On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms

  • Received: 01 December 2010 Revised: 01 June 2011
  • Primary: 90B20, 92D50, 92-02, 35L65, 82-02.

  • This paper presents a critical overview on the modeling of crowds and swarms and focuses on a modeling strategy based on the attempt to retain the complexity characteristics of systems under consideration viewed as an assembly of living entities characterized by the ability of expressing heterogeneously distributed strategies.

    Citation: Nicola Bellomo, Abdelghani Bellouquid. On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms[J]. Networks and Heterogeneous Media, 2011, 6(3): 383-399. doi: 10.3934/nhm.2011.6.383

    Related Papers:

  • This paper presents a critical overview on the modeling of crowds and swarms and focuses on a modeling strategy based on the attempt to retain the complexity characteristics of systems under consideration viewed as an assembly of living entities characterized by the ability of expressing heterogeneously distributed strategies.


    加载中
    [1] K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395-427. doi: 10.1007/s00285-008-0197-8
    [2] G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinetic Related Models, 1 (2008), 249-278. doi: 10.3934/krm.2008.1.249
    [3] A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
    [4] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Nat. Acad. Sci., 105 (2008), 1232-1237. doi: 10.1073/pnas.0711437105
    [5] R. N. Bearon and K. L. Grünbaum, From individual behavior to population models: A case study using swimming algae, J. Theor. Biol., 251 (2008), 33-42. doi: 10.1016/j.jtbi.2008.01.007
    [6] N. Bellomo, "Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach," Modeling and Simulation in Science, Engineering, and Technology, Birkhäuser Boston, Inc., Boston, MA, 2008.
    [7] N. Bellomo and A. Bellouquid, On the modelling of vehicular traffic and crowds by the kinetic theory of active particles, in "Mathematical Modelling of Collective Behaviour in Socio-Economics and Life Sciences" (eds. G. Naldi, L. Pareschi and G. Toscani), Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, (2010), 273-296.
    [8] N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models and flux-limited chemotaxis from binary mixtures of multicellular growing systems, Math. Models Methods Appl. Sci., 20 (2010), 1179-1207. doi: 10.1142/S0218202510004568
    [9] N. Bellomo, H. Berestycki, F. Brezzi and J.-P. Nadal, Mathematics and complexity in human and life sciences, Math. Models Methods Appl. Sci., 19 (2009), 1385-1389. doi: 10.1142/S0218202509003826
    [10] N. Bellomo, H. Berestycki, F. Brezzi and J.-P. Nadal, Mathematics and complexity in human and life sciences, Math. Models Methods Appl. Sci., 20 (2010), 1391-1395. doi: 10.1142/S0218202510004702
    [11] N. Bellomo, C. Bianca and M. S. Mongiovi, On the modeling of nonlinear interactions in large complex systems, Applied Mathematical Letters, 23 (2010), 1372-1377. doi: 10.1016/j.aml.2010.07.001
    [12] N. Bellomo, C. Bianca and M. Delitala, Complexity analysis and mathematical tools towards the modelling of living systems, Phys. Life Rev., 6 (2009), 144-175. doi: 10.1016/j.plrev.2009.06.002
    [13] N. Bellomo and B. Carbonaro, Towards a mathematical theory of living systems focusing on developmental biology and evolution: a review and perpectives, Phys. Life Reviews, 8 (2011), 1-18. doi: 10.1016/j.plrev.2010.12.001
    [14] N. Bellomo and C. Dogbè, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
    [15] N. Bellomo and C. Dogbè, On the modelling of traffic and crowds - a survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463. doi: 10.1142/S0218202508003054
    [16] A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of Vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci., 22 (2012), to appear.
    [17] A. Bellouquid and M. Delitala, "Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach," Modeling and Simulation Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2006.
    [18] A. Bellouquid and M. Delitala, Asympotic limits of a discrete kinetic theory model of vehicular traffic, Appl. Math. Letters, 24 (2011), 672-678. doi: 10.1016/j.aml.2010.12.004
    [19] M. L. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Anal. RWA, 9 (2008), 183-196. doi: 10.1016/j.nonrwa.2006.09.012
    [20] Available from: http://www.ipam.ucla.edu/programs/swa2006.
    [21] V. J. Blue and J. L. Adler, Cellular automata microsimulation of bidirectional pedestrian flows, Transp. Research Board, 1678 (2000), 135-141. doi: 10.3141/1678-17
    [22] E. Bonabeau, M. Dorigo and G. Theraulaz, "Swarm Intelligence: From Natural to Artificial Systems," Oxford University Press, Oxford, 1999.
    [23] L. Bruno, A. Tosin, P. Tricerri and F. Venuti, Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications, Appl. Math. Model., 35 (2011), 426-445. doi: 10.1016/j.apm.2010.07.007
    [24] S. Buchmuller and U. Weidman, Parameters of pedestrians, pedestrian traffic and walking facilities, ETH Report Nr. 132, October, 2006.
    [25] J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552. doi: 10.1142/S0218202510004684
    [26] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini and R. Tavarone, From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior, Math. Models Methods Appl. Sci., 20 (2010), 1491-1510. doi: 10.1142/S0218202510004660
    [27] Y. Chjang, M. D'Orsogna, D. Marthaler, A. Bertozzi and L. Chayes, State transition and the continuum limit for 2D interacting, self-propelled particles system, Physica D, 232 (2007), 33-47. doi: 10.1016/j.physd.2007.05.007
    [28] R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a pedestrian flow model, Nonlinear Anal. RWA, 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002
    [29] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
    [30] E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182. doi: 10.1137/100797515
    [31] F. Cucker and Jiu-Gang Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391-1404. doi: 10.1142/S0218202509003851
    [32] C. F. Daganzo, Requiem for second order fluid approximations of traffic flow, Transp. Research B, 29 (1995), 277-286. doi: 10.1016/0191-2615(95)00007-Z
    [33] P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215. doi: 10.1142/S0218202508003005
    [34] S. de Lillo, M. Delitala and C. Salvadori, Modelling epidemics and virus mutations by methods of the mathematical kinetic theory for active particles, Math. Models Methods Appl. Sci., 19 (2009), 1404-1425. doi: 10.1142/S0218202509003838
    [35] M. Delitala, P. Pucci and C. Salvatori, From methods of the mathematical kinetic theory for active particles to modelling virus mutations, Math. Models Methods Appl. Sci., 21 (2011), 843-870. doi: 10.1142/S0218202511005398
    [36] M. Delitala and A. Tosin, Mathematical modelling of vehicular traffic: A discrete kinetic theory approach, Math. Models Methods Appl. Sci., 17 (2007), 901-932. doi: 10.1142/S0218202507002157
    [37] C. Detrain and J,-L. Doneubourg, Self-organized structures in a superorganism: Do ants "behave" like molecules?, Physics of Life, 3 (2006), 162-187. doi: 10.1016/j.plrev.2006.07.001
    [38] M. Di Francesco, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Equations, 250 (2011), 1334-1362. doi: 10.1016/j.jde.2010.10.015
    [39] C. Dogbè, On the Cauchy problem for macroscopic model of pedestrian flows, J. Math. Anal. Appl., 372 (2010), 77-85. doi: 10.1016/j.jmaa.2010.06.044
    [40] D. Grünbaum, K. Chan, E. Tobin and M. T. Nishizaki, Non-linear advection-diffusion equations approximate swarming but not schooling population, Math. Biosci., 214 (2008), 38-48. doi: 10.1016/j.mbs.2008.06.002
    [41] D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Sciences, 36 (1991), 298-310. doi: 10.1002/bs.3830360405
    [42] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys, 73 (2001), 1067-1141. doi: 10.1103/RevModPhys.73.1067
    [43] D. Helbing, A. Johansson and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Physical Review E, 75 (2007), 046109. doi: 10.1103/PhysRevE.75.046109
    [44] D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical feature of escape panic, Nature, 407 (2000), 487-490. doi: 10.1038/35035023
    [45] D. Helbing, P. Molnár, I. Farkas and K. Bolay, Self-organizing pedestrian movement, Environment and Planning B, 28 (2001), 361-383. doi: 10.1068/b2697
    [46] D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
    [47] D. Helbing and M. Moussaid, Analytical calculation of critical perturbation amplitudes and critical densities by non-linear stability analysis for a simple traffic flow model, Eur. Phys. J. B., 69 (2009), 571-581. doi: 10.1140/epjb/e2009-00042-6
    [48] L. F. Henderson, On the fluid mechanic of human crowd motion, Transp. Research, 8 (1975), 509-515. doi: 10.1016/0041-1647(74)90027-6
    [49] R. L. Hughes, The flow of human crowds, Annual Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136
    [50] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoretical Biology, 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6
    [51] A. Kirman and J. Zimmermann, eds., "Economics with Heterogeneous Interacting Agents," Lecture Notes in Economics and Mathematical Systems, 503, Springer-Verlag, Berlin, 2001.
    [52] K. Lerman, A. Martinoli and A. Galstyan, A review of probabilistic macroscopic models for swarm robotic systems, in "Swarm Robotics Workshop: State-of-the-art Survey" (eds. E. Sahin and W. M. Spears), Springer-Verlag, (2005), 143-152.
    [53] B. Maury, A. Roudneff-Chupin and F. Stantambrogio, A macroscopic crowd motion modelof gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1899-1940. doi: 10.1142/S0218202510004799
    [54] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570. doi: 10.1007/s002850050158
    [55] M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental study of the behavioral underlying mechanism underlying self-organization in human crowd, Proc. Royal Society B: Biological Sciences, 276 (2009), 2755-2762.
    [56] G. Naldi, L. Pareschi and G. Toscani, eds., "Mathematical Modeling of Collective Behaviour in Socio-Economic and Life Sciences," Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2010.
    [57] A. Okubo, Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds, Adv. Biophys., 22 (1986), 1-94. doi: 10.1016/0065-227X(86)90003-1
    [58] B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Cont. Mech. Therm., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
    [59] B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Rat. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y
    [60] A. Rubinstein and M. J. Osborne, "A Course in Game Theory," MIT Press, Cambridge, MA, 1994.
    [61] J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Computational Biology, 6 (2010), 12 pp. doi: 10.1371/journal.pcbi.1000890
    [62] J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1998), 4828-4858. doi: 10.1103/PhysRevE.58.4828
    [63] C. M. Topaz and A. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2005), 152-174. doi: 10.1137/S0036139903437424
    [64] F. Venuti, L. Bruno and N. Bellomo, Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Mathl. Comp. Modelling, 45 (2007), 252-269. doi: 10.1016/j.mcm.2006.04.007
    [65] F. Venuti and L. Bruno, Crowd structure interaction in lively footbridges under synchronous lateral excitation: A literature review, Phys. Life Rev., 6 (2009), 176-206. doi: 10.1016/j.plrev.2009.07.001
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5545) PDF downloads(130) Cited by(43)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog