Citation: Antonio Vitolo. Singular elliptic equations with directional diffusion[J]. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027
[1] | Amendola ME, Galise G, Vitolo A (2013) Riesz capacity, maximum principle and removable sets of fully nonlinear second order operators. Differ Integral Equ 27: 845-866. |
[2] | Amendola ME, Rossi L, Vitolo A (2008) Harnack inequalities and ABP estimates for nonlinear second-order Elliptic equations in unbounded domains. Abstr Appl Anal 2008: 1-19. |
[3] | Bardi M, Mannucci P (2006) On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Commun Pure Appl Anal 5: 709-731. |
[4] | Birindelli I, Capuzzo Dolcetta I, Vitolo A (2016) ABP and global Hölder estimates for fully nonlinear elliptic equations in unbounded domains. Commun Contemp Math 18: 1-16. |
[5] | Birindelli I, Galise G (2019) The Dirichlet problem for fully nonlinear degenerate elliptic equations with a singular nonlinearity. Calc Var 58: 180. |
[6] | Birindelli I, Galise G, Ishii H (2018) A family of degenerate elliptic operators: Maximum principle and its consequences. Ann I H Poincaré Anal Non Linéaire 35: 417-441. |
[7] | Blanc P, Esteve C, Rossi JD (2019) The evolution problem associated with eigenvalues of the Hessian. Commun Contemp Math, arXiv: 1901.01052. |
[8] | Blanc P, Rossi JD (2019) Games for eigenvalues of the Hessian and concave/convex envelopes. J Math Pure Appl 127: 192-215. |
[9] | Cabré X (1995) On the Alexandro ff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun Pure Appl Math 48: 539-570. |
[10] | Cafagna V, Vitolo A (2002) On the maximum principle for second-order elliptic operators in unbounded domains. C R Math Acad Sci Paris 334: 359-363. |
[11] | Caffarelli LA (1989) Interior a priori estimates for solutions of fully nonlinear equations. Ann Math 130: 189-213. |
[12] | Caffarelli LA, Cabré X (1995) Fully Nonlinear Elliptic Equations, Providence RI: American Mathematical Society. |
[13] | Caffarelli LA, Li Y, Nirenberg L (2009) Some remarks on singular solutions of nonlinear elliptic equations. J Fixed Point Theory Appl 5: 353-395. |
[14] | Caffarelli LA, Li Y, Nirenberg L (2012) Some remarks on singular solutions of nonlinear elliptic equations. Ⅱ: symmetry and monotonicity via moving planes, In: Advances in Geometric Analysis, Somerville: International Press, 97-105. |
[15] | Caffarelli LA, Li Y, Nirenberg L (2013) Some remarks on singular solutions of nonlinear elliptic equations. Ⅲ: viscosity solutions, including parabolic operators. Commun Pure Appl Math 66: 109-143. |
[16] | Capuzzo Dolcetta I, Leoni F, Vitolo A (2005) The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains. Commun Part Diff Eq 30: 1863-1881. |
[17] | Capuzzo Dolcetta I, Leoni F, Vitolo A (2014) Entire subsolutions of fully nonlinear degenerate elliptic equations. Bull Inst Math Acad Sin 9: 147-161. |
[18] | Capuzzo Dolcetta I, Leoni F, Vitolo A (2016) On the inequality F(x, D2u) ≥ f (u)+g(u)|Du|q. Math Ann 365: 423-448. |
[19] | Capuzzo Dolcetta I, Vitolo A (2007) A qualitative Phragmèn-Lindelöf theorem for fully nonlinear elliptic equations. J Differ Equations 243: 578-592. |
[20] | Capuzzo Dolcetta I, Vitolo A (2018) The weak maximum principle for degenerate elliptic operators in unbounded domains. Int Math Res Notices 2018: 412-431. |
[21] | Capuzzo Dolcetta I, Vitolo A (2019) Directional ellipticity on special domains: weak maximum and Phragmén-Lindelöf principles. Nonlinear Anal 184: 69-82. |
[22] | Crandall MG (1997) Viscosity solutions: A primer, In: Viscosity solutions and applications, Berlin: Springer. |
[23] | Crandall MG, Ishii H, Lions PL (1992) User's guide to viscosity solutions of second order partial differential equations. B Am Math Soc 27: 1-67. |
[24] | Crandall MG, Rabinowitz PH, Tartar L (1977) On a Dirichlet problem with a singular nonlinearity. Commun Part Diff Eq 2: 193-222. |
[25] | Ferrari F, Vitolo A (2020) Regularity properties for a class of non-uniformly elliptic Isaacs operators. Adv Nonlinear Stud 20: 213-241. |
[26] | Galise G, Vitolo A (2017) Removable singularities for degenerate elliptic Pucci operators. Adv Differential Equ 22: 77-100. |
[27] | Giarrusso E, Porru G (2006) Problems for elliptic singular equations with a gradient term. Nonlinear Anal 65: 107-128. |
[28] | Harvey FR, Lawson HB Jr (2009) Dirichlet duality and the Nonlinear Dirichlet problem. Commun Pure Appl Math 62: 396-443. |
[29] | Ishii H, Lions PL (1990) Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J Differ Equations 83: 26-78. |
[30] | Koike S (2004) A Beginners Guide to the Theory of Viscosity Solutions. Tokyo: Math Soc Japan. |
[31] | Lazer AC, McKenna PJ (1991) On a singular nonlinear elliptic boundary value problem. P Am Math Soc 111: 721-730. |
[32] | Nachman A, Callegari A (1986) A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J Appl Math 28: 271-281. |
[33] | Porru G, Vitolo A (2007) Problems for elliptic singular equations with a quadratic gradient term. J Math Anal Appl 334: 467-486. |
[34] | Oberman AM, Silvestre L (2011) The Dirichlet problem for the convex envelope. T Am Math Soc 11: 5871-5886. |
[35] | Sha JP (1986) p-convex Riemannian manifolds. Invent Math 83: 437-447. |
[36] | Sha JP (1987) Handlebodies and p-convexity. J Diff Geom 25: 353-361. |
[37] | Vitolo A (2003) On the maximum principle for complete second-order elliptic operators in general domains. J Differ Equations 194: 166-184. |
[38] | Vitolo A (2004) On the Phragmén-Lindelöf principle for second-order elliptic equations. J Math Anal Appl 300: 244-259. |
[39] | Vitolo A (2007) A note on the maximum principle for second-order elliptic equations in general domains. Acta Math Sin 23: 1955-1966. |
[40] | Vitolo A (2018) Removable singularities for degenerate elliptic equations without conditions on the growth of the solution. T Am Math Soc 370: 2679-2705. |
[41] | Vitolo A (2019) Maximum principles for viscosity solutions of weakly elliptic equations. Bruno Pini Mathematical Analysis Seminar 10: 110-136. |
[42] | Wu H (1987) Manifolds of partially positive curvature. Indiana U Math J 36: 525-548. |