Citation: Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model[J]. Networks and Heterogeneous Media, 2011, 6(1): 127-144. doi: 10.3934/nhm.2011.6.127
| [1] |
S. Albeverio, R. Minlos, E. Scacciatelli and E. Zhizhina, Spectral analysis of the disordered stochastic 1-D Ising model, Comm. Math. Phys., 204 (1999), 651-668. doi: i:10.1007/s002200050660
|
| [2] |
F. Cesi, C. Maes and F. Martinelli, Relaxation in disordered magnets in the the Griffiths' regime, Comm. Math. Phys., 188 (1997), 135-173. doi: 10.1007/s002200050160
|
| [3] | M. Gianfelice and M. Isopi, Quantum methods for interacting particle systems. II. Glauber dynamics for Ising spin systems, Markov Processes and Relat. Fields, 4 (1998), 411-428. |
| [4] | M. Gianfelice and M. Isopi, Erratum and addenda to: "Quantum methods for interacting particle systems II, Glauber dynamics for Ising spin systems'', Markov Processes and Relat. Fields, 9 (2003), 513-516. |
| [5] |
A. Guionnet and B. Zegarlinski, Decay to equilibrium in random spin systems on a lattice, Comm. Math. Phys., 181 (1996), 703-732. doi: 10.1007/BF02101294
|
| [6] | R. Holley, "On the Asymptotics of the Spin-Spin Autocorrelation Function In Stochastic Ising Models Near the Critical Temperature," Progress in Probability n. 19, Spatial Stochastic Processes Birkäuser Boston, 1991. |
| [7] | T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, 1966. |
| [8] | T. Liggett, "Interacting Particle Systems," Springer-Verlag, 1985. |
| [9] | R. A. Minlos, Invariant subspaces of the stochastic ising high temperature dynamics, Markov Processes Relat. Fields, 2 (1996), 263-284. |
| [10] | C. J. Preston, "Gibbs States on Countable Sets," Cambridge Tracts in Mathematics, No. 68. Cambridge University Press, London-New York, 1974. |
| [11] | L. Pastur and A. Figotin, "Spectra of Random and Almost Periodic Operators," Springer-Verlag, 1992. |
| [12] |
H. Spohn and E. Zhizhina, Long-time behavior for the 1-D stochastic Ising model with unbounded random couplings, J. Statist. Phys., 111 (2003), 419-431. doi: 10.1023/A:1022225612366
|
| [13] |
B. Zegarlinski, Strong decay to equilibrium in one dimensional random spin systems, J. Stat. Phys., 77 (1994), 717-732. doi: 10.1007/BF02179458
|
| [14] |
E. Zhizhina, The Lifshitz tail and relaxation to equilibrium in the one-dimensional disordered Ising model, J. Statist. Phys., 98 (2000), 701-721. doi: 10.1023/A:1018623424891
|