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Abstract. This paper presents a critical overview on the modeling of crowds

and swarms and focuses on a modeling strategy based on the attempt to re-
tain the complexity characteristics of systems under consideration viewed as

an assembly of living entities characterized by the ability of expressing hetero-

geneously distributed strategies.

1. Introduction. This paper presents some perspective ideas on crowd modeling
motivated by the aim of taking into account the characteristics of pedestrian crowd
viewed as a living, hence complex, system.

The study of complex systems, namely systems of many individuals interacting
in a non-linear manner has received in recent years a remarkable increase of interest
among applied mathematicians and physicists due also to the conceptual difficul-
ties to treat complexity [10]. These systems are characterized by the difficulty to
understand and model them based on the sole description of the dynamics and
interactions of a few individual entities localized in space and time.

The above reasonings amount to state that the traditional modeling of individual
dynamics does not lead in a straightforward way to a mathematical description of
collective emerging behaviors. The reader interested in the modeling of complex
systems can refer to the book [6], to papers [9, 10, 12], and therein cited bibliography,
to recover an appropriate information on the literature in the field. The recently
edited book [56] offers a broad range of interesting applications in different fields of
life sciences.

The dynamics of crowds and swarms definitely exhibits characteristics that are
typical of complex system. However rarely the existing literature takes into account
this relevant specificity. In fact, methods of classical fluid mechanics, either at the
scale of particles or that of continuum mechanics, are used despite that self-propelled
particles have the ability to develop specific strategies that remarkably distinguish
them from classical particles.
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This paper develops a critical analysis followed by a strategy to overcome the
afore-said gap. The analysis starts from the existing literature documented in the
review papers [15, 42], which mainly refer to the dynamics of vehicular traffic,
which has some analogy with that of crowds. However, several important differences
distinguish the dynamics of vehicles from that of crowds and swarms.

The approach developed in this paper is based on the kinetic theory of active
particles [6, 12], which has been applied in several fields of applied and life sciences
as documented, among others, in the modeling of social competition [2, 19], spread
of epidemics [34, 35], theory of evolution [13], and in various other fields of life
sciences. This method is further developed in this paper to take into account the
specific features of the system under consideration, for instance, nonlinear interac-
tions and learning dynamics. It is worth mentioning that such a theory includes the
heterogeneous behavior of individuals as originally motivated in the field of behav-
ioral economy [51], while interactions are not classical, but modeled by stochastic
games [60].

After the above introduction, a description of the contents can be given. Section
2 presents an overview of the specific characteristics of crowds viewed as a living,
and hence complex, system. Special emphasis is given to focus some specific features
that are typical of living systems such as the ability to develop a strategy based on
that expressed by the surrounding pedestrians. Subsequently, a critical overview on
the different observation and representation scales, that can be used to the modeling
approach, in view of selecting the most appropriate strategy towards modeling.
Section 3 focuses on the mathematical approach of the kinetic theory of active
particle and indicates some perspective ideas to be properly developed towards
the modeling of the class of systems under consideration. The implications of the
transition from normal to panic flow conditions are also treated. Section 4 moves
from the modeling of crowds to that of swarms and provides some perspective ideas
towards some conceivable approach to this challenging problem that keeps capturing
the attention of applied mathematicians and physicists.

2. Crowd viewed as a living (complex) system. The modeling approach pro-
posed in this paper looks at the dynamics of crowds as the output of the interactions
involving individuals, who have the ability to express specific strategies related to
that of the other individuals in their action domain. This section presents the main
characteristics which, according to the authors’ bias, should be retained by the mod-
eling approach. The selection of the most appropriate strategy towards modeling is
a consequence. The contents are developed through four subsections and is referred
to the existing literature in the field.

2.1. Five key features of crowd dynamics. Let us consider a crowd in a
bounded two-dimensional domain of pedestrians, who interact and have the ob-
jective of reaching an exit zone. The crowd can also be localized in an unbounded
domain and have the objective of reaching a meeting point. Five features are ex-
tracted, according to the authors’ bias, to be considered the key ones in the modeling
approach.

1. Ability to express a strategy: Pedestrians are capable to develop a spe-
cific organization ability that depends on the state of the surrounding environment
including the state and localization of the other pedestrians in their interaction
domain. This strategy can be expressed without the application of any external
organizing principle;
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2. Heterogeneity: The ability to express a strategy is heterogeneously distributed.
In some cases, the heterogeneous behavior includes a hierarchy.

3. Interactions: Interactions involve immediate neighbors, but in some cases
also distant particles. In some cases, the topological distribution of a fixed number
of neighbors can play a prominent role in the development of the strategy and
interactions. Generally, the action on a pedestrian from those in the interaction
domain is nonlinearly additive, namely it is not the sum of the individual actions.

4. Stochastic games: Interactions modify the state of pedestrians according to
the strategy they develop. Living entities play a game at each interaction, so that
the output is not due to deterministic causality principles. This dynamics is also
related to the fact that living systems receive a feedback from their environments,
which enables them to learn from their experiences;

5. Large deviations related to passage from normal to panic conditions:
The expression of the strategic ability and the characteristics of interactions among
pedestrians can be largely modified when panic conditions occur. Consequently
emerging behaviors, very different from those observed in normal flow conditions,
can appear.

2.2. Scaling and representation. The first step of the modeling approach con-
sists in selecting the scale, which appears to be the most appropriate to describe,
by mathematical equations, the class of systems under consideration. Classically,
the following types of descriptions can be considered:

Microscopic description, which refers to individually identified entities. The
overall state of the system is delivered by individual position and velocity of pedes-
trians. Mathematical models are generally stated in terms of systems of ordinary
differential equations.

The macroscopic description is used when the state of the system is described
by gross quantities, namely density, linear momentum, and kinetic energy, regarded
as dependent variables of time and space. These quantities are obtained by local
average of the microscopic state. Mathematical models are stated by systems of
partial differential equations.

The kinetic theory description is used when the microscopic state of pedestrians
is still identified by the individual position and velocity, however their representa-
tion is delivered by a suitable probability distribution over such microscopic state.
Mathematical models describe the evolution of the afore-said distribution function
by means of nonlinear integro-differential equations.

Let us consider a crowd of pedestrians in a domain Ω, with boundary ∂ Ω, which
may also contain inner obstacles as shown in Figure 1. Such domain generally has
an inlet and an outlet flow. It is useful, for each scale, using dimensionless variables
referred to the following quantities:

nM is the maximum density of pedestrians corresponding to maximal full packing
density;

VM is the maximum admissible mean velocity, which can be reached by pedestrians
in free flow conditions.

V` = (1 + µ)VM , with µ > 0, is a limit velocity which can be reached by a speedy
isolated pedestrian;

x, y are the dimensionless space variable obtained dividing the real space by the
length ` that corresponds to the largest dimension of Ω;
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Figure 1. – Geometry of the domain Ω occupied by the crowd.

t is the dimensionless time variable obtained referring the real time to a suitable
critical time Tc identified by the ratio between ` and VM .

After the above preliminary definitions, it is possible assessing the mathematical
structures underlying different models at the various scales.

• The microscopic representation is defined, for i = 1, . . . , N , by the position
xi(t) = {x(t), y(t)}i in Ω of each i-th individual of a crowd of N pedestrians; and by
the dimensionless velocity of each i-th individual vi(t) = {vx(t), vy(t)}i related to
V`. Mathematical models are generally stated as a system of N ordinary differential
equations, where vi and xi are the dependent variables. The structure underlying
models at the microscopic scale is, with obvious meaning of notations, as follows:

dxi
dt

= vi ,

dvi
dt

= Fi(xi, . . . ,xN ,vi, . . . ,vN ) .

(1)

The solution of Eq. (1), with given initial conditions, provides the time evolution
of position and velocity of pedestrians. Macroscopic quantities are obtained by
suitable averaging performed either at fixed time over a suitable space domain,
or at fixed space over a suitable time interval. In both cases fluctuations cannot
be avoided. Furthermore, the assessment of the parameters of the model needs a
remarkable amount of empirical data that are very difficult and expensive to obtain
also due to the dependence of the dynamics to environmental conditions.

• The macroscopic representation can be selected for high density, large scale
systems in which the local behavior of groups is sufficient. In details, the macro-
scopic description is defined by the variables defined as follows:

ρ = ρ(t,x) is the dimensionless density referred to the maximum density nM of
pedestrians,

V = V(t,x) = Vx(t,x) i + Vy(t,x) j is the dimensionless mean velocity, referred to
VM , where x = {x, y}, while i and j denote the unit vectors of the coordinate axes.
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The relationship between the flow rate, the mean velocity and the pedestrian
density is given, in a dimensionless form, as follows: q = ρV.

The mathematical structure, which underlies models at the macroscopic scale, is
given by the equations of mass conservation and momentum equilibrium: ∂tρ+ ∂x · (ρV) = 0 ,

∂tV + V · ∂xV = A[ρ,V;ν] ,
(2)

where the dot-product denotes inner-product of vectors, while A is a psycho-mecha-
nical acceleration acting on pedestrians in the elementary macroscopic volume of the
physical space, which depends on the local density conditions and on the optimal
trajectory in vacuum conditions that is identified by the local vector ν.

Some authors [14] suggest to split the afore said acceleration into the sum of a
frictional-type acceleration AF , which is proportional to the difference between the
actual velocity V and the mean equilibrium velocity Ve(ρ,ν) corresponding to the
local density, and an acceleration AP determined only by the gradient of pedestrian
density based on the idea that pedestrians chose an optimal path looking for minimal
gradients.

• The kinetic (statistical) representation is defined by the statistical distribu-
tion of their position, and velocity:

f = f(t,x,v), x ∈ Ω, v ∈ Dv, (3)

where Dv is the domain of the velocity v and f is normalized with respect to nM .
If f is locally integrable, f(t,x,v) dxdv denotes the number of individuals, which,
at the time t, are in the elementary domain of the microscopic states [x,x + dx]×
[v,v + dv] in the phase space.

Macroscopic observable quantities can be obtained, under suitable integrability
assumptions, by moments of the distribution. In particular, the dimensionless local
density is given by

ρ(t,x) =

∫
Dv

f(t,x,v) dv , (4)

while the total number of individuals in Ω is given by

N(t) =

∫
Ω

ρ(t,x) dx , (5)

which depends on time in the presence of inlet and/or outlet of pedestrians.
Analogously, the mean velocity can be computed as follows:

V(t,x) = E[v](t,x) =
1

ρ(t,x)

∫
Dv

v f(t,x,v) dv . (6)

Moreover, the velocity variance is similarly computed to provide a measure of the
stochastic behavior of the system with respect to the deterministic macroscopic
description.

The mathematical structure which underlies models delivered by the afore-said
representation is given by a balance of number of particles in the elementary volume
of the phase space, which can be formally written as follows:(

∂t + v · ∂x
)
f(t,x,v) = G[f ;ν](t,x,v)− L[f ;ν](t,x,v) , (7)

where G and L denote, respectively, the gain and loss of particles in the elementary
volume of the phase space. The detailed expression of these terms correspond to
different types of modeling interactions at the microscopic scale.
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2.3. Critical analysis on the selection of mathematical structures. The var-
ious representation schemes given in the preceding subsection enable us to develop
a critical analysis of mathematical models known in the literature. Out of such
analysis, it appears that new ideas need to be developed with the aim of capturing
the complexity features of the system under consideration.

The review paper [15] offers a broad panorama of the various models existing
in the literature. Crowd modeling has initiated at the macroscopic scale. More
precisely, Henderson’s pioneering paper [48] proposed a model related to an ho-
mogeneous gas constituted of statistically independent particles in equilibrium in
a two-dimensional space. Subsequently, Hughes [49] extended Henderson’s fluid
dynamics approach to allow for factors of human decision and interaction. This
approach has been further refined in [14], while the analysis of the hyperbolic prop-
erties of the model are given in [39]. A detailed qualitative analysis of the initial
value problem is given in [28] and [38]. The main problem in the modeling ap-
proach at the large scale consists in proposing a model for the acceleration term by
an approach that should take into account density gradient fields [14, 53].

It is worth mentioning that the modeling can be developed also by first order
models by using the mass conservation equation simply closed by a relation linking
the mean velocity to the local flow conditions, formally V = V[ρ,ν]. For instance,
Coscia and Canavesio [29] propose a model of this type which has been used to
model the crowd flow on the Jamarat bridge and applied to study the dynamics of
lively footbridges [64, 65]. A new approach has been invented by Piccoli and Tosin
[58, 59], where the closure is obtained by probability measures, whose modeling is
related to the dynamics at the lower scale, namely to the strategy developed by
pedestrians, see also [30]. A technical application is proposed in [23].

The modeling approach at the microscopic scale has been mainly developed by
Helbing and co-workers by the so-called social force models, introduced in [46]. This
model is based, after a detailed analysis of individual behaviors [41], on the assump-
tion that interactions among pedestrians are implemented by using the concept of
a social force or social field. This approach can be technically adapted to take
into account various mechanical behaviors. For instance, pedestrians keep a certain
distance from other pedestrians. Such distance depends on the pedestrian density
and walking speed. Suitable repulsive, short-range, potentials can be introduced to
describe these phenomena. The interaction potential can be attractive, for long-
range interactions, to model the aggregation phenomena of pedestrians, who often
show a trend to walk in groups. Once separated (for instance if a pedestrian has to
avoid an obstacle), the individual pedestrians try to reform the group. Moreover,
pedestrians move with an individual speed, taking into account the situation, sex,
age, handicaps, surroundings, and so on.

One of the crucial problems of the modeling at the microscopic scale consists in
dealing with a large number of equations and in transferring the microscopic infor-
mation to the macroscopic level, namely to physical quantities which can be possibly
observed and measured. Cellular automata models can overcome this difficulty [21].
These models simulate pedestrians as entities (automata) in cells, however only
very simple aspects of the dynamics are taken into account. On the other hand,
more recent studies introduce a modeling of the self-organizing ability of pedestri-
ans, which are modified at individual level, see [45, 47, 55]. A useful collection of
empirical data is offered in the Technical Report [24].
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Our reasonings show immediately that none of the afore-said representation scales
is fully satisfactory. In fact, it is plain that the flow is not continuous, hence models
derived at the macroscopic scale are not consistent with the classical paradigms of
continuum mechanics. Moreover, the number of individual entities involved in the
dynamics is not large enough to justify the use of continuous distribution functions
within the framework of the mathematical kinetic theory. Finally, individual entities
should be modelled as active particles due to their ability to modify their dynamics
according to specific strategies. Therefore, new ideas different from the ones we
have just seen above, should be possibly looked for, being related to the five sources
of complexity reviewed in Section 2.

3. Perspective ideas on the modeling of crowds. This section aims at trans-
ferring the critical analysis proposed in the preceding section into perspective ideas
to model pedestrian crowds. This aim is pursued in three steps. The first one
focuses on the design of the mathematical structure to be assumed as a reference
framework to derive specific models. The second step consists in modeling interac-
tions at the microscopic scale. Finally the modeling of panic conditions is treated.
This is an interesting topic [44], which is definitely worth future research activity to
be properly related to well-defined models. The last subsection presents a critical
analysis focusing on perspectives towards improving the modeling approach. This
section takes advantage of [7], where some preliminary hints have been given. Here
some further developments are proposed. In general, the modeling approach should
pursue the following, at least, objectives:

1. Mathematical models should include a limited number of parameters related
to well defined physical phenomena, which should be technically identified by
experiments;

2. Empirical data should not be artificially plugged into mathematical models,
which should reproduce them after a suitable choice of the parameters;

3. Models are required to reproduce, at least at a qualitative level, emerging
phenomena which are observed in real flow conditions. In particular, the
self-organizing ability is substantially modified by environmental conditions;

4. Modeling has to take into account also the fact that the human interpretation
of danger is not, at least in some cases, correct. For instance, escaping a danger
can be identified by the localization of overcrowded areas, which constitute
additional danger, and a subsequent additional panic.

3.1. A mathematical structure towards modeling. The mathematical struc-
ture proposed in this subsection refers specifically to the complexity characteristics
presented in Section 2. According to [6] an activity variable u is introduced in the
microscopic state of pedestrians to model the heterogeneous distribution of their
ability to express a strategy. Therefore, the microscopic state is defined by the
variables: position x ∈ [0, 1], speed v ∈ [0, 1 + µ], velocity direction θ ∈ [0, 2π), and
activity u ∈ [0, 1], where u = 0 and u = 1 correspond, respectively, to the worse
and best ability of pedestrians. This variable includes the environmental conditions,
namely u = 1 corresponds also to the best pedestrian in optimal conditions of the
ambient where the crowds moves, while worse conditions contribute to reduce the
value of u.

The space of microscopic states is subdivided into discrete cells of the space of the
microscopic states to take into account the lack of continuity of the distribution func-
tion. More precisely the following sets identify the discrete values of the afore-said
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variables: Iθ = {θ0 = 0 , . . . , θi , . . . , θn = 2π}, Iv = {v0 = 0 , . . . , vj , . . . , vm =
1 + µ}, and Iu = {u0 = 0 , . . . , uw , . . . , uz = 1}.

The corresponding discrete representation is as follows:

f(t,x,v, u) =

n∑
i=1

m∑
j=1

z∑
w=1

fijw(t,x) δ(θ − θi) δ(v − vj) δ(u− uw) , (8)

where fijw(t,x) = f(t,x, θi, vj , uw), while it has been assumed that all pedestrians
walk, namely v > 0, do not have a null activity u > 0, and that they cannot have
a velocity larger than V`.

The macroscopic quantities are obtained by weighted sums. In particular, the
number density and flow of pedestrians are, respectively, given by:

ρ(t,x) =
n∑
i=1

m∑
j=1

z∑
w=1

fijw(t,x) , (9)

and

q(t,x) =

n∑
i=1

m∑
j=1

z∑
w=1

(vj cos θi , vj sin θi ) fijw(t,x). (10)

Higher order moments, corresponding to the energy and speed variance, can be
computed by similar calculations.

It is worth stressing that the representation (8) is generally used in kinetic the-
ory to reduce the computational complexity of the Boltzmann equation or related
models. On the other hand, a discrete space of microscopic states was introduced
in [36] in vehicular traffic to face Daganzo’s criticism [32]. Subsequently, this idea
has been followed by various authors as reported in the review paper [15]. More
precisely, it is remarked in [32] that the number of vehicles is not large enough to
justify the assumption of a continuous distribution function. The same reasonings
are valid also in the case of pedestrians in a crowd. Hence the modeling approach
is based on the idea of considering particles with state in a cell of finite dimension.

Let us consider first the relatively simpler case when the activity variable is
heterogeneously distributed, but it is not modified by interactions. In this case
the components fijw(t,x) of the distribution function can be factorized as follows:
fijw(t,x) = fij(t,x)gw, where gw = g(u = uw) does not depend on time and space.

The transition probability density involves only the velocity variables: Aijhk,pq, and
the time and space evolution of the distribution function fij can be obtained by
equating the increase of time of f in the elementary volume of the space of the
microscopic states to the net flow into such volume due to interactions. Accordingly,
the following structure is proposed:(

∂t + vij · ∂x
)
fij(t,x) = J [f ](t,x)

=

n∑
h,p=1

m∑
k,q=1

∫
Λ

η[ρ(t,x∗)]σ(x,x∗)Aijhk,pq[ρ(t,x∗)]fhk(t,x) fpq(t,x
∗) dx∗

− fij(t,x)

n∑
p=1

m∑
q=1

∫
Λ

η[ρ(t,x∗)]σ(x,x∗)fpq(t,x
∗) dx∗, (11)

where f = {fij}, and vij = (vj cos θi , vj sin θi), the visibility zone Λ may depend

on space due to the geometry of Ω, while the modeling of the term Aijhk,pq should
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be consistent with the probability density properties:

n∑
i=1

m∑
j=1

Aijhk,pq = 1, ∀hp ∈ {1, . . . , n}, ∀ kq ∈ {1, . . . ,m} ,

and for all conditioning local density. Indeed, the table of games reported in the
following satisfies such property.

Equation (11), which underlies the derivation of specific models, corresponds to
the following assumptions:

i) Pedestrians have a visibility zone Λ = Λ(x), see Figure 2, which does not coincide
with the whole domain Ω due to the limited visibility angle of each individual.

ii) Interactions involve three types of active particles: the test pedestrian with state
(ij), which is representative of the whole system; the field pedestrians with state
(pq) in the position x∗ of the visibility zone Λ; and the candidate pedestrian with
state (hk), at time t, in the position x. The candidate pedestrian modifies, in
probability, its state into that of the test pedestrian, due to interactions with the
field pedestrians, while the test pedestrian looses its state due to interaction with
the field pedestrians. The activity of the candidate pedestrian is uw, which is not
modified by the interaction.

All particles cannot be distinguished individually. Therefore, their state identifies
them. In particular, candidate particles are field particles whose state, after the
identification, reaches that of the test particles.

iii) The output of interactions is modeled by the discrete probability density func-

tion Aijhk,pq, which denotes the probability density that a candidate (hk)-pedestrian

modifies its state into that of the test (ij)-pedestrian due to interaction with the
field (pq)-pedestrians. This transition density depends on the local number density.

iv) The frequency of the interactions is modeled by the term η[ρ(t,x∗)] depending
on the distribution function of the field particles in the visibility zone. The in-
tensity of the action on the candidate pedestrian due to the interactions with the
field pedestrians is modeled by a weight function σ(x,x∗). The weight function is
normalized with respect to integration over x∗ over Λ.

~ν(x)

Figure 2. – Visibility zone

The derivation of specific models can take advantage of the above structures and
is obtained by modeling the various terms that appear in Eq. (11) as shown in the
next subsection. The more general case of interactions that modify the activity
variable can be come relevant in the case of panic conditions and is outlined in
subsection 3.3.
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3.2. Modeling interactions at the microscopic scale. Specific models can be
obtained by modeling the terms that appear in Eq. (11) to describe interactions
at the microscopic scale, namely η, σ, and A. This subsection is devoted to give
appropriate hints towards this objective. The modeling necessarily needs heuristic
assumptions towards the interpretation of the complex phenomenology of the system
under consideration. Validation of models can be pursued by comparisons between
their prediction and the output of empirical data. Papers [16, 36] have shown that
an appropriate modeling of interactions at the microscopic scale leads to an accurate
description of both the fundamental diagrams and emerging behaviors.

The approach of this present paper specifically refers to [16] by generalizing
the model for traffic flow to crowd dynamics and, introducing new ideas related to
specificity of pedestrian movements. The modeling refers to normal flow conditions,
while various modifications needs to be applied in the case of panic conditions.

• Flow regimes: Three flow regimes are identified by two critical densities ρf and
ρs. Namely, the free flow regime that occurs for ρ ∈ [0, ρf [ when the dynamics is
influenced only by the geometry of the system, but not by the presence of other
pedestrians; the congested flow regime that occurs for ρ ∈ [ρf , ρs[ when the dynamics
is influenced by the afore-mentioned causes; and the regime that occurs for ρ ∈ [ρs, 1]
when pedestrians stop to avoid contact with other ones. The modeling proposed in
the following is developed for ρf ∼= 0.

• Interaction rate: The modeling of the term η, can be developed similarly
to the case of vehicular traffic [16], namely by increasing the interaction rate with
increasing local density in the free and congested regime. For higher densities, when
pedestrians are obliged to stop, one may assume that η keeps a constant value, or
may decay for lack of interest. The following model can be proposed among various
conceivable ones:

η(ρ(t,x)) = (1 + ρ(t,x)) exp

(
− ρ(t,x)

1 + ρs

)
. (12)

•Weight function: The function σ models how the pedestrian takes into account
the flow nconditions depending on the distance. A general rule cannot be given as
it depends on the size of the domain. For instance if the domain is small one can
assume that the distance has not a practical influence, while in large domains σ
may decay with the distance.

• Transition probability density: The modeling of the transition probability
density Aijhk,pq refers to the interactions involving candidate with field particles.
The approach proposed here is based on the assumption that particles are subject
to three different influences, namely the trend to the exit point, the influence
of the stream induced by the other pedestrians, and the selection of the path
with minimal density gradient. A simplified interpretation of the phenomenological
behavior is obtained by assuming the factorization of the two modifications of the
velocity direction and modulus:

Aijhk,pq = Bihp C
j
kq = B

(
θh → θi|θh, θp, uw, ρ∗

)
C
(
vk → vj |vk, vq, uw, ρ∗

)
, (13)

where ρ∗ = ρ(t,x∗).

Equation (13) is, of course, based on an heuristic assumption that cannot be
justified by theoretical issues. However, it simplifies the modeling approach by
separating the various causes that modify the dynamics. This assumption does not
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imply factorization of the probability density due to the mixing action of the variable
ρ. Let us now consider separately, the modeling of the two transition densities.

– Modeling Bihp : Let us consider the candidate particle in the position P moving in
the direction θh and interacting with a field particle with direction θp. Moreover, let
θν be the angle from P to T or to the direction of the shortest path, see Fig. 1. Let us
introduce three parameters ε1, ε2 and ε3, which model, respectively the sensitivity
of pedestrians to reach the target T , the sensitivity of pedestrians to chose the path
with minimal gradients, and sensitivity of the pedestrian to follow the stream.

Moreover, it is assumed that the transition of velocity corresponding to the phe-
nomena related to afore-said parameters ε1 and ε2, namely sensitivity to the target
and to minimal gradients, depends on the ratio of vacuum 1 − ρ, while the transi-
tion related to the sensitivity to the stream, that corresponds to ε3, depends on the
density ρ. The selection of the direction, among the three h − 1, h, and h + 1, is
identified by the terms Uh+1

ρ = 1 or Uh−1
ρ = 1, if the density gradient is the smallest

on the directions h+ 1 or h− 1, respectively; otherwise Uh+1
ρ = 0 or Uh−1

ρ = 0. If
the smallest gradient is in the direction h no turning action is present.

Finally it is assumed that the dynamics is more active for higher values of the
activity variable uw. It is natural that an active individual shows a higher ability
to modify the direction of the motion. Four cases can be considered for ρ ∈ [0, ρs[:

– Interaction with a upper stream and target directions, namely θp > θh; θν > θh:
It is assumed that, in addition to the selection of the path with minimal gradients,
both actions contribute to an anticlockwise rotation:

Bihp = ε1 uw(1− ρ) + ε2 uw(1− ρ)Uh+1
ρ + ε3 uw ρ if i = h+ 1 ,

Bihp = 1− ε1 uw(1− ρ)− ε2 uw(1− ρ)[Uh+1
ρ + Uh−1

ρ ]− ε3 uw ρ if i = h ,

Bihp = ε2 uw (1− ρ)Uh−1
ρ if i = h− 1 .

Analogous calculations can be done for the other cases. The result is as follows:

– Interaction with a upper stream and low target direction θp > θh; θν < θh:

Bihp = ε3 uw ρ+ ε2 uw(1− ρ)Uh+1
ρ if i = h+ 1 ,

Bihp = 1− ε1 uw(1− ρ)− ε2 uw (1− ρ)[Uh+1
ρ + Uh−1

ρ ]− ε3 uw ρ if i = h ,

Bihp = ε1 uw (1− ρ) + ε2 uw (1− ρ)Uh−1
ρ if i = h− 1 .

– Interaction with a lower stream and upper target direction θp < θh; θν > θh:

Bihp = ε1 uw(1− ρ) + ε2 uw(1− ρ)Uh+1
ρ if i = h+ 1 ,

Bihp = 1− ε1 uw(1− ρ)− ε2 uw (1− ρ)[Uh+1
ρ + Uh−1

ρ ]− ε3 uw ρ if i = h ,

Bihp = ε3 uw ρ+ ε2 uw(1− ρ)Uh−1
ρ if i = h− 1 .

– Interaction with a lower stream and target directions θp < θh; θν > θh:

Bihp = ε2 uw (1− ρ)Uh+1
ρ if i = h+ 1 ,

Bihp = 1− ε1 uw(1− ρ)− ε2 uw (1− ρ)[Uh+1
ρ + Uh−1

ρ ]− ε3 uw ρ if i = h ,

Bihp = ε1 uw (1− ρ) + ε2 uw(1− ρ)Uh−1
ρ + ε3 uw ρ if i = h− 1 .
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– Modeling Cjkq : The modeling of the modifications of the velocity modulus due to
interactions can be developed similarly to the approach of traffic flow. Therefore,
detailed calculations are not repeated here. We refer to [36, 16], where the first paper
uses a fixed grid and a parameter modeling the quality of the outer system, road
and environment, while the second one introduces the concept of critical densities
ρc and ρ` that, as already mentioned, separate the free from the, congested flow and
the density that obliges pedestrians to stop. These densities are used as a parameter
related to a parameter modeling the quality of the environment. These reasonings
can be applied also to the case of pedestrian flows. Therefore the approach of [36,

16] can be straightforwardly used to model the transition probability density Cjkq.
Empirical data to validate models are offered in [24]. The contents [16] show that
the modeling reproduce the afore-said empirical data. concerning both fundamental
velocity diagrams and emerging behaviors.

– The modeling corresponding to jam densities ρ ∈ [ρs, 1] simply implements that
pedestrians reduce to zero their velocity.

Finally, mathematical models are obtained by inserting the above transition prob-
ability densities modeling interactions at the microscopic scale into Eq. (11). The
simple approach that has been presented above can be further simplified or en-
riched. For instance simplifications can restrict to one or two the velocity modules
or suppose that the activity variable is the same for all pedestrians. On the other
hand, the dynamics over the activity variable can be included in a more general
structure:(

∂t + vij · ∂x
)
fijw(t,x) = J [f ](t,x)

=

n∑
h,p=1

m∑
k,q=1

z∑
r,s=1

∫
Λ

η[ρ(t,x∗)]σ(x,x∗)Aijwhkr,pqs[ρ(t,x∗)]fhkr(t,x) fpqs(t,x
∗) dx∗

−fijw(t,x)

n∑
p=1

m∑
q=1

z∑
s=1

∫
Λ

η[ρ(t,x∗)]σ(x,x∗)fpqs(t,x
∗) dx∗, (14)

where f = {fijw}, while the constraint for the term Aijwhkr,pqs is

n∑
i=1

m∑
j=1

z∑
w=1

Aijwhkr,pqs = 1 ,

for all conditioning local density, and ∀h, p ∈ {1, . . . , n}, ∀ k, q ∈ {1, . . . ,m}, and
∀ rs ∈ {1, . . . , z}. This issue is not treated here, however the interested reader is
referred to Subsection 8.1 of [15], to recover some hints on this matter in analogy
to vehicular traffic.

3.3. From a critical analysis to modeling panic conditions. The class of
mathematical models presented in the preceding section is based on the mathemat-
ical structure Eq. (11) or Eq. (14) which have been proposed to take into account
the five complexity features reported in Section 2. In details, the ability to express
a strategy is modeled by the variable u, which is heterogeneously distributed among
pedestrians; interactions are modeled by stochastic games, namely by the transition
probability density A, which transfers the input related to the probability densities
of the interacting particles into the output, in probability, into a cell of the space of
microscopic states. On the other hand, large deviations due to the onset panic con-
ditions do not appear explicitly in the mathematical structure, however the critical
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analysis developed in the following shows that their modeling can be inserted into
Eq. (11) or Eq. (14). Therefore we trust that the afore-said equations are appro-
priate to act as a background structure for the derivation of specific models, which
can be obtained by modeling interactions at the microscopic scale.

Panic conditions modify, as already mentioned, the dynamics of interactions in
various ways. For instance by increasing quantitatively the interaction rate and by
disregarding the exit zone in favor of clustering, where the crowd feels to be, in
various cases wrongly, out of danger [43]. Therefore, when these conditions appear,
the model has to take into account a different way of depicting interactions at the
microscopic level.

It is difficult indicating general rules valid for all specific cases considering that
these special conditions somehow differ from case to case. The following indications
are given looking at research perspectives on this interesting topic:

i) The critical density ρs tends to zero, which means that in full packing conditions
the trend towards the exit is substituted by the action of the flow;

ii) The values of the activity u needs to be increased considering that pedestrians
accelerate their dynamics despite the environmental conditions;

iii) The assumption that the weight σ decays with the distance is not a general
rule. Indeed, different contexts lead to different pedestrian behavior, who may be,
in some cases, attracted by distant rather that near areas;

iv) The search of optimal paths, corresponding to the smallest density gradients,
may not be pursued considering that pedestrians tend to clustering rather than
moving to the exit zone. Therefore, one can put ε1

∼= 0 to neglect the trend towards
the exit zone, increase the value of ε2 to take into account the greater action of the
flow and modify the selection of the best path weighted by ε3. In fact pedestrian
try to reach zones where the crowd aggregates.

v) The geometry of the domain containing the crowd can have a great influence on
the emerging collective behaviors. In fact, pedestrians may chose irrational paths
rather than the usual ones.

The various indications that have been given above do not yet provide a precise
guideline towards modeling. Rather, they can be regarded as hints to implement
the mathematical structure with the appropriate models of interactions at the mi-
croscopic scale,

4. From crowds to swarm dynamics. Modeling of swarms is an attractive re-
search perspective which is also motivated by the observation of the beauty of the
shapes formed by birds which appear in the sky during spring and autumn periods.
Analogous phenomena are, however, observed in other systems such as fishes which
try to escape the attack of a predator, or cells which aggregate forming particular
patterns. Generally, the expression of a strategy of the individuals forming a swarm
is finalized to their fitness or even survivance.

The existing literature offers different modeling approaches. Among others,
macroscopic equations derived from stochastic perturbation of individual dynamics
[27], [33], modeling swarming patterns, [20], [63], and flocking phenomena [31, 57,
62]. A deep insight on emerging strategies needs to be specifically referred to the
type of individuals composing the swarm [4, 5, 26]. A specific characteristic is that
the swarm has the ability to express a collective intelligence, somehow related to
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the environmental conditions [22], which can evolve by learning processes. This
dynamics is used to drive learning processes in modern technology of robots [52].

The aim of this section consists in understanding how the mathematical struc-
tures proposed in the preceding section needs to be modified to tackle the higher
order complexity of swarm dynamics. Some differences are purely technical and
simply need additional notations. For instance, interactions between active parti-
cles of a swarm are in three space coordinates, while those of particles of a crowd
are defined over two-space coordinates.

Moreover, mathematical problems are stated in unbounded domains with ini-
tial conditions with compact support. The solution of problems should provide
the evolution in time of the domain of the initial conditions. Say, if Ω0 is the do-
main containing the swarm at t = 0, the solution of mathematical problems should
compute the map Ω0 → Ωt, where Ωt contains the swarm for t > 0.

However, some of the specific characteristics need substantial modifications of
the mathematical structure Eq. (11). Therefore, additional reasonings are proposed
in the following to be viewed as research perspectives:

i) Generally, swarms refer to animal behaviors, which differ from population to
population and that can be modified by external actions that can induce panic.
Namely, a swarm in normal conditions has a well defined objective, for instance
reaching a certain zone starting from a localization. However, panic conditions can
modify the overall strategy to pursue this objective, which is consequently modified.

ii) The swarm has the ability to express a common strategy, which is a nonlinear
elaboration of all individual contributions, generated by each individuals based on
the microscopic state of all other individuals. Namely, this collective intelligence
is generated by a cooperative strategy [22, 54]. This strategy includes a cluster-
ing ability (flocking) that prevents the fragmentation of Ωt. Moreover, when a
fragmentation of Ωt occurs, the clustering ability induces an aggregation.

iii) Recent studies [4, 26] conjecture, on the basis of empirical data, that some
systems of animal world develop a common strategy based on interactions depending
on topological rather than metric distances. In general, the insight on emerging
strategies needs to be specifically referred to the type of individuals composing the
swarm [40], and the specific applications considered in [5, 37].

iv) The dynamics of interactions differs in the various zones of the swarm. For
instance, from the border to the center of Ωt. More precisely, the modeling of sto-
chastic fluctuations should be inserted for individuals on the border of the domain,

v) If the concept of swarm is extended to other types of micro organisms, ulti-
mately to cells in a multicellular system, additional difficulties have to be treated.
For instance, the strategy expressed by the interacting entities depends on their spe-
cific phenotypes and related biological functions. Moreover, the modeling approach
should include proliferative and/or destructive events [17].

Of course the mathematical structure presented in the preceding section cannot
be straightforwardly used to model all above phenomena. The approach to deal with
some of the above technical difficulties will be developed in a forthcoming research
project, while some hints are here anticipated. For instance, a different conceptual
approach to modeling the encounter rate and the transition probability density
have to be developed. More precisely, the visibility zone has to be substituted by an
interaction domain, which depends on a fixed critical number of individuals that are
located into the visibility zone. Moreover, the transition density should be modeled



MODELING OF CROWD DYNAMICS 397

by the overall action of the other individuals in their interaction domain. This
means extending to the full space of microscopic states the ideas that were simply
referred in [11] to the activity variable. Additional force fields can be included to
model interactions between individuals of the swarm [25]

Finally, let is mention that the link microscopic and macroscopic in the case of
swarms of microorganisms have been obtained by asymptotic analysis and moment
closure. Among others [1, 8, 61]. This approach has been able to derive models, such
as the celebrated Keller and Segel model [50] that have been heuristically derived
to model pattern formation. This remark completes the variety of challenging open
problems presented in this last section. Some results are known in the case of
vehicular traffic, see [18, 3] and there in cited bibliography. This approach can be
possibly extended to the case of crowd.

Acknowledgments. We would like to thank the referees for their valuable com-
ments and suggestions. NB has been partially supported by the European Union
FP7 Health Research Grant number FP7-HEALTH-F4-2008-202047-RESOLVE.

REFERENCES

[1] K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation,

incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395–427.
[2] G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex

socio-economical systems by functional subsystems representation, Kinetic Related Models,

1 (2008), 249–278.
[3] A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from

microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259–278.

[4] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,
A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal

collective behavior depends on topological rather than metric distance: evidence from a field

study, Proc. Nat. Acad. Sci., 105 (2008), 1232–1237.
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[40] D. Grünbaum, K. Chan, E. Tobin and M. T. Nishizaki, Non-linear advection-diffusion equa-

tions approximate swarming but not schooling population, Math. Biosci., 214 (2008), 38–48.
[41] D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Sciences, 36

(1991), 298–310.

http://www.ams.org/mathscinet-getitem?mr=MR2248839&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2765116&return=pdf
http://dx.doi.org/10.1016/j.aml.2010.12.004
http://dx.doi.org/10.1016/j.aml.2010.12.004
http://www.ams.org/mathscinet-getitem?mr=MR2370171&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2006.09.012
http://dx.doi.org/10.1016/j.nonrwa.2006.09.012
http://www.ipam.ucla.edu/programs/swa2006/
http://dx.doi.org/10.3141/1678-17
http://dx.doi.org/10.3141/1678-17
http://www.ams.org/mathscinet-getitem?mr=MR2677955&return=pdf
http://dx.doi.org/10.1016/j.apm.2010.07.007
http://dx.doi.org/10.1016/j.apm.2010.07.007
http://dx.doi.org/10.1142/S0218202510004684
http://dx.doi.org/10.1142/S0218202510004684
http://dx.doi.org/10.1142/S0218202510004660
http://dx.doi.org/10.1142/S0218202510004660
http://www.ams.org/mathscinet-getitem?mr=MR2369988&return=pdf
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://www.ams.org/mathscinet-getitem?mr=MR2523235&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2008.08.002
http://dx.doi.org/10.1016/j.nonrwa.2008.08.002
http://www.ams.org/mathscinet-getitem?mr=MR2438214&return=pdf
http://dx.doi.org/10.1142/S0218202508003017
http://www.ams.org/mathscinet-getitem?mr=MR2769993&return=pdf
http://dx.doi.org/10.1137/100797515
http://dx.doi.org/10.1137/100797515
http://www.ams.org/mathscinet-getitem?mr=MR2554155&return=pdf
http://dx.doi.org/10.1142/S0218202509003851
http://dx.doi.org/10.1142/S0218202509003851
http://dx.doi.org/10.1016/0191-2615(95)00007-Z
http://www.ams.org/mathscinet-getitem?mr=MR2438213&return=pdf
http://dx.doi.org/10.1142/S0218202508003005
http://dx.doi.org/10.1142/S0218202508003005
http://www.ams.org/mathscinet-getitem?mr=MR2554156&return=pdf
http://dx.doi.org/10.1142/S0218202509003838
http://dx.doi.org/10.1142/S0218202509003838
http://dx.doi.org/10.1142/S0218202511005398
http://dx.doi.org/10.1142/S0218202511005398
http://www.ams.org/mathscinet-getitem?mr=MR2334547&return=pdf
http://dx.doi.org/10.1142/S0218202507002157
http://dx.doi.org/10.1142/S0218202507002157
http://dx.doi.org/10.1016/j.plrev.2006.07.001
http://dx.doi.org/10.1016/j.plrev.2006.07.001
http://www.ams.org/mathscinet-getitem?mr=MR2737207&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.10.015
http://dx.doi.org/10.1016/j.jde.2010.10.015
http://www.ams.org/mathscinet-getitem?mr=MR2672511&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2010.06.044
http://www.ams.org/mathscinet-getitem?mr=MR2446610&return=pdf
http://dx.doi.org/10.1016/j.mbs.2008.06.002
http://dx.doi.org/10.1016/j.mbs.2008.06.002
http://dx.doi.org/10.1002/bs.3830360405


MODELING OF CROWD DYNAMICS 399

[42] D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys, 73
(2001), 1067–1141.

[43] D. Helbing, A. Johansson and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical

study, Physical Review E, 75 (2007), 046109.
[44] D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical feature of escape panic, Nature,

407 (2000), 487–490.
[45] D. Helbing, P. Molnár, I. Farkas and K. Bolay, Self-organizing pedestrian movement , Envi-

ronment and Planning B, 28 (2001), 361–383.

[46] D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, 51
(1995), 4282–4286.

[47] D. Helbing and M. Moussaid, Analytical calculation of critical perturbation amplitudes and

critical densities by non-linear stability analysis for a simple traffic flow model , Eur. Phys.
J. B., 69 (2009), 571–581.

[48] L. F. Henderson, On the fluid mechanic of human crowd motion, Transp. Research, 8 (1975),

509–515.
[49] R. L. Hughes, The flow of human crowds, Annual Rev. Fluid Mech., 35 (2003), 169–182.

[50] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoretical Biology, 30 (1971), 225–234.

[51] A. Kirman and J. Zimmermann, eds., “Economics with Heterogeneous Interacting Agents,”
Lecture Notes in Economics and Mathematical Systems, 503, Springer-Verlag, Berlin, 2001.

[52] K. Lerman, A. Martinoli and A. Galstyan, A review of probabilistic macroscopic models
for swarm robotic systems, in “Swarm Robotics Workshop: State-of-the-art Survey” (eds.

E. Sahin and W. M. Spears), Springer-Verlag, (2005), 143–152.

[53] B. Maury, A. Roudneff-Chupin and F. Stantambrogio, A macroscopic crowd motion modelof
gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1899–1940.

[54] A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38

(1999), 534–570.
[55] M. Moussaid, D. Helbing, S. Garnier, A. Johanson, M. Combe and G. Theraulaz, Experimental

study of the behavioral underlying mechanism underlying self-organization in human crowd,

Proc. Royal Society B: Biological Sciences, 276 (2009), 2755–2762.
[56] G. Naldi, L. Pareschi and G. Toscani, eds., “Mathematical Modeling of Collective Behaviour

in Socio-Economic and Life Sciences,” Engineering and Technology, Birkhäuser Boston, Inc.,
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