its master equation, which is a system of linear ODEs with large state space size ($N$). We derive a single non-linear ODE (called mean-field approximation) for the expected value that yields a good approximation as $N$ tends to infinity. Using only elementary semigroup theory we can prove the order $\mathcal{O}(1/N)$ convergence of the solution of the system to that of the mean-field equation. The proof holds also for cases that are somewhat more general than the usual density dependent one. Moreover, for Markov chains where the transition rates satisfy some sign conditions, a new approach using a countable system of ODEs for proving convergence to the mean-field limit is proposed.

    Citation: András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach[J]. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43

    Related Papers:

    [1] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
    [2] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [3] Luca Di Persio, Giacomo Ziglio . Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6(2): 279-296. doi: 10.3934/nhm.2011.6.279
    [4] Jan Lorenz, Stefano Battiston . Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3(2): 185-200. doi: 10.3934/nhm.2008.3.185
    [5] Jean-Yves Le Boudec . The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points. Networks and Heterogeneous Media, 2013, 8(2): 529-540. doi: 10.3934/nhm.2013.8.529
    [6] Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045
    [7] Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017
    [8] Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695
    [9] Nurehemaiti Yiming . Spectral distribution and semigroup properties of a queueing model with exceptional service time. Networks and Heterogeneous Media, 2024, 19(2): 800-821. doi: 10.3934/nhm.2024036
    [10] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
  • The rigorous linking of exact stochastic models to mean-field approximations is studied. Starting from the differential equation point of view the stochastic model is identified by its master equation, which is a system of linear ODEs with large state space size ($N$). We derive a single non-linear ODE (called mean-field approximation) for the expected value that yields a good approximation as $N$ tends to infinity. Using only elementary semigroup theory we can prove the order $\mathcal{O}(1/N)$ convergence of the solution of the system to that of the mean-field equation. The proof holds also for cases that are somewhat more general than the usual density dependent one. Moreover, for Markov chains where the transition rates satisfy some sign conditions, a new approach using a countable system of ODEs for proving convergence to the mean-field limit is proposed.


    [1] J. Banasiak, M. Lachowicz and M. Moszyński, Semigroups for generalized birth-and-death equations in $ \l^p$ spaces, Semigroup Forum, 73 (2006), 175-193. doi: 10.1007/s00233-006-0621-x
    [2] F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69-87. doi: 10.1016/j.mbs.2008.01.001
    [3] A. Bátkai, P. Csomós and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Equ., 9 (2009), 613-636. doi: 10.1007/s00028-009-0026-6
    [4] A. Bobrowski, "Functional Analysis for Probability and Stochastic Processes. An Introduction," Cambridge, 2005.
    [5] C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006.
    [6] R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probab. Surv., 5 (2008), 37-79. doi: 10.1214/07-PS121
    [7] K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Math., 194, Springer-Verlag, New York, 2000.
    [8] S. N. Ethier and T. G. Kurtz, "Markov Processes: Characterization and Convergence," John Wiley & Sons Ltd, USA, 2005.
    [9] G. Grimmett and D. Stirzaker, "Probability and Random Processes," Third edition, Oxford University Press, New York, 2001.
    [10] T. Gross and B. Blasius, Adaptive coevolutionary networks: A review, J. Roy. Soc. Interface, 5 (2008), 259-271. doi: 10.1098/rsif.2007.1229
    [11] T. House and M. J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface, 8 (2011), 67-73. doi: 10.1098/rsif.2010.0179
    [12] T. Kato, On the semi-groups generated by Kolmogoroff's differential equations, J. Math. Soc. Japan, 6 (1954), 1-15. doi: 10.2969/jmsj/00610001
    [13] Proc. Roy. Soc. A, to appear.
    [14] T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Functional Analysis, 3 (1969), 354-375. doi: 10.1016/0022-1236(69)90031-7
    [15] T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Prob., 7 (1970), 49-58. doi: 10.2307/3212147
    [16] J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, J. Math. Biol., 62 (2011), 143-164. doi: 10.1007/s00285-010-0331-2
    [17] Ann. Appl., Prob., submitted.
    [18] to appear.
    [19] P. L. Simon, M. Taylor and I. Z. Kiss, Exact epidemic models on graphs using graph-automorphism driven lumping, J. Math. Biol., 62 (2011), 479-508. doi: 10.1007/s00285-010-0344-x
  • This article has been cited by:

    1. N. Nagy, I.Z. Kiss, P.L. Simon, J.M. Hyman, F. Milner, J. Saldaña, Approximate Master Equations for Dynamical Processes on Graphs, 2014, 9, 0973-5348, 43, 10.1051/mmnp/20149203
    2. István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 3, 978-3-319-50804-7, 67, 10.1007/978-3-319-50806-1_3
    3. Istvan Z. Kiss, Péter L. Simon, New Moment Closures Based on A Priori Distributions with Applications to Epidemic Dynamics, 2012, 74, 0092-8240, 1501, 10.1007/s11538-012-9723-3
    4. Christian Kuehn, 2016, Chapter 13, 978-3-319-28027-1, 253, 10.1007/978-3-319-28028-8_13
    5. István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 10, 978-3-319-50804-7, 327, 10.1007/978-3-319-50806-1_10
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6122) PDF downloads(80) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog