Mini review Special Issues

The changing paradigm: estrogen receptor α recognition on DNA and within the dynamic nature of nucleosomes

  • Received: 19 January 2015 Accepted: 25 February 2015 Published: 04 March 2015
  • Estrogen receptor alpha (ERα) plays a major role in the expression of estrogen-responsive genes. Although its conventional binding characteristics have been considered coincident with & exclusively in the class of steroid hormone receptors,increasing evidence challenges this paradigm. ERα was shown to bind to consensus estrogen response element half-sites (cHERE) in DNA in the presence of the ubiquitous,abundant & conserved architectural protein,high mobility group protein 1 (HMGB1). It also binds to direct repeats with various spacers,in addition to everted repeats. These in vitro binding sites have been shown to be active in vivo,with both the binding affinity and transcriptional activity increased in the presence of HMGB1. Surprisingly,ERα does not bind to the optimally oriented cERE at the dyad in rotationally phased and translationally positioned nucleosomes. However,the presence of HMGB1 restructures the nucleosome to facilitate increased ERα accessibility,resulting in sequence-specific estrogen receptor binding. The finding that HMGB1 interacts with unbound ERα provides a unique avenue for enhanced ERα activity and possibly an increase in the extent of targeting at estrogen-responsive genes. The findings are consistent with ERα 1) targeting a much wider selection of genomic response elements (half-sites and inverted,direct and everted repeats) and 2) exhibiting characteristics of both steroid and non steroid nuclear receptors. Growing evidence already shows a competition occurs at the DNA level between ERα and the non steroid nuclear hormone receptor,thyroid receptor (TR). Collectively,these reports suggest a less restrictive cataloging for estrogen receptor and a broader paradigm for understanding its role in the regulation of estrogen-responsive genes and influence on non steroid hormone receptor activities.

    Citation: William M. Scovell, Sachindra R. Joshi. The changing paradigm: estrogen receptor α recognition on DNA and within the dynamic nature of nucleosomes[J]. AIMS Molecular Science, 2015, 2(2): 48-63. doi: 10.3934/molsci.2015.2.48

    Related Papers:

    [1] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [2] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [3] Carlos Conca, Luis Friz, Jaime H. Ortega . Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555
    [4] Alexei Heintz, Andrey Piatnitski . Osmosis for non-electrolyte solvents in permeable periodic porous media. Networks and Heterogeneous Media, 2016, 11(3): 471-499. doi: 10.3934/nhm.2016005
    [5] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [6] Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97
    [7] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [8] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [9] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [10] Grigor Nika, Adrian Muntean . Hypertemperature effects in heterogeneous media and thermal flux at small-length scales. Networks and Heterogeneous Media, 2023, 18(3): 1207-1225. doi: 10.3934/nhm.2023052
  • Estrogen receptor alpha (ERα) plays a major role in the expression of estrogen-responsive genes. Although its conventional binding characteristics have been considered coincident with & exclusively in the class of steroid hormone receptors,increasing evidence challenges this paradigm. ERα was shown to bind to consensus estrogen response element half-sites (cHERE) in DNA in the presence of the ubiquitous,abundant & conserved architectural protein,high mobility group protein 1 (HMGB1). It also binds to direct repeats with various spacers,in addition to everted repeats. These in vitro binding sites have been shown to be active in vivo,with both the binding affinity and transcriptional activity increased in the presence of HMGB1. Surprisingly,ERα does not bind to the optimally oriented cERE at the dyad in rotationally phased and translationally positioned nucleosomes. However,the presence of HMGB1 restructures the nucleosome to facilitate increased ERα accessibility,resulting in sequence-specific estrogen receptor binding. The finding that HMGB1 interacts with unbound ERα provides a unique avenue for enhanced ERα activity and possibly an increase in the extent of targeting at estrogen-responsive genes. The findings are consistent with ERα 1) targeting a much wider selection of genomic response elements (half-sites and inverted,direct and everted repeats) and 2) exhibiting characteristics of both steroid and non steroid nuclear receptors. Growing evidence already shows a competition occurs at the DNA level between ERα and the non steroid nuclear hormone receptor,thyroid receptor (TR). Collectively,these reports suggest a less restrictive cataloging for estrogen receptor and a broader paradigm for understanding its role in the regulation of estrogen-responsive genes and influence on non steroid hormone receptor activities.


    The following inequality is named the Ostrowski type inequality [30].

    Theorem 1. [10] Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be a differentiable mapping on $ \left(a, b\right) $ and $ f^{\prime }\in L\left[ a, b\right] $ (i.e. $ f^{\prime } $ be an integrable function on $ \left[ a, b \right] $). If $ \left\vert f^{\prime }\left(x\right) \right\vert < M $ on $ \left[ a, b\right] $, then the following inequality holds:

    $ |f(x)1babaf(t)dt|Mba[(xa)2+(bx)22]
    $
    (1.1)

    for all $ x\in \left[ a, b\right] $.

    To prove the Ostrowski type inequality in $ \left(1.1\right) $, the following identity is used, (see [26]):

    $ f(x)=1babaf(t)dt+xatabaf(t)dt+bxtbbaf(t)dt,
    $
    (1.2)

    where $ f\left(x\right) $ is a continuous function on $ \left[ a, b\right] $ with a continuous first derivative in $ \left(a, b\right) $. The identity $ \left(1.2\right) $ is known as Montgomery identity.

    By changing variable, the Montgomery identity $ \left(1.2\right) $ can be expressed as:

    $ f(x)1babaf(t)dt=(ba)10K(t)f(tb+(1t)a)dt,
    $
    (1.3)

    where

    $ K(t)={t,t[0,xaba],t1,t(xaba,1].
    $

    A number of different identities of the Montgomery and many inequalities of Ostrowski type were obtained by using these identities. Through the framework of Montgomery's identity, Cerone and Dragomir [9] developed a systematic study which produced some novel inequalities. By introducing some parameters, Budak and Sarıkaya [8] as well as Özdemir et al. [31] established the generalized Montgomery-type identities for differentiable mappings and certain generalized Ostrowski-type inequalities, respectively. Aljinović in [1], presented another simpler generalization of the Montgomery identity for fractional integrals by utilizing the weighted Montgomery identity. Furthermore, the generalized Montgomery identity involving the Ostrowski type inequalities in question with applications to local fractional integrals can be found in [32]. For more related results considering the different Montgomery identities, [2,4,7,11,12,13,15,16,21,22,23,24,25,33,34,36] and the references therein can be seen.

    In the related literature of Montgomery type identity, it was not considered via quantum integral operators. The aim of this work is to set up a quantum Montgomery identity with respect to quantum integral operators. With the help of this new version of Montgomery identity, some new quantum integral inequalities such as Ostrowski type, midpoint type, etc are established. The absolute values of the derivatives of considered mappings are quantum differentiable convex mappings.

    Throughout this paper, let $ 0 < q < 1 $ be a constant. It is known that quantum calculus constructs in a quantum geometric set. That is, if $ qx\in A $ for all $ x\in A, $ then the set $ A $ is called quantum geometric.

    Suppose that $ f\left(t\right) $ is an arbitrary function defined on the interval $ \left[ 0, b\right] $. Clearly, for $ b > 0 $, the interval $ [0, b] $ is a quantum geometric set. The quantum derivative of $ f\left(t\right) $ is defined with the following expression:

    $ Dqf(t):=f(t)f(qt)(1q)t,t0,
    $
    (1.4)
    $ Dqf(0):=limt0Dqf(t).
    $

    Note that

    $ limq1Dqf(t)=df(t)dt,
    $
    (1.5)

    if $ f\left(t\right) $ is differentiable.

    The quantum integral of $ f\left(t\right) $ is defined as:

    $ b0f(t) dqt=(1q)bn=0qnf(qnb)
    $
    (1.6)

    and

    $ bcf(t) dqt=b0f(t) dqtc0f(t) dqt,
    $
    (1.7)

    where $ 0 < c < b $ (see [3,14]).

    Note that if the series in right-hand side of $ \left(1.6\right) $ is convergence, then $ \int_{0}^{b}f\left(t\right) $ $ d_{q}t $ is exist, i.e., $ f\left(t\right) $ is quantum integrable on $ \left[ 0, b\right] $. Also, provided that if $ \int_{0}^{b}f\left(t\right) $ $ dt $ converges, then one has

    $ limq1b0f(t) dqt=b0f(t) dt. (see [3, page 6]).
    $
    (1.8)

    These definitions are not sufficient in establishing integral inequalities for a function defined on an arbitrary closed interval $ \left[ a, b\right] \subset \mathbb{R} $. Due to this fact, Tariboon and Ntouyas in [37,38] improved these definitions as follows:

    Definition 1. [37,38]. Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be a continuous function. The $ q $-derivative of $ f $ at $ t\in \left[ a, b \right] $ is characterized by the expression:

    $ aDqf(t)=f(t)f(qt+(1q)a)(1q)(ta), ta,
    $
    (1.9)
    $ aDqf(a)=limtaaDqf(t).
    $

    The function $ f $ is said to be $ q $-differentiable on $ \left[ a, b\right] $, if $ aDqf(t)

    $ exists for all $ t\in \left[ a, b\right] $.

    Clearly, if $ a = 0 $ in $ \left(1.9\right) $, then$ 0Dqf(t)=Dqf(t),

    $ where $ D_{q}f\left(t\right) $ is familiar quantum derivatives given in $ \left(1.4\right) $.

    Definition 2. [37,38]. Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be a continuous function. Then the quantum definite integral on $ \left[ a, b \right] $ is defined as

    $ baf(t)adqt=(1q)(ba)n=0qnf(qnb+(1qn)a)
    $
    (1.10)

    and

    $ bcf(t)adqt=baf(t)adqtcaf(t)adqt,
    $
    (1.11)

    where $ a < c < b $.

    Clearly, if $ a = 0 $ in $ \left(1.10\right) $, then

    $ b0f(t)0dqt=b0f(t)dqt,
    $

    where $ \int_{0}^{b}f\left(t\right) dqt

    $ is familiar definite quantum integrals on $ \left[ 0, b\right] $ given in $ \left(1.6\right) $.

    Definition 1 and Definition 2 have actually developed previous definitions and have been widely used for quantum integral inequalities. There is a lot of remarkable papers about quantum integral inequalities based on these definitions, including Kunt et al. [19] in the study of the quantum Hermite–Hadamard inequalities for mappings of two variables considering convexity and quasi-convexity on the co-ordinates, Noor et al. [27,28,29] in quantum Ostrowski-type inequalities for quantum differentiable convex mappings, quantum estimates for Hermite–Hadamard inequalities via convexity and quasi-convexity, quantum analogues of Iyengar type inequalities for some classes of preinvex mappings, as well as Tunç et al. [39] in the Simpson-type inequalities for convex mappings via quantum integral operators. For more results related to the quantum integral operators, the interested reader is directed to [5,18,20,35,41] and the references cited therein.

    In [6], Alp et al. proved the following inequality named quantum Hermite–Hadamard type inequality. Also in [40], Zhang et al. proved the same inequality with the fewer assumptions and shorter method.

    Theorem 2. Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be a convex function with $ 0 < q < 1 $. Then we have

    $ f(qa+b1+q)1babaf(t)adqtqf(a)+f(b)1+q.
    $
    (1.12)

    Firstly, we discuss the assumptions of the continuity of the function $ f(t) $ in Definition 1 and Definition 2. Also, under these conditions, we want to discuss that similar cases with $ \left(1.5\right) $ and $ \left(1.8\right) $ can exist.

    By considering the Definition 1, it is not necessary that the function $ f\left(t\right) $ must be continuous on $ \left[ a, b\right] $. Indeed, for all $ t\in \left[ a, b\right] $, $ qt+\left(1-q\right) a\in \left[ a, b\right] $ and $ f\left(t\right) -f\left(qt+\left(1-q\right) a\right) \in \mathbb{R} $. It means that $ \frac{f\left(t\right) -f\left(qt+\left(1-q\right) a\right) }{\left(1-q\right) \left(t-a\right) }\in \mathbb{R} $ exists for all $ t \in (a, b] $, so the Definition 1 should be as follows:

    Definition 3. (Quantum derivative on $ \left[ a, b\right] $) Let $ f:\left[ a, b \right] \rightarrow \mathbb{R} $ be an arbitrary function. Then $ f $ is called quantum differentiable on $ \left(a, b\right] $ with the following expression:

    $ aDqf(t)=f(t)f(qt+(1q)a)(1q)(ta)R, ta
    $
    (2.1)

    and $ f $ is called quantum differentiable on $ t = a $, if the following limit exists:

    $ aDqf(a)=limtaaDqf(t).
    $

    Lemma 1. (Similar case with $ \left(1.5\right) $) Let $ f:\left[ a, b \right] \rightarrow \mathbb{R} $ be a differentiable function. Then we have

    $ limq1aDqf(t)=df(t)dt.
    $
    (2.2)

    Proof. Since $ f $ is differentiable on $ \left[ a, b\right] $, clearly we have

    $ limh0f(t+h)f(t)h=df(t)dt
    $
    (2.3)

    for all $ t\in \left(a, b\right] $. Since $ 0 < q < 1 $, for all $ a < t\leq b $, we have $ \left(1-q\right) \left(a-t\right) < 0 $. Changing variable in $ \left(2.2\right) $ as $ \left(1-q\right) \left(a-t\right) = h $, then $ q\rightarrow 1^{-} $ we have $ h\rightarrow 0^{-} $ and $ qt+\left(1-q\right) a = t+h $. Using $ \left(2.3\right) $, we have

    $ limq1aDqf(t)=limq1f(t)f(qt+(1q)a)(1q)(ta)=limq1f(qt+(1q)a)f(t)(1q)(at)=limh0f(t+h)f(t)h=limh0f(t+h)f(t)h=df(t)dt
    $

    for all $ t\in \left(a, b\right] $. On the other hand, for $ t = a $ we have

    $ limq1aDqf(a)=limq1limtaaDqf(t)=limtalimq1aDqf(t)=limtadf(t)dt=limtalimh0f(t+h)f(t)h=limtalimh0+f(t+h)f(t)h=limh0+limtaf(t+h)f(t)h=limh0+f(a+h)f(a)h=df(a)dt,
    $

    which completes the proof.

    In Definition 2, the condition of the continuity of the function $ f(t) $ on $ [a, b] $ is not required. For this purpose, it is enough to construct an example in which a function is discontinuous on $ [a, b] $, but quantum integrable on it.

    Example 1. Let $ 0 < q < 1 $ be a constant, and the set $ A $ is defined as

    $ A:={qn2+(1qn)(1):n=0,1,2,...,}[1,2].
    $

    Then the function $ f:\left[ -1, 2\right] \rightarrow \mathbb{R} $ defined as

    $ f(t):={1,tA,0,t[1,2]A.
    $

    Clearly, it is not continuous on $ \left[ -1, 2\right] $. On the other hand

    $ 21f(t)1dqt=(1q)(2(1))n=0qnf(qn2+(1qn)(1))=3(1q)n=0qn=3(1q)11q=3,
    $

    i.e., the function $ f\left(t\right) $ is quantum integrable on $ \left[ -1, 2 \right]. $

    Hence the Definition 2 should be described in the following way.

    Definition 4. (Quantum definite integral on $ \left[ a, b\right] $) Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be an arbitrary function. Then the quantum integral of $ f $ on $ \left[ a, b \right] $ is defined as

    $ baf(t)adqt=(1q)(ba)n=0qnf(qnb+(1qn)a).
    $
    (2.4)

    If the series in right-hand side of $ \left(2.4\right) $ is convergent, then $ \int_{a}^{b}f\left(t\right) adqt

    $ is exist, i.e., $ f\left(t\right) $ is quantum integrable on $ \left[ a, b \right] $.

    Lemma 2. (Similar case with $ \left(1.8\right) $) Let $ f:\left[ a, b \right] \rightarrow \mathbb{R}, $ be an arbitrary function. It provided that if $ \int_{a}^{b}f\left(t\right) $ converges, then we have

    $ limq1baf(t)adqt=baf(t)dt.
    $
    (2.5)

    Proof. If $ \int_{a}^{b}f\left(t\right) $ $ dt $ converges, then $ \int_{0}^{1}f\left(tb+\left(1-t\right) a\right) $ $ dt $ also converges. Using $ \left(1.8 \right) $, we have that

    $ limq1baf(t)adqt=limq1[(1q)(ba)n=0qnf(qnb+(1qn)a)]=(ba)limq110f(tb+(1t)a)0dqt=(ba)10f(tb+(1t)a)dt=baf(t) dt.
    $

    Next we present an important quantum Montgomery identity, which is similar with the identity in $ \left(1.3\right) $.

    Lemma 3. (Quantum Montgomery identity) Let $ f:\left[ a, b\right] \rightarrow \mathbb{R}, $ be an arbitrary function with $ aDqf

    $ is quantum integrable on $ \left[ a, b\right] $, then the following quantum identity holds:

    $ f(x)1babaf(t)adqt=(ba)10Kq(t)aDqf(tb+(1t)a)0dqt,
    $
    (2.6)

    where

    $ Kq(t)={qt,t[0,xaba],qt1,t(xaba,1].
    $

    Proof. By the Definition 3, $ f\left(t\right) $ is quantum differentiable on $ \left(a, b\right) $ and $ aDqf

    $ is exist. Since $ aDqf
    $ is quantum integrable on $ \left[ a, b\right] $, by the Definition 4, the quantum integral for the right-side of $ \left(2.6\right) $ is exist. The integral of the right-side of $ \left(2.6\right) $, with the help of $ \left(2.1\right) $ and $ \left(2.4\right) $, is equal to

    $ (ba)10Kq(t)aDqf(tb+(1t)a)0dqt=(ba)[xaba0qtaDqf(tb+(1t)a)0dqt+1xaba(qt1)aDqf(tb+(1t)a)0dqt]=(ba)[xaba0qtaDqf(tb+(1t)a)0dqt+10(qt1)aDqf(tb+(1t)a)0dqtxaba0(qt1)aDqf(tb+(1t)a)0dqt]=(ba)[10(qt1)aDqf(tb+(1t)a)0dqt+xaba0aDqf(tb+(1t)a)0dqt]=(ba)[10qtaDqf(tb+(1t)a)0dqt10aDqf(tb+(1t)a)0dqt+xaba0aDqf(tb+(1t)a)0dqt]=(ba)[10qtf(tb+(1t)a)f(qtb+(1qt)a)(1q)t(ba)0dqt10f(tb+(1t)a)f(qtb+(1qt)a)(1q)t(ba)0dqt+xaba0f(tb+(1t)a)f(qtb+(1qt)a)(1q)t(ba)0dqt]=11q[q[10f(tb+(1t)a)0dqt10f(qtb+(1qt)a)0dqt][10f(tb+(1t)a)t0dqt10f(qtb+(1qt)a)t0dqt]+[xaba0f(tb+(1t)a)t0dqtxaba0f(qtb+(1qt)a)t0dqt]]=11q[q[(1q)n=0qnf(qnb+(1qn)a)(1q)n=0qnf(qn+1b+(1qn+1)a)][(1q)n=0qnf(qnb+(1qn)a)qn(1q)n=0qnf(qn+1b+(1qn+1)a)qn]+[(1q)xaban=0qnf(qnxabab+(1qnxaba)a)qnxaba(1q)xaban=0qnf(qn+1xabab+(1qn+1xaba)a)qnxaba]]=[q[n=0qnf(qnb+(1qn)a)n=0qnf(qn+1b+(1qn+1)a)][n=0f(qnb+(1qn)a)n=0f(qn+1b+(1qn+1)a)]+[n=0f(qnxabqb+(1qnxabq)a)n=0f(qn+1xabqb+(1qn+1xabq)a)]]=[q[n=0qnf(qnb+(1qn)a)1qn=1qnf(qnb+(1qn)a)][n=0f(qnb+(1qn)a)n=1f(qnb+(1qn)a)]+[n=0f(qn(xaba)b+(1qn(xaba))a)n=1f(qn(xaba)b+(1qn(xaba))a)]]=q[(11q)n=0qnf(qnb+(1qn)a)+f(b)q]f(b)+f((xaba)b+(1(xaba))a)=f(x)(1q)n=0qnf(qnb+(1qn)a)=f(x)1babaf(t)adqt,
    $

    which completes the proof.

    Remark 1. If one takes limit $ q\rightarrow 1^{-} $ on the Quantum Montgomery identity in $ \left(2.6\right) $, one has the Montgomery identity in $ \left(1.3\right) $.

    The following calculations of quantum definite integrals are used in next result:

    $ xaba0qt 0dqt=q(1q)xaban=0qn(xabaqn)=q(1q)(xaba)211q2=q1+q(xaba)2,
    $
    (2.7)
    $ xaba0qt2 0dqt=q(1q)xaban=0qn(xabaqn)2=q(1q)(xaba)311q3=q1+q+q2(xaba)3,
    $
    (2.8)
    $ 1xaba(1qt) 0dqt=10(1qt) 0dqtxaba0(1qt) 0dqt=(1q)n=0qn(1qqn)(1q)xaban=0qn(1qqnxaba)=(1q)(11qq1q2)(1q)xaba(11qq1q2xaba)=11+qxaba(1q1+qxaba)=11+q(1bxba)(11+q+q1+qq1+q(1bxba))=11+q(1bxba)(11+q+q1+q(bxba))=[11+q11+qq1+q(bxba)+q1+q(bxba)+q1+q(bxba)2]=q1+q(bxba)2,
    $
    (2.9)

    and

    $ 1xaba(tqt2) 0dqt=10(tqt2) 0dqtxaba0(tqt2) 0dqt=(1q)n=0qn(qnqq2n)(1q)xaban=0qn(qnxabaqq2n(xaba)2)=(1q)(11q2q1q3)(1q)xaba(11q2xabaq1q3(xaba)2)
    $
    $                                               =(11+qq1+q+q2)xaba(11+qxabaq1+q+q2(xaba)2)=1(1+q)(1+q+q2)11+q(xaba)2+q1+q+q2(xaba)3.
    $
    (2.10)

    Let us introduce some new quantum integral inequalities by the help of quantum power mean inequality and Lemma 3.

    Theorem 3. Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be an arbitrary function with $ aDqf

    $ is quantum integrable on $ \left[ a, b\right] $. If $ |aDqf|r,
    $ $ r\geq 1 $ is a convex function, then the following quantum integral
    inequality holds:

    $ |f(x)1babaf(t) adqt|(ba)[K11r1(a,b,x,q)[|aDqf(a)|rK2(a,b,x,q)+|aDqf(b)|rK3(a,b,x,q)]1r+K11r4(a,b,x,q)[|aDqf(a)|rK5(a,b,x,q)+|aDqf(b)|rK6(a,b,x,q)]1r]
    $
    (2.11)

    for all $ x\in \left[ a, b\right] $, where

    $ K1(a,b,x,q)=xaba0qt0dqt=q1+q(xaba)2,
    $
    $ K2(a,b,x,q)=xaba0qt20dqt=q1+q+q2(xaba)3,
    $
    $ K3(a,b,x,q)=xaba0qtqt20dqt=K1(a,b,x,q)K2(a,b,x,q),
    $
    $ K4(a,b,x,q)=1xaba(1qt)0dqt=q1+q(bxba)2,
    $
    $ K5(a,b,x,q)=1xaba(tqt2)0dqt=1(1+q)(1+q+q2)11+q(xaba)2+q1+q+q2(xaba)3,
    $

    and

    $ K6(a,b,x,q)=1xaba(1qtt+qt2)0dqt=K4(a,b,x,q)K5(a,b,x,q).
    $

    Proof. Using convexity of $ \left\vert _{a}D_{q}f\right\vert ^{r} $, we have that

    $ |aDqf(tb+(1t)a)|rt|aDqf(a)|r+(1t)|aDqf(b)|r.
    $
    (2.12)

    By using Lemma 3, quantum power mean inequality and $ \left(2.12\right) $, we have that

    $ |f(x)1babaf(t) adqt|(ba)10|Kq(t)||aDqf(tb+(1t)a)| 0dqt(ba)[xaba0qt|aDqf(tb+(1t)a)| 0dqt+1xaba(1qt)|aDqf(tb+(1t)a)| 0dqt](ba)[(xaba0qt 0dqt)11r(xaba0qt|aDqf(tb+(1t)a)|r 0dqt)1r+(1xaba(1qt)0dqt)11r(1xaba(1qt)|aDqf(tb+(1t)a)|r0dqt)1r](ba)[(xaba0qt0dqt)11r(xaba0qt[t|aDqf(a)|r+(1t)|aDqf(b)|r]0dqt)1r+(1xaba(1qt)0dqt)11r(1xaba(1qt)[t|aDqf(a)|r+(1t)|aDqf(b)|r]0dqt)1r](ba)[(xaba0qt0dqt)11r(|aDqf(a)|rxaba0qt20dqt+|aDqf(b)|rxaba0qtqt20dqt)1r+(1xaba(1qt)0dqt)11r(|aDqf(a)|r1xaba(tqt2)0dqt+|aDqf(b)|r1xaba(1qtt+qt2)0dqt)1r].
    $
    (2.13)

    Using $ \left(2.7\right) $–$ \left(2.10\right) $ in $ \left(2.13\right) $, we obtain the desired result in $ \left(2.11\right) $. This ends the proof.

    Corollary 1. In Theorem 3, the following inequalities are held by the following assumptions:

    1. If one takes $ r = 1 $, one has

    $ |f(x)1babaf(t)adqt|(ba)[|aDqf(a)|K2(a,b,x,q)+|aDqf(b)|K3(a,b,x,q)+|aDqf(a)|K5(a,b,x,q)+|aDqf(b)|K6(a,b,x,q)].
    $

    2. If one takes $ r = 1 $ and $ \left\vert _{a}D_{q}f\left(x\right) \right\vert < M $ for all $ x\in \left[ a, b\right] $, then one has (a quantum Ostrowski type inequality, see [27,Theorem 3.1])

    $ |f(x)1babaf(t)adqt|M(ba)[K2(a,b,x,q)+K3(a,b,x,q)+K5(a,b,x,q)+K6(a,b,x,q)]M(ba)[K1(a,b,x,q)+K4(a,b,x,q)]M(ba)[q1+q(xaba)2+q1+q(bxba)2]qMba[(xa)2+(bx)21+q].
    $

    3. If one takes $ r = 1 $, $ \left\vert _{a}D_{q}f\left(x\right) \right\vert < M $ for all $ x\in \left[ a, b\right] $ and $ q\rightarrow 1^{-} $, then one has (Ostrowski inequality $ \left(1.1\right) $).

    4. If one takes $ r = 1 $ and $ x = \frac{qa+b}{1+q} $, then one has (a new quantum midpoint type inequality)

    $ |f(qa+b1+q)1babaf(t)adqt|(ba)[[|aDqf(a)|K2(a,b,qa+b1+q,q)+|aDqf(b)|K3(a,b,qa+b1+q,q)]+|aDqf(a)|K5(a,b,qa+b1+q,q)+|aDqf(b)|K6(a,b,qa+b1+q,q)](ba)[|aDqf(a)|q(1+q)3(1+q+q2)+|aDqf(b)|q2+q3(1+q)3(1+q+q2)+|aDqf(a)|2q(1+q)3(1+q+q2)+|aDqf(b)|2q+q3+q4+q5(1+q)3(1+q+q2)](ba)[|aDqf(a)|3q(1+q)3(1+q+q2)+|aDqf(b)|2q+q2+2q3+q4+q5(1+q)3(1+q+q2)].
    $

    5. If one takes $ r = 1 $, $ x = \frac{qa+b}{1+q} $ and $ q\rightarrow 1^{-} $, then one has (a midpoint type inequality, see [17,Theorem 4])

    $ |f(a+b2)1babaf(t)dt|(ba)[|f(a)|+|f(b)|]8.
    $

    6. If one takes $ r = 1 $ and $ x = \frac{a+b}{2} $, then one has (a new quantum midpoint type inequality)

    $ |f(a+b2)1babaf(t)adqt|(ba)[|aDqf(a)|K2(a,b,a+b2,q)+|aDqf(b)|K3(a,b,a+b2,q)+|aDqf(a)|K5(a,b,a+b2,q)+|aDqf(b)|K6(a,b,a+b2,q)](ba)[|aDqf(a)|q8(1+q+q2)+|aDqf(b)|q+q2+2q38(1+q)(1+q+q2)+|aDqf(a)|6qq28(1+q)(1+q+q2)+|aDqf(b)|3q+3q2+2q368(1+q)(1+q+q2)](ba)[|aDqf(a)|68(1+q)(1+q+q2)+|aDqf(b)|4q+4q2+4q368(1+q)(1+q+q2)].
    $

    7. If one takes $ \left\vert _{a}D_{q}f\left(x\right) \right\vert < M $ for all $ x\in \left[ a, b\right] $, then one has (a quantum Ostrowski type inequality, see [27,Theorem 3.1])

    $ |f(x)1babaf(t)adqt|(ba)M[K11r1(a,b,x,q)[K2(a,b,x,q)+K3(a,b,x,q)]1r+K11r4(a,b,x,q)[K5(a,b,x,q)+K6(a,b,x,q)]1r](ba)M[K11r1(a,b,x,q)K1r1(a,b,x,q)+K11r4(a,b,x,q)K1r4(a,b,x,q)](ba)M[K1(a,b,x,q)+K4(a,b,x,q)]M(ba)[q1+q(xaba)2+q1+q(bxba)2]qMba[(xa)2+(bx)21+q].
    $

    8. If one takes $ x = \frac{qa+b}{1+q} $, then one has (a new quantum midpoint type inequality)

    $ |f(qa+b1+q)1babaf(t)adqt|(ba)[K11r1(a,b,qa+b1+q,q)[|aDqf(a)|rK2(a,b,qa+b1+q,q)+|aDqf(b)|rK3(a,b,qa+b1+q,q)]1r+K11r4(a,b,qa+b1+q,q)[|aDqf(a)|rK5(a,b,qa+b1+q,q)+|aDqf(b)|rK6(a,b,qa+b1+q,q)]1r](ba)[[q(1+q)3]11r[|aDqf(a)|rq(1+q)3(1+q+q2)+|aDqf(b)|rq2+q3(1+q)3(1+q+q2)]1r+[q3(1+q)3]11r[|aDqf(a)|r2q(1+q)3(1+q+q2)+|aDqf(b)|r2q+q3+q4+q5(1+q)3(1+q+q2)]1r].
    $

    9. If one takes $ x = \frac{qa+b}{1+q} $ and $ q\rightarrow 1^{-} $, then one has (a midpoint type inequality, see [6,Corollary 17])

    $ |f(a+b2)1babaf(t)dt|(ba)1233r[(|f(a)|r124+|f(b)|r112)1r+(|f(a)|r112+|f(b)|r124)1r].
    $

    10. If one takes $ x = \frac{a+b}{2} $, then one has (a new quantum midpoint type inequality)

    $ |f(a+b2)1babaf(t)adqt|(ba)[K11r1(a,b,a+b2,q)[|aDqf(a)|rK2(a,b,a+b2,q)+|aDqf(b)|rK3(a,b,a+b2,q)]1r+K11r4(a,b,a+b2,q)[|aDqf(a)|rK5(a,b,a+b2,q)+|aDqf(b)|rK6(a,b,a+b2,q)]1r](ba)(q4(1+q))11r[[|aDqf(a)|rq8(1+q+q2)+|aDqf(b)|rq+q2+2q38(1+q)(1+q+q2)]1r+[|aDqf(a)|r6qq28(1+q)(1+q+q2)+|aDqf(b)|r3q+3q2+2q368(1+q)(1+q+q2)]1r].
    $

    11. If one takes $ x = \frac{a+qb}{1+q} $, then one has (a new quantum midpoint type inequality)

    $ |f(a+qb1+q)1babaf(t)adqt|(ba)[K11r1(a,b,a+qb1+q,q)[|aDqf(a)|rK2(a,b,a+qb1+q,q)+|aDqf(b)|rK3(a,b,a+qb1+q,q)]1r+K11r4(a,b,a+qb1+q,q)[|aDqf(a)|rK5(a,b,a+qb1+q,q)+|aDqf(b)|rK6(a,b,a+qb1+q,q)]1r](ba)[[q3(1+q)3]11r[|aDqf(a)|rq4(1+q)3(1+q+q2)+|aDqf(b)|rq3+q5(1+q)3(1+q+q2)]1r+[q(1+q)3]11r[|aDqf(a)|r1+2qq3(1+q)3(1+q+q2)+|aDqf(b)|r1q+q2+2q3(1+q)3(1+q+q2)]1r].
    $

    Finally, we give the following calculated quantum definite integrals used as the next Theorem 4.

    $ xaba0t0dqt=(1q)xaban=0qn(qnxaba)=(1q)(xaba)211q2=11+q(xaba)2,
    $
    (2.14)
    $ xaba0(1t)0dqt=(1q)xaban=0qn(1qnxaba)=(1q)xaba(11q(xaba)11q2)=xaba(111+q(xaba))=xaba11+q(xaba)2,
    $
    (2.15)
    $ 1xabat0dqt=10t0dqtxaba0t0dqt=11+q11+q(xaba)2=11+q(1(xaba)2),
    $
    (2.16)

    and

    $ 1xaba(1t)0dqt=10(1t)0dqtxaba0(1t)0dqt=q1+qxaba+11+q(xaba)2.
    $
    (2.17)

    Theorem 4. Let $ f:\left[ a, b\right] \rightarrow \mathbb{R} $ be an arbitrary function with $ aDqf

    $ is quantum integrable on $ \left[ a, b\right] $. If $ |aDqf|r,
    $ $ r > 1 $ and $ \frac{1}{r}+\frac{1}{p} = 1 $ is a convex function, then the
    following quantum integral inequality holds:

    $ |f(x)1babaf(t)adqt|(ba)[(xaba0qt0dqt)1p(|aDqf(a)|r[11+q(xaba)2]+|aDqf(b)|r[xaba11+q(xaba)2])1r+(1xaba(1qt)p0dqt)1p(|aDqf(a)|r[11+q(1(xaba)2)]+|aDqf(b)|r[q1+qxaba+11+q(xaba)2])1r]
    $
    (2.18)

    for all $ x\in \left[ a, b\right] $.

    Proof. By using Lemma 3, quantum Hölder inequality and $ \left(2.8 \right) $, we have that

    $ |f(x)1babaf(t)adqt|(ba)10|Kq(t)||aDqf(tb+(1t)a)|0dqt(ba)[xaba0qt|aDqf(tb+(1t)a)|0dqt+1xaba(1qt)|aDqf(tb+(1t)a)|0dqt](ba)[(xaba0(qt)p0dqt)1p(xaba0|aDqf(tb+(1t)a)|r0dqt)1r+(1xaba(1qt)p0dqt)1p(1xaba|aDqf(tb+(1t)a)|r0dqt)1r]
    $
    $ (ba)[(xaba0(qt)p0dqt)1p(xaba0[t|aDqf(a)|r+(1t)|aDqf(b)|r]0dqt)1r+(1xaba(1qt)p0dqt)1p(1xaba[t|aDqf(a)|r+(1t)|aDqf(b)|r]0dqt)1r](ba)[(xaba0qt0dqt)1p(|aDqf(a)|rxaba0t0dqt+|aDqf(b)|rxaba0(1t)0dqt)1r+(1xaba(1qt)p0dqt)1p(|aDqf(a)|r1xabat0dqt+|aDqf(b)|r1xaba(1t)0dqt)1r].
    $
    (2.19)

    Using $ \left(2.14\right) $–$ \left(2.17\right) $ in $ \left(2.19\right) $, we obtain the desired result in $ \left(2.18\right) $. This ends the proof.

    Remark 2. In Theorem 4, many different inequalities could be derived similarly to Corollary 1.

    In the terms of quantum Montgomery identity, some quantum integral inequalities of Ostrowski type are established. The establishment of the inequalities is based on the mappings whose first derivatives absolute values are quantum differentiable convex. Furthermore, the important relevant connection obtained in this work with those which were introduced in previously published papers is investigated. By considering the special value for $ x\in [a, b] $, some fixed value for $ r $, and as well as $ q\rightarrow 1^{-} $, many sub-results can be derived from the main results of this work. It is worthwhile to mention that certain quantum inequalities presented in this work are generalized forms of the very recent results given by Alp et al. (2018) and Noor et al. (2016). With the contribution of this work, the interested researchers will be motivated to explore this fascinating field of the quantum integral inequality based on the techniques and ideas developed in this article.

    The first author would like to thank Ondokuz Mayıs University for being a visiting professor and providing excellent research facilities.

    The authors declare that they have no competing interests.

    [1] Aranda A,Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81: 1269-1304.
    [2] Deroo BJ,Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116: 561-570. doi: 10.1172/JCI27987
    [3] Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29: 2905-2919. doi: 10.1093/nar/29.14.2905
    [4] Das D,Peterson RC,Scovell WM (2004) High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Mol Endocrinol 18: 2616-2632. doi: 10.1210/me.2004-0125
    [5] El Marzouk S,Gahattamaneni R,Joshi SR,et al. (2008) The plasticity of estrogen receptor-DNA complexes: binding affinity and specificity of estrogen receptors to estrogen response element half-sites separated by variant spacers. J Steroid Biochem Mol Biol 110: 186-195. doi: 10.1016/j.jsbmb.2008.03.034
    [6] Gruber CJ,Gruber DM,Gruber IM,et al. (2004) Anatomy of the estrogen response element. Trends Endocrinol Metab 15: 73-78. doi: 10.1016/j.tem.2004.01.008
    [7] O'Lone R,Frith MC,Karlsson EK,et al. (2004) Genomic targets of nuclear estrogen receptors. Mol Endocrinol 18: 1859-1875. doi: 10.1210/me.2003-0044
    [8] Klinge CM,Jernigan SC,Mattingly KA,et al. (2004) Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. J Mol Endocrinol 33: 387-410. doi: 10.1677/jme.1.01541
    [9] Melvin VS,Edwards DP (1999) Coregulatory proteins in steroid hormone receptor action: the role of chromatin high mobility group proteins HMG-1 and -2. Steroids 64: 576-586. doi: 10.1016/S0039-128X(99)00036-7
    [10] Lonard DM,O'Malley B W (2007) Nuclear receptor coregulators: judges,juries,and executioners of cellular regulation. Mol Cell 27: 691-700. doi: 10.1016/j.molcel.2007.08.012
    [11] Lonard DM,O'Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125: 411-414. doi: 10.1016/j.cell.2006.04.021
    [12] Barkhem T,Haldosen LA,Gustafsson JA,et al. (2002) Transcriptional synergism on the pS2 gene promoter between a p160 coactivator and estrogen receptor-alpha depends on the coactivator subtype,the type of estrogen response element,and the promoter context. Mol Endocrinol 16: 2571-2581. doi: 10.1210/me.2002-0051
    [13] Thomas JO,Travers AA (2001) HMG1 and 2,and related 'architectural' DNA-binding proteins. Trends Biochem Sci 26: 167-174. doi: 10.1016/S0968-0004(01)01801-1
    [14] Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19: 5237-5246.
    [15] Bianchi ME,Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15: 496-506. doi: 10.1016/j.gde.2005.08.007
    [16] Ross ED,Hardwidge PR,Maher LJ,3rd (2001) HMG proteins and DNA flexibility in transcription activation. Mol Cell Biol 21: 6598-6605. doi: 10.1128/MCB.21.19.6598-6605.2001
    [17] Ju BG,Lunyak VV,Perissi V,et al. (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312: 1798-1802. doi: 10.1126/science.1127196
    [18] Das D,Scovell WM (2001) The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J Biol Chem 276: 32597-32605. doi: 10.1074/jbc.M011792200
    [19] Verrier CS,Roodi N,Yee CJ,et al. (1997) High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation. Mol Endocrinol 11: 1009-1019. doi: 10.1210/mend.11.8.9962
    [20] Ge H,Roeder RG (1994) The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J Biol Chem 269: 17136-17140.
    [21] Onate SA,Prendergast P,Wagner JP,et al. (1994) The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol Cell Biol 14: 3376-3391.
    [22] Boonyaratanakornkit V,Melvin V,Prendergast P,et al. (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18: 4471-4487.
    [23] Romine LE,Wood JR,Lamia LA,et al. (1998) The high mobility group protein 1 enhances binding of the estrogen receptor DNA binding domain to the estrogen response element. Mol Endocrinol 12: 664-674. doi: 10.1210/mend.12.5.0111
    [24] Zhang CC,Krieg S,Shapiro DJ (1999) HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cells. Mol Endocrinol 13: 632-643. doi: 10.1210/mend.13.4.0264
    [25] Jayaraman L,Moorthy NC,Murthy KG,et al. (1998) High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12: 462-472. doi: 10.1101/gad.12.4.462
    [26] Zappavigna V,Falciola L,Helmer-Citterich M,et al. (1996) HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation. EMBO J 15: 4981-4991.
    [27] Zwilling S,Konig H,Wirth T (1995) High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J 14: 1198-1208.
    [28] Butteroni C,De Felici M,Scholer HR,et al. (2000) Phage display screening reveals an association between germline-specific transcription factor Oct-4 and multiple cellular proteins. J Mol Biol 304: 529-540. doi: 10.1006/jmbi.2000.4238
    [29] Brickman JM,Adam M,Ptashne M (1999) Interactions between an HMG-1 protein and members of the Rel family. Proc Natl Acad Sci U S A 96: 10679-10683. doi: 10.1073/pnas.96.19.10679
    [30] Bonaldi T,Langst G,Strohner R,et al. (2002) The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J 21: 6865-6873. doi: 10.1093/emboj/cdf692
    [31] Formosa T (2012) The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819: 247-255. doi: 10.1016/j.bbagrm.2011.07.009
    [32] Metivier R,Penot G,Hubner MR,et al. (2003) Estrogen receptor-alpha directs ordered,cyclical,and combinatorial recruitment of cofactors on a natural target promoter. Cell 115: 751-763. doi: 10.1016/S0092-8674(03)00934-6
    [33] Carroll JS,Brown M (2006) Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20: 1707-1714. doi: 10.1210/me.2005-0334
    [34] Carroll JS,Meyer CA,Song J,et al. (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1289-1297. doi: 10.1038/ng1901
    [35] Fan HY,He X,Kingston RE,et al. (2003) Distinct strategies to make nucleosomal DNA accessible. Mol Cell 11: 1311-1322. doi: 10.1016/S1097-2765(03)00192-8
    [36] Kinyamu HK,Archer TK (2004) Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim Biophys Acta 1677: 30-45. doi: 10.1016/j.bbaexp.2003.09.015
    [37] Becker PB,Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71: 247-273. doi: 10.1146/annurev.biochem.71.110601.135400
    [38] Joshi SR,Ghattamaneni RB,Scovell WM (2011) Expanding the paradigm for estrogen receptor binding and transcriptional activation. Mol Endocrinol 25: 980-994. doi: 10.1210/me.2010-0302
    [39] Li Q,Bjork U,Wrange O (1999) Assays for interaction of transcription factor with nucleosome. Methods Enzymol 304: 313-332. doi: 10.1016/S0076-6879(99)04019-7
    [40] Joshi SR,Sarpong YC,Peterson RC,et al. (2012) Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding. Nucleic Acids Res 40: 10161-10171. doi: 10.1093/nar/gks815
    [41] Ner SS,Travers AA,Churchill ME (1994) Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation. Trends Biochem Sci 19: 185-187. doi: 10.1016/0968-0004(94)90017-5
    [42] Wolffe AP,Hayes JJ (1999) Chromatin disruption and modification. Nucleic Acids Res 27: 711-720. doi: 10.1093/nar/27.3.711
    [43] Melvin VS,Harrell C,Adelman JS,et al. (2004) The role of the C-terminal extension (CTE) of the estrogen receptor alpha and beta DNA binding domain in DNA binding and interaction with HMGB. J Biol Chem 279: 14763-14771. doi: 10.1074/jbc.M313335200
    [44] Ediger TR,Park SE,Katzenellenbogen BS (2002) Estrogen receptor inducibility of the human Na+/H+ exchanger regulatory factor/ezrin-radixin-moesin binding protein 50 (NHE-RF/EBP50) gene involving multiple half-estrogen response elements. Mol Endocrinol 16: 1828-1839. doi: 10.1210/me.2001-0290
    [45] Vasudevan N,Ogawa S,Pfaff D (2002) Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 82: 923-944. doi: 10.1152/physrev.00014.2002
    [46] Zhu YS,Yen PM,Chin WW,et al. (1996) Estrogen and thyroid hormone interaction on regulation of gene expression. Proc Natl Acad Sci U S A 93: 12587-12592. doi: 10.1073/pnas.93.22.12587
    [47] Kingston RE,Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339-2352. doi: 10.1101/gad.13.18.2339
    [48] Vignali M,Hassan AH,Neely KE,et al. (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20: 1899-1910. doi: 10.1128/MCB.20.6.1899-1910.2000
    [49] Narlikar GJ,Sundaramoorthy R,Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154: 490-503. doi: 10.1016/j.cell.2013.07.011
    [50] Xue Y,Wong J,Moreno GT,et al. (1998) NURD,a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2: 851-861. doi: 10.1016/S1097-2765(00)80299-3
    [51] Schnitzler G,Sif S,Kingston RE (1998) Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94: 17-27. doi: 10.1016/S0092-8674(00)81217-9
    [52] Lorch Y,Cairns BR,Zhang M,et al. (1998) Activated RSC-nucleosome complex and persistently altered form of the nucleosome. Cell 94: 29-34. doi: 10.1016/S0092-8674(00)81218-0
    [53] Narlikar GJ,Phelan ML,Kingston RE (2001) Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 8: 1219-1230. doi: 10.1016/S1097-2765(01)00412-9
    [54] Cote J,Peterson CL,Workman JL (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment,enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 95: 4947-4952. doi: 10.1073/pnas.95.9.4947
    [55] Bazett-Jones DP,Cote J,Landel CC,et al. (1999) The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol Cell Biol 19: 1470-1478.
    [56] Nardulli AM,Grobner C,Cotter D (1995) Estrogen receptor-induced DNA bending: orientation of the bend and replacement of an estrogen response element with an intrinsic DNA bending sequence. Mol Endocrinol 9: 1064-1076.
    [57] Nardulli AM,Greene GL,Shapiro DJ (1993) Human estrogen receptor bound to an estrogen response element bends DNA. Mol Endocrinol 7: 331-340.
    [58] Cary PD,Moss T,Bradbury EM (1978) High-resolution proton-magnetic-resonance studies of chromatin core particles. Eur J Biochem 89: 475-482. doi: 10.1111/j.1432-1033.1978.tb12551.x
    [59] Perutz MF (1978) Hemoglobin structure and respiratory transport. Sci Am 239: 92-125.
    [60] Melvin VS,Roemer SC,Churchill ME,et al. (2002) The C-terminal extension (CTE) of the nuclear hormone receptor DNA binding domain determines interactions and functional response to the HMGB-1/-2 co-regulatory proteins. J Biol Chem 277: 25115-25124. doi: 10.1074/jbc.M110400200
    [61] Li Q,Wrange O (1993) Translational positioning of a nucleosomal glucocorticoid response element modulates glucocorticoid receptor affinity. Genes Dev 7: 2471-2482. doi: 10.1101/gad.7.12a.2471
    [62] Fletcher TM,Xiao N,Mautino G,et al. (2002) ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol Cell Biol 22: 3255-3263. doi: 10.1128/MCB.22.10.3255-3263.2002
    [63] Walker P,Germond JE,Brown-Luedi M,et al. (1984) Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res 12: 8611-8626. doi: 10.1093/nar/12.22.8611
    [64] Reese JC,Katzenellenbogen BS (1991) Differential DNA-binding abilities of estrogen receptor occupied with two classes of antiestrogens: studies using human estrogen receptor overexpressed in mammalian cells. Nucleic Acids Res 19: 6595-6602. doi: 10.1093/nar/19.23.6595
  • This article has been cited by:

    1. Shu Gu, Jinping Zhuge, Periodic homogenization of Green’s functions for Stokes systems, 2019, 58, 0944-2669, 10.1007/s00526-019-1553-9
    2. Vivek Tewary, Combined effects of homogenization and singular perturbations: A bloch wave approach, 2021, 16, 1556-181X, 427, 10.3934/nhm.2021012
    3. Kirill Cherednichenko, Serena D’Onofrio, Operator-norm homogenisation estimates for the system of Maxwell equations on periodic singular structures, 2022, 61, 0944-2669, 10.1007/s00526-021-02139-7
    4. T. Muthukumar, K. Sankar, Homogenization of the Stokes System in a Domain with an Oscillating Boundary, 2022, 20, 1540-3459, 1361, 10.1137/22M1474345
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4855) PDF downloads(1050) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog