Citation: András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach[J]. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
[1] | András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43 |
[2] | Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477 |
[3] | Luca Di Persio, Giacomo Ziglio . Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6(2): 279-296. doi: 10.3934/nhm.2011.6.279 |
[4] | Jan Lorenz, Stefano Battiston . Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3(2): 185-200. doi: 10.3934/nhm.2008.3.185 |
[5] | Jean-Yves Le Boudec . The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points. Networks and Heterogeneous Media, 2013, 8(2): 529-540. doi: 10.3934/nhm.2013.8.529 |
[6] | Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045 |
[7] | Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017 |
[8] | Simone Göttlich, Stephan Martin, Thorsten Sickenberger . Time-continuous production networks with random breakdowns. Networks and Heterogeneous Media, 2011, 6(4): 695-714. doi: 10.3934/nhm.2011.6.695 |
[9] | Nurehemaiti Yiming . Spectral distribution and semigroup properties of a queueing model with exceptional service time. Networks and Heterogeneous Media, 2024, 19(2): 800-821. doi: 10.3934/nhm.2024036 |
[10] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[1] |
J. Banasiak, M. Lachowicz and M. Moszyński, Semigroups for generalized birth-and-death equations in $ \l^p$ spaces, Semigroup Forum, 73 (2006), 175-193. doi: 10.1007/s00233-006-0621-x
![]() |
[2] |
F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci., 212 (2008), 69-87. doi: 10.1016/j.mbs.2008.01.001
![]() |
[3] |
A. Bátkai, P. Csomós and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Equ., 9 (2009), 613-636. doi: 10.1007/s00028-009-0026-6
![]() |
[4] | A. Bobrowski, "Functional Analysis for Probability and Stochastic Processes. An Introduction," Cambridge, 2005. |
[5] | C. Chicone, "Ordinary Differential Equations with Applications," Second edition, Texts in Applied Mathematics, 34, Springer, New York, 2006. |
[6] |
R. W. R. Darling and J. R. Norris, Differential equation approximations for Markov chains, Probab. Surv., 5 (2008), 37-79. doi: 10.1214/07-PS121
![]() |
[7] | K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Math., 194, Springer-Verlag, New York, 2000. |
[8] | S. N. Ethier and T. G. Kurtz, "Markov Processes: Characterization and Convergence," John Wiley & Sons Ltd, USA, 2005. |
[9] | G. Grimmett and D. Stirzaker, "Probability and Random Processes," Third edition, Oxford University Press, New York, 2001. |
[10] |
T. Gross and B. Blasius, Adaptive coevolutionary networks: A review, J. Roy. Soc. Interface, 5 (2008), 259-271. doi: 10.1098/rsif.2007.1229
![]() |
[11] |
T. House and M. J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface, 8 (2011), 67-73. doi: 10.1098/rsif.2010.0179
![]() |
[12] |
T. Kato, On the semi-groups generated by Kolmogoroff's differential equations, J. Math. Soc. Japan, 6 (1954), 1-15. doi: 10.2969/jmsj/00610001
![]() |
[13] | Proc. Roy. Soc. A, to appear. |
[14] |
T. G. Kurtz, Extensions of Trotter's operator semigroup approximation theorems, J. Functional Analysis, 3 (1969), 354-375. doi: 10.1016/0022-1236(69)90031-7
![]() |
[15] |
T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Prob., 7 (1970), 49-58. doi: 10.2307/3212147
![]() |
[16] |
J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboordse, Effective degree network disease models, J. Math. Biol., 62 (2011), 143-164. doi: 10.1007/s00285-010-0331-2
![]() |
[17] | Ann. Appl., Prob., submitted. |
[18] | to appear. |
[19] |
P. L. Simon, M. Taylor and I. Z. Kiss, Exact epidemic models on graphs using graph-automorphism driven lumping, J. Math. Biol., 62 (2011), 479-508. doi: 10.1007/s00285-010-0344-x
![]() |
1. | N. Nagy, I.Z. Kiss, P.L. Simon, J.M. Hyman, F. Milner, J. Saldaña, Approximate Master Equations for Dynamical Processes on Graphs, 2014, 9, 0973-5348, 43, 10.1051/mmnp/20149203 | |
2. | István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 3, 978-3-319-50804-7, 67, 10.1007/978-3-319-50806-1_3 | |
3. | Istvan Z. Kiss, Péter L. Simon, New Moment Closures Based on A Priori Distributions with Applications to Epidemic Dynamics, 2012, 74, 0092-8240, 1501, 10.1007/s11538-012-9723-3 | |
4. | Christian Kuehn, 2016, Chapter 13, 978-3-319-28027-1, 253, 10.1007/978-3-319-28028-8_13 | |
5. | István Z. Kiss, Joel C. Miller, Péter L. Simon, 2017, Chapter 10, 978-3-319-50804-7, 327, 10.1007/978-3-319-50806-1_10 |