Research article Special Issues

Equivalence of solutions for non-homogeneous $ p(x) $-Laplace equations

  • Received: 06 December 2021 Revised: 23 June 2022 Accepted: 23 June 2022 Published: 12 July 2022
  • We establish the equivalence between weak and viscosity solutions for non-homogeneous $ p(x) $-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the $ p(x) $-Laplacian compared to the constant case are the presence of $ \log $-terms and the lack of the invariance under translations.

    Citation: María Medina, Pablo Ochoa. Equivalence of solutions for non-homogeneous $ p(x) $-Laplace equations[J]. Mathematics in Engineering, 2023, 5(2): 1-19. doi: 10.3934/mine.2023044

    Related Papers:

  • We establish the equivalence between weak and viscosity solutions for non-homogeneous $ p(x) $-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the $ p(x) $-Laplacian compared to the constant case are the presence of $ \log $-terms and the lack of the invariance under translations.



    加载中


    [1] B. Barrios, M. Medina, Equivalence of weak and viscosity solutions in fractional non-homogeneous problems, Math. Ann., 381 (2021), 1979–2012. https://doi.org/10.1007/s00208-020-02119-w doi: 10.1007/s00208-020-02119-w
    [2] J. E. M. Braga, R. A. Leitao, J. E. L. Oliveira, Free boundary theory for singular/degenerate nonlinear equations with right hand side: a non-variational approach, Calc. Var., 59 (2020), 86. https://doi.org/10.1007/s00526-020-01733-5 doi: 10.1007/s00526-020-01733-5
    [3] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522
    [4] M. G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. https://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5
    [5] l. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [6] D. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000), 267–293. https://doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293
    [7] X. Fan, D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. Theor., 36 (1999), 295–318. https://doi.org/10.1016/S0362-546X(97)00628-7 doi: 10.1016/S0362-546X(97)00628-7
    [8] X. Fan, D. Zhao, The quasi-minimizer of integral functionals with $m(x)$-growth conditions, Nonlinear Anal. Theor., 39 (2000), 807–816. https://doi.org/10.1016/S0362-546X(98)00239-9 doi: 10.1016/S0362-546X(98)00239-9
    [9] X. Fan, Y. Zhao, Q. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese Journal of Contemporary Mathematics, 21 (2000), 277–282.
    [10] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [11] X. Fan, Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. Theor., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5
    [12] F. Ferrari, C. Lederman, Regularity of flat free boundaries for a $p(x)$-Laplacian problem with right hand side, Nonlinear Anal., 212 (2021), 112444. https://doi.org/10.1016/j.na.2021.112444 doi: 10.1016/j.na.2021.112444
    [13] H. Ishii, On the equivalence of two notions of solutions, viscosity solutions and distribution solutions, Funkcislaj Ekvacioj, 38 (1995), 101–120.
    [14] V. Julin, P. Juutinen, A new proof for the equivalence of weak and viscosity solutions for the $p-$Laplace equation, Commun. Part. Diff. Eq., 37 (2012), 934–946. https://doi.org/10.1080/03605302.2011.615878 doi: 10.1080/03605302.2011.615878
    [15] P. Juutinen, P. Lindqvist, A theorem of Radó type for solutions of a quasi-linear equation, Math. Res. Lett., 11 (2004), 31–34. https://doi.org/10.4310/MRL.2004.v11.n1.a4 doi: 10.4310/MRL.2004.v11.n1.a4
    [16] P. Juutinen, P. Lindqvist, J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation, SIAM J. Math. Anal., 33 (2001), 699–717. https://doi.org/10.1137/S0036141000372179 doi: 10.1137/S0036141000372179
    [17] P. Juutinen, T. Lukkari, M. Parviainen, Equivalence of viscosity solutions and weak solutions for the $p(x)$-Laplacian, Ann. Ins. H. Poincaré Anal. Non Linéaire, 27 (2010), 1471–1487. https://doi.org/10.1016/j.anihpc.2010.09.004 doi: 10.1016/j.anihpc.2010.09.004
    [18] J. Korvenpää, T. Kuusi, E. Lindgren, Equivalence of solutions to fractional $p$-Laplace type equations, J. Math. Pure. Appl., 132 (2019), 1–26. https://doi.org/10.1016/j.matpur.2017.10.004 doi: 10.1016/j.matpur.2017.10.004
    [19] M. Medina, P. Ochoa, On viscosity and weak solutions for non-homogeneous p-Laplace equations, Adv. Nonlinear Anal., 8 (2019), 468–481. https://doi.org/10.1515/anona-2017-0005 doi: 10.1515/anona-2017-0005
    [20] J. Siltakoski, Equivalence of viscosity solutions and weak solutions for the normalized $p(x)$-Laplacian, Calc. Var., 57 (2018), 95. https://doi.org/10.1007/s00526-018-1375-1 doi: 10.1007/s00526-018-1375-1
    [21] P. Takac, J. Giacomoni, A $p(x)$-Laplacian extension of the Díaz-Saa inequality and some applications, P. Roy. Soc. Edinb. A, 150 (2020), 205–232. https://doi.org/10.1017/prm.2018.91 doi: 10.1017/prm.2018.91
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1506) PDF downloads(145) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog