Citation: Shi Jin, Min Tang, Houde Han. A uniformly second order numerical method for theone-dimensional discrete-ordinate transport equation and itsdiffusion limit with interface[J]. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35
[1] | Shi Jin, Min Tang, Houde Han . A uniformly second order numerical method for the one-dimensional discrete-ordinate transport equation and its diffusion limit with interface. Networks and Heterogeneous Media, 2009, 4(1): 35-65. doi: 10.3934/nhm.2009.4.35 |
[2] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[3] | Xu Yang, François Golse, Zhongyi Huang, Shi Jin . Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1(1): 143-166. doi: 10.3934/nhm.2006.1.143 |
[4] | Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787 |
[5] | Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011 |
[6] | Karoline Disser, Matthias Liero . On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks and Heterogeneous Media, 2015, 10(2): 233-253. doi: 10.3934/nhm.2015.10.233 |
[7] | Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029 |
[8] | Gaziz F. Azhmoldaev, Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov . Homogenization of attractors to reaction–diffusion equations in domains with rapidly oscillating boundary: Critical case. Networks and Heterogeneous Media, 2024, 19(3): 1381-1401. doi: 10.3934/nhm.2024059 |
[9] | Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169 |
[10] | Zhongyi Huang . Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4(1): 91-106. doi: 10.3934/nhm.2009.4.91 |
1. | Laurent Gosse, 2013, Chapter 9, 978-88-470-2891-3, 167, 10.1007/978-88-470-2892-0_9 | |
2. | Shi Jin, Jian-Guo Liu, Zheng Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method, 2017, 4, 2197-9847, 10.1186/s40687-017-0105-1 | |
3. | Guillaume Morel, Christophe Buet, Bruno Despres, Trefftz Discontinuous Galerkin Method for Friedrichs Systems with Linear Relaxation: Application to the P 1 Model, 2018, 18, 1609-9389, 521, 10.1515/cmam-2018-0006 | |
4. | Min Tang, Li Wang, Xiaojiang Zhang, Accurate Front Capturing Asymptotic Preserving Scheme for Nonlinear Gray Radiative Transfer Equation, 2021, 43, 1064-8275, B759, 10.1137/20M1318031 | |
5. | Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang, A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving, 2021, 14, 1937-5093, 847, 10.3934/krm.2021026 | |
6. | Mohammed Lemou, Florian Méhats, Micro-Macro Schemes for Kinetic Equations Including Boundary Layers, 2012, 34, 1064-8275, B734, 10.1137/120865513 | |
7. | Yihong Wang, Min Tang, Jingyi Fu, Uniform convergent scheme for discrete-ordinate radiative transport equation with discontinuous coefficients on unstructured quadrilateral meshes, 2022, 3, 2662-2963, 10.1007/s42985-022-00195-y | |
8. | Yulong Lu, Li Wang, Wuzhe Xu, Solving multiscale steady radiative transfer equation using neural networks with uniform stability, 2022, 9, 2522-0144, 10.1007/s40687-022-00345-z | |
9. | Laurent Gosse, Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Case's elementary solutions, 2011, 112, 00224073, 1995, 10.1016/j.jqsrt.2011.04.003 | |
10. | Shi Jin, Min Tang, Xiaojiang Zhang, A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit, 2022, 452, 00219991, 110895, 10.1016/j.jcp.2021.110895 | |
11. | Houde Han, Min Tang, Wenjun Ying, Two Uniform Tailored Finite Point Schemes for the Two Dimensional Discrete Ordinates Transport Equations with Boundary and Interface Layers, 2014, 15, 1815-2406, 797, 10.4208/cicp.130413.010813a | |
12. | Zhongyi Huang, Ye Li, Monotone finite point method for non-equilibrium radiation diffusion equations, 2016, 56, 0006-3835, 659, 10.1007/s10543-015-0573-x | |
13. | Weiran Sun, Li Wang, Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation, 2024, 0025-5718, 10.1090/mcom/3975 |