Research article Special Issues

On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure

  • Received: 25 September 2021 Revised: 21 January 2022 Accepted: 26 January 2022 Published: 29 March 2022
  • We report a continuum theory for 2D strain gradient materials accounting for a class of dissipation phenomena. The continuum description is constructed by means of a (reversible) placement function and by (irreversible) damage and plastic functions. Besides, expressions of elastic and dissipation energies have been assumed as well as the postulation of a hemi-variational principle. No flow rules have been assumed and plastic deformation is also compatible, that means it can be derived by a placement function. Strain gradient Partial Differential Equations (PDEs), boundary conditions (BCs) and Karush-Kuhn-Tucker (KKT) type conditions are derived by a hemi variational principle. PDEs and BCs govern the evolution of the placement descriptor and KKT conditions that of damage and plastic variables. Numerical experiments for the investigated homogeneous cases do not need the use of Finite Element simulations and have been performed to show the applicability of the model. In particular, the induced anisotropy of the response has been investigated and the coupling between damage and plasticity evolution has been shown.

    Citation: Luca Placidi, Emilio Barchiesi, Francesco dell'Isola, Valerii Maksimov, Anil Misra, Nasrin Rezaei, Angelo Scrofani, Dmitry Timofeev. On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure[J]. Mathematics in Engineering, 2023, 5(1): 1-24. doi: 10.3934/mine.2023021

    Related Papers:

  • We report a continuum theory for 2D strain gradient materials accounting for a class of dissipation phenomena. The continuum description is constructed by means of a (reversible) placement function and by (irreversible) damage and plastic functions. Besides, expressions of elastic and dissipation energies have been assumed as well as the postulation of a hemi-variational principle. No flow rules have been assumed and plastic deformation is also compatible, that means it can be derived by a placement function. Strain gradient Partial Differential Equations (PDEs), boundary conditions (BCs) and Karush-Kuhn-Tucker (KKT) type conditions are derived by a hemi variational principle. PDEs and BCs govern the evolution of the placement descriptor and KKT conditions that of damage and plastic variables. Numerical experiments for the investigated homogeneous cases do not need the use of Finite Element simulations and have been performed to show the applicability of the model. In particular, the induced anisotropy of the response has been investigated and the coupling between damage and plasticity evolution has been shown.



    加载中


    [1] B. E. Abali, W. H. Müller, F. dell'Isola, Theory and computation of higher gradient elasticity theories based on action principles, Arch. Appl. Mech., 87 (2017), 1495–1510. http://dx.doi.org/10.1007/s00419-017-1266-5 doi: 10.1007/s00419-017-1266-5
    [2] E. C. Aifantis, Pattern formation in plasticity, Int. J. Eng. Sci., 33 (1995), 2161–2178. http://dx.doi.org/10.1016/0020-7225(95)00086-D doi: 10.1016/0020-7225(95)00086-D
    [3] E. C. Aifantis, On the microstructural origin of certain inelastic models, J. Eng. Mater. Technol., 106 (1984), 326–330. http://dx.doi.org/10.1115/1.3225725 doi: 10.1115/1.3225725
    [4] E. C. Aifantis, The physics of plastic deformation, Int. J. Plasticity, 3 (1987), 211–247. http://dx.doi.org/10.1016/0749-6419(87)90021-0 doi: 10.1016/0749-6419(87)90021-0
    [5] J.-J. Alibert, A. Della Corte, I. Giorgio, A. Battista, Extensional Elastica in large deformation as$\backslash$Gamma-limit of a discrete 1D mechanical system, Z. Angew. Math. Phys., 68 (2017), 42. http://dx.doi.org/10.1007/s00033-017-0785-9 doi: 10.1007/s00033-017-0785-9
    [6] J. Altenbach, H. Altenbach, V. A. Eremeyev, On generalized cosserat-type theories of plates and shells: a short review and bibliography, Arch. Appl. Mech., 80 (2010), 73–92. http://dx.doi.org/10.1007/s00419-009-0365-3 doi: 10.1007/s00419-009-0365-3
    [7] M. Ambati, T. Gerasimov, L. De Lorenzis, Phase-field modeling of ductile fracture, Comput. Mech., 55 (2015), 1017–1040. http://dx.doi.org/10.1007/s00466-015-1151-4 doi: 10.1007/s00466-015-1151-4
    [8] M. Ambati, T. Gerasimov, L. De Lorenzis. A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55 (2015), 383–405. http://dx.doi.org/10.1007/s00466-014-1109-y doi: 10.1007/s00466-014-1109-y
    [9] L. Ambrosio, A. Lemenant, G. Royer-Carfagni, A variational model for plastic slip and its regularization via $\Gamma$-convergence, J. Elast., 110 (2013), 201–235. http://dx.doi.org/10.1007/s10659-012-9390-5 doi: 10.1007/s10659-012-9390-5
    [10] H. Amor, J.-J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57 (2009), 1209–1229. http://dx.doi.org/10.1016/j.jmps.2009.04.011 doi: 10.1016/j.jmps.2009.04.011
    [11] N. Auffray, F. dell'Isola, V. Eremeyev, A. Madeo, G. Rosi, Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math. Mech. Solids, 20 (2015), 375–417. http://dx.doi.org/10.1177/1081286513497616 doi: 10.1177/1081286513497616
    [12] E. Barchiesi, A. Misra, L. Placidi, E. Turco, Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations, Zeitschrift für Angewandte Mathematik und Mechanik, 101 (2021), e202100059. http://dx.doi.org/10.1002/zamm.202100059
    [13] B. Bourdin, G. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48 (2000), 797–826. http://dx.doi.org/10.1016/S0022-5096(99)00028-9 doi: 10.1016/S0022-5096(99)00028-9
    [14] B. Bourdin, G. Francfort, J.-J. Marigo, The variational approach to fracture, J. Eeast., 91 (2008), 5–148. http://dx.doi.org/10.1007/s10659-007-9107-3 doi: 10.1007/s10659-007-9107-3
    [15] L. Contrafatto, M. Cuomo, L. Greco, Meso-scale simulation of concrete multiaxial behaviour, Eur. J. Environ. Civ. Eng., 21 (2017), 896–911. http://dx.doi.org/10.1080/19648189.2016.1182085 doi: 10.1080/19648189.2016.1182085
    [16] M. Cuomo, L. Contrafatto, L. Greco, A variational model based on isogeometric interpolation for the analysis of cracked bodies, Int. J. Eng. Sci., 80 (2014), 173–188. http://dx.doi.org/10.1016/j.ijengsci.2014.02.017 doi: 10.1016/j.ijengsci.2014.02.017
    [17] M. Cuomo, A. Nicolosi, A poroplastic model for hygro-chemo-mechanical damage of concrete, Computational modelling of concrete structures Conference, Mayrhofen, Austria, 2006,533–542.
    [18] F. D'Annibale, G. Rosi, A. Luongo, Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces, Meccanica, 50 (2015), 825–839. http://dx.doi.org/10.1007/s11012-014-0037-4 doi: 10.1007/s11012-014-0037-4
    [19] F. dell'Isola, A. D. Corte, I. Giorgio, Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives, Math. Mech. Solids, 22 (2017), 852–872. http://dx.doi.org/10.1177/1081286515616034 doi: 10.1177/1081286515616034
    [20] F. dell'Isola, L. Placidi, Variational principles are a powerful tool also for formulating field theories, In: Variational models and methods in solid and fluid mechanics, Vienna: Springer, 2011, 1–15. http://dx.doi.org/10.1007/978-3-7091-0983-0_1
    [21] F. dell'Isola, M. Guarascio, K. Hutter, A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi's effective stress principle, Arch. Appl. Mech., 70 (2000), 323–337. http://dx.doi.org/10.1007/s004199900020 doi: 10.1007/s004199900020
    [22] F. Freddi, G. Royer-Carfagni, Plastic flow as an energy minimization problem. Numerical experiments, J. Elast., 116 (2014), 53–74. http://dx.doi.org/10.1007/s10659-013-9457-y doi: 10.1007/s10659-013-9457-y
    [23] F. Freddi, G. Royer-Carfagni, Phase-field slip-line theory of plasticity, J. Mech. Phys. Solids, 94 (2016), 257–272. http://dx.doi.org/10.1016/j.jmps.2016.04.024 doi: 10.1016/j.jmps.2016.04.024
    [24] M. Froli, G. Royer-Carfagni, A mechanical model for the elastic–plastic behavior of metallic bars, Int. J. Solids Struct., 37 (2000), 3901–3918. http://dx.doi.org/10.1016/S0020-7683(99)00069-4 doi: 10.1016/S0020-7683(99)00069-4
    [25] I. Giorgio, Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures, Z. Angew. Math. Phys., 67 (2016), 95. http://dx.doi.org/10.1007/s00033-016-0692-5 doi: 10.1007/s00033-016-0692-5
    [26] I. Giorgio, Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial, Continuum Mech. Thermodyn., 33 (2021), 1068–1082. http://dx.doi.org/10.1007/s00161-020-00955-4 doi: 10.1007/s00161-020-00955-4
    [27] I. Giorgio, A. Ciallella, D. Scerrato, A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials, Int. J. Solids Struct., 203 (2020), 73–83. http://dx.doi.org/10.1016/j.ijsolstr.2020.07.016 doi: 10.1016/j.ijsolstr.2020.07.016
    [28] I. Giorgio, A. Culla, D. Del Vescovo, Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network, Arch. Appl. Mech., 79 (2009), 859. http://dx.doi.org/10.1007/s00419-008-0258-x doi: 10.1007/s00419-008-0258-x
    [29] I. Giorgio, M. Spagnuolo, U. Andreaus, D. Scerrato, A. M. Bersani, In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials, Math. Mech. Solids, 26 (2020), 1074–1103. http://dx.doi.org/10.1177/1081286520978516 doi: 10.1177/1081286520978516
    [30] L. Greco, An iso-parametric G1-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: the 2D case, Continuum Mech. Thermodyn., 32 (2020), 1473–1496. http://dx.doi.org/10.1007/s00161-020-00861-9 doi: 10.1007/s00161-020-00861-9
    [31] P. Harrison, D. Anderson, M. F. Alvarez, E. Bali, Y. Mateos, Measuring and modelling the in-plane bending stiffness and wrinkling behaviour of engineering fabrics, EUROMECH Colloquium 569: Multiscale Modeling of Fibrous and Textile Materials, Chatenay-Malabry, France, 5–7 April 2016.
    [32] C. J. Larsen, A new variational principle for cohesive fracture and elastoplasticity, Mech. Res. Commun., 58 (2014), 133–138. http://dx.doi.org/10.1016/j.mechrescom.2013.10.025 doi: 10.1016/j.mechrescom.2013.10.025
    [33] T. Y. Li, J.-J. Marigo, D. Guilbaud, S. Potapov, Variational approach to dynamic brittle fracture via gradient damage models, Applied Mechanics and Materials, 784 (2015), 334–341. http://dx.doi.org/10.4028/www.scientific.net/AMM.784.334 doi: 10.4028/www.scientific.net/AMM.784.334
    [34] M. Malikan, V. A. Eremeyev, H. M. Sedighi, Buckling analysis of a non-concentric double-walled carbon nanotube, Acta Mech., 231 (2020), 5007–5020. http://dx.doi.org/10.1007/s00707-020-02784-7 doi: 10.1007/s00707-020-02784-7
    [35] J.-J. Marigo, C. Maurini, K. Pham, An overview of the modelling of fracture by gradient damage models, Meccanica, 51 (2016), 3107–3128. http://dx.doi.org/10.1007/s11012-016-0538-4 doi: 10.1007/s11012-016-0538-4
    [36] J.-J. Marigo, Constitutive relations in plasticity, damage and fracture mechanics based on a work property, Nucl. Eng. Des., 114 (1989), 249–272. http://dx.doi.org/10.1016/0029-5493(89)90105-2 doi: 10.1016/0029-5493(89)90105-2
    [37] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Method. Appl. Mech. Eng., 199 (2010), 2765–2778. http://dx.doi.org/10.1016/j.cma.2010.04.011 doi: 10.1016/j.cma.2010.04.011
    [38] A. Misra, Effect of asperity damage on shear behavior of single fracture, Eng. Fract. Mech., 69 (2002), 1997–2014. http://dx.doi.org/10.1016/S0013-7944(02)00073-5 doi: 10.1016/S0013-7944(02)00073-5
    [39] A. Misra, P. Poorsolhjouy, Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics, Math. Mech. Solids, 25 (2020), 1778–1803. http://dx.doi.org/10.1177/1081286515576821 doi: 10.1177/1081286515576821
    [40] A. Misra, V. Singh, Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model, Continuum Mech. Thermodyn., 27 (2015), 787–817. http://dx.doi.org/10.1007/s00161-014-0360-y doi: 10.1007/s00161-014-0360-y
    [41] A. Misra, L. Placidi, F. dell'Isola, E. Barchiesi, Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Z. Angew. Math. Phys., 72 (2021), 157. http://dx.doi.org/10.1007/s00033-021-01587-7 doi: 10.1007/s00033-021-01587-7
    [42] K. Naumenko, V. A. Eremeyev, A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic applications, Compos. Struct., 178 (2017), 434–446. http://dx.doi.org/10.1016/j.compstruct.2017.07.007 doi: 10.1016/j.compstruct.2017.07.007
    [43] L. Placidi, A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Continuum Mech. Thermodyn., 27 (2015), 623–638. http://dx.doi.org/10.1007/s00161-014-0338-9 doi: 10.1007/s00161-014-0338-9
    [44] L. Placidi, A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Continuum Mech. Thermodyn., 28 (2016), 119–137. http://dx.doi.org/10.1007/s00161-014-0405-2 doi: 10.1007/s00161-014-0405-2
    [45] L. Placidi, E. Barchiesi, Energy approach to brittle fracture in strain-gradient modelling, Proc. R. Soc. A, 474 (2018), 20170878. http://dx.doi.org/10.1098/rspa.2017.0878 doi: 10.1098/rspa.2017.0878
    [46] L. Placidi, E. Barchiesi, A. Misra, A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results, Math. Mech. Complex Syst., 6 (2018), 77–100. http://dx.doi.org/10.2140/memocs.2018.6.77 doi: 10.2140/memocs.2018.6.77
    [47] L. Placidi, E. Barchiesi, A. Misra, D. Timofeev, Micromechanics-based elasto-plastic–damage energy formulation for strain gradient solids with granular microstructure, Continuum Mech. Thermodyn., 33 (2021), 2213–2241. http://dx.doi.org/10.1007/s00161-021-01023-1 doi: 10.1007/s00161-021-01023-1
    [48] P. Poorsolhjouy, A. Misra, Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics, Int. J. Solids Struct., 108 (2017), 139–152. http://dx.doi.org/10.1016/j.ijsolstr.2016.12.005 doi: 10.1016/j.ijsolstr.2016.12.005
    [49] B. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity, Continuum Mech. Thermodyn., 23 (2011), 527–549. http://dx.doi.org/10.1007/s00161-011-0194-9 doi: 10.1007/s00161-011-0194-9
    [50] B. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: Single-crystal plasticity, Continuum Mech. Thermodyn., 23 (2011), 551. http://dx.doi.org/10.1007/s00161-011-0195-8 doi: 10.1007/s00161-011-0195-8
    [51] J. C. Reiher, I. Giorgio, A. Bertram, Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity, J. Eng. Mech., 143 (2017), 04016112. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001184 doi: 10.1061/(ASCE)EM.1943-7889.0001184
    [52] D. Scerrato, I. Giorgio, A. Della Corte, A. Madeo, N. Dowling, F. Darve, Towards the design of an enriched concrete with enhanced dissipation performances, Cement Concrete Res., 84 (2016), 48–61. http://dx.doi.org/10.1016/j.cemconres.2016.03.002 doi: 10.1016/j.cemconres.2016.03.002
    [53] D. Scerrato, I. Giorgio, A. Della Corte, A. Madeo, A. Limam, A micro-structural model for dissipation phenomena in the concrete, Int. J. Numer. Anal. Meth. Geomech., 39 (2015), 2037–2052. http://dx.doi.org/10.1002/nag.2394 doi: 10.1002/nag.2394
    [54] D. Scerrato, I. Giorgio, A. Madeo, A. Limam, F. Darve, A simple non-linear model for internal friction in modified concrete, Int. J. Eng. Sci., 80 (2014), 136–152. http://dx.doi.org/10.1016/j.ijengsci.2014.02.021 doi: 10.1016/j.ijengsci.2014.02.021
    [55] P. Sicsic, J.-J. Marigo, From gradient damage laws to Griffith's theory of crack propagation, J. Elast., 113 (2013), 55–74. http://dx.doi.org/10.1007/s10659-012-9410-5 doi: 10.1007/s10659-012-9410-5
    [56] M. Spagnuolo, U. Andreaus, A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling, Math. Mech. Solids, 24 (2019), 258–280. http://dx.doi.org/10.1177/1081286517737000 doi: 10.1177/1081286517737000
    [57] M. Spagnuolo, A. M. Cazzani, Contact interactions in complex fibrous metamaterials, Continuum Mech. Thermodyn., 33 (2021), 1873–1889. http://dx.doi.org/10.1007/s00161-021-01018-y doi: 10.1007/s00161-021-01018-y
    [58] M. Spagnuolo, M. E. Yildizdag, X. Pinelli, A. Cazzani, F. Hild, Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach, Math. Mech. Solids, 2021, in press. http://dx.doi.org/10.1177/10812865211052670
    [59] D. Timofeev, E. Barchiesi, A. Misra, L. Placidi, Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution, Math. Mech. Solids, 26 (2021), 738–770. http://dx.doi.org/10.1177/1081286520968149 doi: 10.1177/1081286520968149
    [60] E. Turco, M. Golaszewski, A. Cazzani, N. L. Rizzi, Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model, Mech. Res. Commun., 76 (2016), 51–56. http://dx.doi.org/10.1016/j.mechrescom.2016.07.001 doi: 10.1016/j.mechrescom.2016.07.001
    [61] E. Turco, M. Golaszewski, I. Giorgio, F. D'Annibale, Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations, Compos. Part B: Eng., 118 (2017), 1-14. http://dx.doi.org/10.1016/j.compositesb.2017.02.039 doi: 10.1016/j.compositesb.2017.02.039
    [62] Y. Yang, A. Misra, Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity, Int. J. Solids Struct., 49 (2012), 2500–2514. http://dx.doi.org/10.1016/j.ijsolstr.2012.05.024 doi: 10.1016/j.ijsolstr.2012.05.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2070) PDF downloads(122) Cited by(23)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog