Research article Special Issues

The Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in $ {\mathbb R}^3 $

  • Received: 13 March 2022 Revised: 06 June 2022 Accepted: 06 June 2022 Published: 16 June 2022
  • This paper is concerned with the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary in dimension 3. For arbitrary dimension $ N\geq 2 $, in [18], we have shown that its long-time dynamics is characterised by a spreading-vanishing dichotomy; moreover, we have found a threshold condition on the kernel function that governs the onset of accelerated spreading, and determined the spreading speed when it is finite. In a more recent work [19], we have obtained sharp estimates of the spreading rate when the kernel function $ J(|x|) $ behaves like $ |x|^{-\beta} $ as $ |x|\to\infty $ in $ {\mathbb R}^N $ ($ N\geq 2 $). In this paper, we obtain more accurate estimates for the spreading rate when $ N = 3 $, which employs the fact that the formulas relating the involved kernel functions in the proofs of [19] become particularly simple in dimension $ 3 $.

    Citation: Yihong Du, Wenjie Ni. The Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry in $ {\mathbb R}^3 $[J]. Mathematics in Engineering, 2023, 5(2): 1-26. doi: 10.3934/mine.2023041

    Related Papers:

  • This paper is concerned with the radially symmetric Fisher-KPP nonlocal diffusion equation with free boundary in dimension 3. For arbitrary dimension $ N\geq 2 $, in [18], we have shown that its long-time dynamics is characterised by a spreading-vanishing dichotomy; moreover, we have found a threshold condition on the kernel function that governs the onset of accelerated spreading, and determined the spreading speed when it is finite. In a more recent work [19], we have obtained sharp estimates of the spreading rate when the kernel function $ J(|x|) $ behaves like $ |x|^{-\beta} $ as $ |x|\to\infty $ in $ {\mathbb R}^N $ ($ N\geq 2 $). In this paper, we obtain more accurate estimates for the spreading rate when $ N = 3 $, which employs the fact that the formulas relating the involved kernel functions in the proofs of [19] become particularly simple in dimension $ 3 $.



    加载中


    [1] M. Alfaro, J. Coville, Propagation phenomena in monostable integro-differential equations: Acceleration or not?, J. Differ. Equations, 263 (2017), 5727–5758. https://doi.org/10.1016/j.jde.2017.06.035 doi: 10.1016/j.jde.2017.06.035
    [2] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, J. Toledo-Melero, Nonlocal diffusion problems, Providence, Rhode Island: AMS, 2010. https://doi.org/10.1090/surv/165
    [3] P. W. Bates, G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428–440. https://doi.org/10.1016/j.jmaa.2006.09.007 doi: 10.1016/j.jmaa.2006.09.007
    [4] H. Berestycki, J. Coville, H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal., 271 (2016), 2701–2751. https://doi.org/10.1016/j.jfa.2016.05.017 doi: 10.1016/j.jfa.2016.05.017
    [5] E. Bouin, J. Garnier, C. Henderson, F. Patout, Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Anal., 50 (2018), 3365–3394. https://doi.org/10.1137/17M1132501 doi: 10.1137/17M1132501
    [6] X. Cabré, J.-M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys., 320 (2013), 679–722. https://doi.org/10.1007/s00220-013-1682-5 doi: 10.1007/s00220-013-1682-5
    [7] J. Cao, Y. Du, F. Li, W. T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Funct. Anal., 277 (2019), 2772–2814. https://doi.org/10.1016/j.jfa.2019.02.013 doi: 10.1016/j.jfa.2019.02.013
    [8] C. Cortázar, F. Quirós, N. Wolanski, A nonlocal diffusion problem with a sharp free boundary, Interface. Free Bound., 21 (2019), 441–462. https://doi.org/10.4171/ifb/430 doi: 10.4171/ifb/430
    [9] J. Coville, L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinb. A, 137 (2007), 727–755. https://doi.org/10.1017/S0308210504000721 doi: 10.1017/S0308210504000721
    [10] J. Coville, J. Davila, S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. Henri Poincaré (C) Non Linear Anal., 30 (2013), 179–223. https://doi.org/10.1016/j.anihpc.2012.07.005 doi: 10.1016/j.anihpc.2012.07.005
    [11] F. del Teso, J. Endal, J. L. Vazquez, The one-phase fractional Stefan problem, Math. Mod. Meth. Appl. Sci., 31 (2021), 83–131. https://doi.org/10.1142/S0218202521500032 doi: 10.1142/S0218202521500032
    [12] Y. Du, Z. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary Ⅱ, J. Differ. Equations, 250 (2011), 4336–4366. https://doi.org/10.1016/j.jde.2011.02.011 doi: 10.1016/j.jde.2011.02.011
    [13] Y. Du, Z. Guo, The Stefan problem for the Fisher-KPP equation, J. Differ. Equations, 253 (2012), 996–1035. https://doi.org/10.1016/j.jde.2012.04.014 doi: 10.1016/j.jde.2012.04.014
    [14] Y. Du, F. Li, M. Zhou, Semi-wave and spreading speed of the nonlocal Fisher-KPP equation with free boundaries, J. Math. Pure Appl., 154 (2021), 30–66. https://doi.org/10.1016/j.matpur.2021.08.008 doi: 10.1016/j.matpur.2021.08.008
    [15] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089
    [16] Y. Du, H. Matsuzawa, M. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pure. Appl., 103 (2015), 741–787. https://doi.org/10.1016/j.matpur.2014.07.008 doi: 10.1016/j.matpur.2014.07.008
    [17] Y. Du, W. Ni, Rate of propagation for the Fisher-KPP equation with nonlocal diffusion and free boundaries, 2021, preprint. Available from: http://turing.une.edu.au/ydu/papers/SpreadingRate-July2021.pdf
    [18] Y. Du, W. Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry, Part 1, SIAM J. Math. Anal., in press.
    [19] Y. Du, W. Ni, The high dimensional Fisher-KPP nonlocal diffusion equation with free boundary and radial symmetry: sharp estimates, 2022, preprint. Available from: http://turing.une.edu.au/ydu/papers/dn-highD-2-March2022.pdf
    [20] J. Fang, G. Faye, Monotone traveling waves for delayed neural field equations, Math. Mod. Meth. Appl. Sci., 26 (2016), 1919–1954. https://doi.org/10.1142/S0218202516500482 doi: 10.1142/S0218202516500482
    [21] D. Finkelshtein, P. Tkachov, Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line, Appl. Anal., 98 (2019), 756–780. https://doi.org/10.1080/00036811.2017.1400537 doi: 10.1080/00036811.2017.1400537
    [22] R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [23] J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 43 (2011), 1955–1974. https://doi.org/10.1137/10080693X doi: 10.1137/10080693X
    [24] A. N. Kolmogorov, I. G. Petrovski, N. S. Piskunov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Byul. Moskovskogo Gos. Univ., 1 (1937), 1–25.
    [25] F. Li, J. Coville, X. Wang, On eigenvalue problems arising from nonlocal diffusion models, Discrete Contin. Dyn. Syst., 37 (2017), 879–903. https://doi.org/10.3934/dcds.2017036 doi: 10.3934/dcds.2017036
    [26] X. Liang, T. Zhou, Spreading speeds of nonlocal KPP equations in almost periodic media, J. Funct. Anal., 279 (2020), 108723. https://doi.org/10.1016/j.jfa.2020.108723 doi: 10.1016/j.jfa.2020.108723
    [27] W. Shen, A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differ. Equations, 249 (2010), 747–795. https://doi.org/10.1016/j.jde.2010.04.012 doi: 10.1016/j.jde.2010.04.012
    [28] P. E. Souganidis, A. Tarfulea, Front propagation for integro-differential KPP reaction-diffusion equations in periodic media, Nonlinear Differ. Equ. Appl., 26 (2019), 29. https://doi.org/10.1007/s00030-019-0573-7 doi: 10.1007/s00030-019-0573-7
    [29] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal. 13 (1982), 353–396. https://doi.org/10.1137/0513028 doi: 10.1137/0513028
    [30] H. F. Weinberger, X. Q. Zhao, An extension of the formula for spreading speeds, Math. Biosci. Eng., 7 (2010), 187–194. https://doi.org/10.3934/mbe.2010.7.187 doi: 10.3934/mbe.2010.7.187
    [31] H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925–953. https://doi.org/10.2977/prims/1260476648 doi: 10.2977/prims/1260476648
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1921) PDF downloads(255) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog