Citation: Hai The Pham. Biosensors based on lithotrophic microbial fuel cells in relation to heterotrophic counterparts: research progress, challenges, and opportunities[J]. AIMS Microbiology, 2018, 4(3): 567-583. doi: 10.3934/microbiol.2018.3.567
[1] | Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568: 200–210. doi: 10.1016/j.aca.2005.11.065 |
[2] | D'Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16: 337–353. doi: 10.1016/S0956-5663(01)00125-7 |
[3] | Chang IS, Jang JK, Gil GC, et al. (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19: 607–613. doi: 10.1016/S0956-5663(03)00272-0 |
[4] | Di Lorenzo M, Curtis TP, Head IM, et al. (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43: 3145–3154. doi: 10.1016/j.watres.2009.01.005 |
[5] | Stein NE, Hamelers HMV, van Straten G, et al. (2012) On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Contr 22: 1755–1761. doi: 10.1016/j.jprocont.2012.07.009 |
[6] | Lee H, Yang W, Wei X, et al. (2015) A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water. IEEE 2015: 573–576. |
[7] | Webster DP, TerAvest MA, Doud DFR, et al. (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62: 320–324. doi: 10.1016/j.bios.2014.07.003 |
[8] | Liu Z, Liu J, Zhang S, et al. (2011) Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process. Bioresource Technol 102: 10221–10229. doi: 10.1016/j.biortech.2011.08.053 |
[9] | Rabaey K, Rodriguez J, Blackall LL, et al. (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1: 9–18. doi: 10.1038/ismej.2007.4 |
[10] | Pham TH, Aelterman P, Verstraete W (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends Biotechnol 27: 168–178. doi: 10.1016/j.tibtech.2008.11.005 |
[11] | Mohan SV, Velvizhi G, Modestra JA, et al. (2014) Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev 40: 779–797. doi: 10.1016/j.rser.2014.07.109 |
[12] | Dávila D, Esquivel JP, Sabaté N, et al. (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26: 2426–2430. doi: 10.1016/j.bios.2010.10.025 |
[13] | Lovley DR, Nevin KP (2011) A shift in the current: New applications and concepts for microbe-electrode electron exchange. Curr Opin Biotech 22: 441–448. doi: 10.1016/j.copbio.2011.01.009 |
[14] | Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biot 76: 485–494. doi: 10.1007/s00253-007-1027-4 |
[15] | Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8: 706–716. doi: 10.1038/nrmicro2422 |
[16] | Arends JB, Verstraete W (2012) 100 years of microbial electricity production: three concepts for the future. Microb Biotechnol 5: 333–346. doi: 10.1111/j.1751-7915.2011.00302.x |
[17] | Tran PHN, Luong TTT, Nguyen TTT, et al. (2015) Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Environ Sci Proc Impacts 17: 1806–1815. doi: 10.1039/C5EM00099H |
[18] | Pant D, Van Bogaert G, Diels L, et al. (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol 101: 1533–1543. doi: 10.1016/j.biortech.2009.10.017 |
[19] | Yang H, Zhou M, Liu M, et al. (2015) Microbial fuel cells for biosensor applications. Biotechnol Lett 37: 2357–2364. doi: 10.1007/s10529-015-1929-7 |
[20] | Sulonen MLK, Lakaniemi AM, Kokko ME, et al. (2016) Long-term stability of bioelectricity generation coupled with tetrathionate disproportionation. Bioresource Technol 216: 876–882. doi: 10.1016/j.biortech.2016.06.024 |
[21] | Zhong L, Zhang S, Wei Y, et al. (2017) Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell. Biochem Eng J 124: 6–12. doi: 10.1016/j.bej.2017.04.005 |
[22] | He Z, Kan J, Wang Y, et al. (2009) Electricity production coupled to ammonium in a microbial fuel cell. Environ Sci Technol 43: 3391–3397. doi: 10.1021/es803492c |
[23] | Nguyen TT, Luong TTT, Tran PHN, et al. (2015) A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode. Microb Biotechnol 8: 579–589. doi: 10.1111/1751-7915.12267 |
[24] | Rabaey K, Van de Sompel K, Maignien L, et al. (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40: 5218–5224. doi: 10.1021/es060382u |
[25] | Logan BE, Hamelers B, Rozendal R, et al. (2006) Microbial fuel cells: Methodology and technology. Environ Sci Technol 40: 5181–5192. doi: 10.1021/es0605016 |
[26] | Kim M, Youn SM, Shin SH, et al. (2003) Practical field application of a novel BOD monitoring system. J Environ Monitor 5: 640–643. doi: 10.1039/b304583h |
[27] | Kim BH, Chang IS, Gil GC, et al. (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25: 541–545. doi: 10.1023/A:1022891231369 |
[28] | Kang KH, Jang JK, Pham TH, et al. (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25: 1357–1361. doi: 10.1023/A:1024984521699 |
[29] | Liu B, Lei Y, Li B (2014) A batch-mode cube microbial fuel cell based "shock" biosensor for wastewater quality monitoring. Biosens Bioelectron 62: 308–314. doi: 10.1016/j.bios.2014.06.051 |
[30] | Di Lorenzo M, Thomson AR, Schneider K, et al. (2014) A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 62: 182–188. doi: 10.1016/j.bios.2014.06.050 |
[31] | Ringeisen BR, Henderson E, Wu PK, et al. (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40: 2629–2634. doi: 10.1021/es052254w |
[32] | Kim M, Hyun MS, Gadd GM, et al. (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monitor 9: 1323–1328. doi: 10.1039/b713114c |
[33] | Quek SB, Cheng L, Cord-Ruwisch R (2015) Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. Water Res 77: 64–71. doi: 10.1016/j.watres.2015.03.012 |
[34] | Kaur A, Kim JR, Michie I, et al. (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosens Bioelectron 47: 50–55. doi: 10.1016/j.bios.2013.02.033 |
[35] | Ni G, Christel S, Roman P, et al. (2016) Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms. Res Microbiol 167: 568–575. doi: 10.1016/j.resmic.2016.04.010 |
[36] | Stein NE, Hamelers HVM, Buisman CNJ (2010) Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 78: 87–91. doi: 10.1016/j.bioelechem.2009.09.009 |
[37] | Kim BH, Park HS, Kim HJ, et al. (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biot 63: 672–681. doi: 10.1007/s00253-003-1412-6 |
[38] | Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14: 512–518. doi: 10.1016/j.tim.2006.10.003 |
[39] | Liu Z, Li H, Liu J, et al. (2008) Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix. J Appl Microbiol 104: 1163–1170. doi: 10.1111/j.1365-2672.2007.03643.x |
[40] | Tran P, Nguyen L, Nguyen H, et al. (2016) Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells. AIMS Bioeng 3: 60–74. doi: 10.3934/bioeng.2016.1.60 |
[41] | Mathuriya AS (2013) Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment. Environ Technol 34: 1957–1964. doi: 10.1080/09593330.2013.808674 |
[42] | Vázquez-Larios AL, Poggi-Varaldo HM, Solorza-Feria O, et al. Effect of type of inoculum on microbial fuel cell performance that used RuxMoySez as cathodic catalyst. Int J Hydrogen Energ 40: 17402–17412. |
[43] | Hsieh MC, Chung YC (2014) Measurement of biochemical oxygen demand from different wastewater samples using a mediator-less microbial fuel cell biosensor. Environ Technol 35: 2204–2211. doi: 10.1080/09593330.2014.898700 |
[44] | Logan BE, Regan JM (2006) Microbial challenges and applications. Environ Sci Technol 40: 5172–5180. doi: 10.1021/es0627592 |
[45] | Rabaey K, Boon N, Siciliano SD, et al. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microb 70: 5373–5382. doi: 10.1128/AEM.70.9.5373-5382.2004 |
[46] | Rabaey K, Boon N, Hofte M, et al. (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39: 3401–3408. doi: 10.1021/es048563o |
[47] | Sudek LA, Templeton AS, Tebo BM, et al. (2009) Microbial Ecology of Fe (hydr)oxide Mats and Basaltic Rock from Vailulu'u Seamount, American Samoa. Geomicrobiol J 26: 581–596. doi: 10.1080/01490450903263400 |
[48] | Straub KL, Benz M, Schink B, et al. (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62: 1458–1460. |
[49] | Gil GC, Chang IS, Kim BH, et al. (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18: 327–334. doi: 10.1016/S0956-5663(02)00110-0 |
[50] | Kim BH, Chang IS, Moon H (2006) Microbial fuel cell-type biochemical oxygen demand sensor. Studies 3. |
[51] | Liu H, Cheng SA, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39: 5488–5493. doi: 10.1021/es050316c |
[52] | Stein NE, Hamelers HVM, Buisman CNJ (2012) The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sensor Actuat B-Chem 171: 816–821. |
[53] | Pham TH, Rabaey K, Aelterman P, et al. (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6: 285–292. doi: 10.1002/elsc.200620121 |
[54] | Logan B, Cheng S, Watson V, et al. (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41: 3341–3346. doi: 10.1021/es062644y |
[55] | Rabaey K, Clauwaert P, Aelterman P, et al. (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39: 8077–8082. doi: 10.1021/es050986i |
[56] | Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb 69: 1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003 |
[57] | Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38: 2281–2285. doi: 10.1021/es034923g |
[58] | Winkel LHE, Trang PTK, Lan VM, et al. (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. P Natl Acad Sci USA 108: 1246–1251. doi: 10.1073/pnas.1011915108 |
[59] | Wasserman GA, Liu X, Parvez F, et al. (2006) Water manganese exposure and children's intellectual function in Araihazar, Bangladesh. Environ Health Persp 114: 124–129. |
[60] | Habibul N, Hu Y, Sheng GP (2016) Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils. J Hazard Mater 318: 9–14. doi: 10.1016/j.jhazmat.2016.06.041 |
[61] | Li Y, Wu Y, Liu B, et al. (2015) Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system. Bioresource Technol 192: 238–246. doi: 10.1016/j.biortech.2015.05.030 |
[62] | Shen J, Huang L, Zhou P, et al. (2017) Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioelectrochemistry 114: 1–7. doi: 10.1016/j.bioelechem.2016.11.002 |
[63] | Sophia AC, Saikant S (2016) Reduction of chromium(VI) with energy recovery using microbial fuel cell technology. J Water Process Eng 11: 39–45. doi: 10.1016/j.jwpe.2016.03.006 |